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DEMOCRATIC. COMPACTIFICATION OF CONFIGURATION
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To the memory of late cat Oshin (? - 02-01-1995)

Introduction

The configuration space of distinct colored n(> 3) points on the real projective line P! is
defined by
X(n) = PGL2)\{(P)" - A},

where A = {(z1,...,%n) | z; = z; for some ¢ # j}, and the group PGL(2) of projective
transformations acts diagonally and freely. The space X(n) admits a natural action of the
symmetric group S, through the permutations of n points.

If one destroys the symmetry and let z; = 0,z2 = 1,2z, = oo, then the quotlent space
X(n) can be identified to the complement of hyperplanes in R"~ 3

{($3) oo )zn—l) € Rn—3 | T # 071)$k(k 72 .7)}
Let us have a look at one of its connected components bounded by hyperplanes, say,
T3 =1, T3=2T4, ... ,Tn-2 = Tn_1;

see Figure 0. Each point in the domain represents an arrangement of n points 1,...,Z,
such that
' z1(=0) < z2(=1) < 23 < -+- < Ty < zTa(= 00) € PL.

Thus it is natural to label this domain by the sequence 12 - - n; according to the fact that
P! is a circle and to the action of PGL(2), we should think that the following sequences

23---n1, 3.--n12, --- ,nl2...,
n---321, In---32,---

are equivalent to 12---n; the equivalence class is called an n-juzu (see Figure 1), and will
be denoted by one of the sequences above.

Thus the space X(n) consists of (n — 1)!/2 chambers (connected components) coded by
n-juzus.

We add to X (n) various degenerate arrangements as well as extra varieties to get a smooth
variety X (n) so that X(n)— X (n) is purely 1-codimensional with normal crossings only, and
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that the group S, acts bi-regularly on it. We describe the shape of chambers in X(n), and
clarify what kind of degenerate arrangements and extra varieties are added.

The chamber above can also be obtained in the following way. Let A be an (n — 3)-
dimensional simplex. Make the barycentric subdivision of A, then (n — 2)! small simplices
are cut out by the hyperplanes; call one of these C. Truncate C along the (n—>5)-dimensional
faces along which the hyperplanes are not normally crossing, and along their intersections.
The truncated one is just the prescribed chamber.

Apart from its own interest of the construction, it relates to the following subjects.

(1) The complexification of the space X(n) is the natural domain of definition of the
Appell-Lauricella hypergeometric differential equation Fp in n — 3 variables, which is also
called the one of type (2,n); cf. [K], [Sek], [ST], [Ter], [Oda).

(2) If you are interested in an integral of a Selberg type:

J e TIa -0 TTets = 6% stz
,J=1

i=1 i<y

then you know that the intersection numbers of loaded cycles concerning to the integral
play an important role; cf. [KY] and [CMY]. To compute them, one blows up along the
non-normally crossing part of the divisor

[ItIIa-t) ¢ -t =0

i=1 j=1 i<j

the consequent manifold would just be X(n+3). Notice that real blow-ups can be described
by truncations.

I shall explain the shape of the chamber 12...n, since all the chambers will have the
same shape (they are transitive under S,), by describing its boundary in X(n). In order to
help the reader understand what is going on, we describe it for n = 3,--- ,7, and then give
the general results.

Acknowledgement: The author would like to thank professors K. Mimachi, N. Takayama
and M. Wakayama for their encouragement.

1. Geometric observations

For an integer n > 4, let C be the (n — 3)-dimensional chamber of X (n) coded by the n-juzu
12...n. Degenrate arrangements such that

T3 < Tji1 Tj=T541 < Tjpy <+ < Ty

form an (n —4)-dimensional space C(j), which is isomorphic to a chamber of X(n —1). The
C(3)’s(j = 1,...,n) can be considered as part of the boundary of C. Suppose, by induction,
we know the boundary of each C(j), and patch them along its boundary; we shall find (when
n 2> 6) that they do not bound C, i.e. there are many holes. We shall find that each hole
is a direct product of chambers with lower dimension. In this section, we give an intuitive
description of the situation when 3 < n < 7. A complete description will be made in the
next section by introducing an algebra.
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1.1. X(3)

Since any three distinct points on the real projective line P! can be transformed to any
other such, X (3) consists of a point, which will be denoted by 123.

1.2. X(4) |
The space X (4) is isomorphic to

P! — {three distinct points},

(it is well-known that a cross-ratio gives an isomorphism), consisting of three open intervals
coded by
1243, 1234, 1324.

Since the space X(4) is 1-dimensional, it can be uniquely compactified by adding three
points, which represent arrangements that two points coincide. The arrangement of three
points z; = 29 < z3 < z4 shall be denoted by (12)34, and so on. By the uniqueness above,
the two arrangements

(12)34 and 12(34)

must be identified. The compactification X (4) can be illustrated as follows:
o . [¢) | o
1243 (12)34 1234  1(23)4 1324  (13)24 1342

I | I
12(34) 23(41) 13(42)

Thus the boundary 8{1234} of the chamber 1234 is given as follows
8{1234} = {12(34) = (12)34} U {23(41) = (23)41}.

Notice that the chamber 1243, which is adjacent to 1234 through the point (12)34 = 12(34)
is obtained from 1234 by performing a permutation (12) or equivalently by (34).

1.3. X(5)
Denote the set of arrangements

T =22 < 23 <724 <7Ts,

by the juzu (12)345, which can be considered as a chamber of X (4). Juzus with parentheses
are defined accordingly. The chamber 12345 is bounded by five segments

(12)345, (34)512, (51)234, (23)451, (45)123.
This can be shown as follows: the boundary of each segment is given by the formula above:
0{(12)345} = (12)3(45) U (12)(34)5,
8{(23)451} = (23)4(51) U (23)(45)1,
8{(34)512} = (34)5(12) U (34)(51)2,
8{(45)123} = (45)1(23) U (45)(12)3,
8{(51)234} = (51)2(34) U (51)(23)4.
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See Figure 2. Thus one sees that the five segments form a circle bounding a polygon 12345:
0{12345} = (12)345 U (34)512 U (51)234 U (23)451 U (45)123.

Recall that we are forced?’f by the argument in the previous section, to identify for instance
the following three arrangements:

(12)3(45), (123)45 12(345).

The chamber 12354, obtained from 12345 by performing the permutation (45), is adja-
cent to 12345 through the segment (45)123; the chamber 13254, obtained from 12345 by
performing the permutations (23) and (45), touches to 12345 at a point (45)1(23). Figure 3
will give you a global idea, in which (12)345 and (12)3(45) are replaced by (12) and (12)(45).
Remark. Let A; be a 2-simplex, a triangle bounded by three (= 5 — 2) lines. Make the
barycentric subdivision by three (= (5 — 2)(5 — 3)/2) lines, and one gets six (=(5 — 2)!)
small triangles; call one of these D. The triangle D has two vertices where three lines meet.
Truncate D at the two vertices and one gets a pentagon. See Figure 4.

1.4. X(6)
The 2-dimensional chambers (pentagons)

(12)3456, . . ., (61)2345

are part of the boundary of the chamber 123456. Figure 5 illustrates the pentagon 1234(56)
with its boundary consisting of five segments:

(12)34(56), 1(23)4(56), 12(34)(56), 123(4(56)), 234((56)1).

Glue the six pentagons along their possible boundaries. Figure 6 shows a stereographic
image of this object, where (12)34(56) and 123(4(56)) are replaced by (12)(56) and (4(56)).
In this figure we find three rectangular holes, which may be coded by

(123) x (456), (234) x (561), (345) x (612).

The first one represents the product of the two segments (123)456 and 123(456). In this
way the six pentagons and the three rectangles are glued along their boundaries to form a
2-sphere bounding the chamber 123456.

The (3-dimensional) chamber 213456 obtained from 123456 by the permutation (12) is
adjacent to the chamber 123456 through the pentagon (12)3456.

The chamber 321456 = 123654 obtained from 123456 by reversing the sequence 123, or
by reversing 456, is adjacent to the chamber 123456 through the rectangle (123) x (456).

The chamber 214356 obtained from 123456 by the permutations (12) and (34) is adjacent
to the chamber 123456 along the segment (12)(34)56, around which are four chambers
corresponding to the permutations (), (12),(34), (12)(34).

The chamber 231456 obtained from 123456 by permuting (12) and then reversing the
sequence 213, or by reversing the sequence 123 and then permuting (12) is adjacent to the
chamber 123456 along the segment ((12)3)456. Around the segment there are four chambers
123456, 213456, 321456 and 312456.
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The chamber 214365 obtained from 123456 by the permutations (12),(34) and (56)
touches the chamber 123456 at a point, around which are eight chambers corresponding
to the permutations

0, (12), (34), (56), (12)(34), (34)(56), (56)(12), (12)(34)(56).

The chamber 312546 touches the chamber 123456 at a point, around which are eight
chambers: :

123456, 213456, 123546, 123654, 312456, 213546, 123645, 312546.

Remark. Let A3 be a 3-simplex, a tetrahedron bounded by four (= 6 — 2) planes. Make
the barycentric subdivision by six (= (6 — 2)(6 — 3)/2) planes, and one gets twenty four
(= (6 —2)!) small tetrahedra; call one of these D. The tetrahedron D has three edges along
which three planes meet; the three edges do not form a triangle but form the letter Z; they
meet at the two vertices which are the two cusps of Z. See Figure 7. Truncate D at the two
vertices and along the three edges. Let us describe this polytope: after the truncation, the
four triangular faces and the two vertices become pentagons, and the three edges become
rectangles. You see this is just the shape of the chamber 123456 described above. You can
make a paper model by six regular pentagons and three scquares, according to the pachwork
shown in Figure 6.

1.5. X(7)
The seven 3-dimensional chambers (the polytope described above)

(12)34567, ... ., (71)23456

are part of the boundary of the chamber 1234567. Figure 8 illustrates the polytope 12345(67)
with its boundary consisting of six pentagons and three rectangles:

| (12)345(67), 1(23)45(67), 12(34)5(67), 123(45)(67), 1234(5(67)), 2345((67)1),
(123) x (45(67)), (234) x (5(67)1), (345) x ((67)12) '
Glue the seven polytopes along their possible pentagonal faces, énd imagine the sterographic

image in the 3-dimensional space; you shall find seven holes with the shape of pentagonal
prism (the product of a pentagon and a segment):

(123)4567 x 123(4567)

and their cyclic permutations; see Figure 9.
In this way the seven polytopes and the seven pentagonal prisms are glued along their
boundaries to form a 3-sphere bounding the chamber 1234567.

1.6. X(8),---

Now you can guess what will be going on with the (n — 3)-dimensional chamber 1---n. It
would be bounded by the (n — 4)-chambers

(12)3---n, (23)4---nl, -+ ,(n1)2---(n —1),
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and the direct products of (n — k — 2)-dimensional and (k¥ — 2)-dimensional chambers:
(12---k)--nx12-- k(k+1---n), k=3,---,n—3;

they would be patched along their boundaries to form an (n—4)-dimensional sphere bounding
the chamber 12 ... n. But since we are doing mathematics, guess is not enough. In the next
section, we are going to fix an orientation on each chamber, and to define the boundary
operator 0, and to show 00 = 0, which proves the above guess.

Our idea is as follows:
(1) introduce dummy chambers and think, for example,

12345(67) as 12345(67) x (12345)67,

(12)345(67) as (12)345(67) x 12(34567) x (12345)67,

1234(5(67)) as 1234(567) x (1234)5(67) x (12345)67,
- (123) x (45(67)) as (123)4567 x 123(4567) x (12345)67,

o

(2) fix an orientation for each chamber,
(3) think the product x above as the exterior product A,
(4) define the boundary operator 9 in the exterior algebra.

2. An algebraic formulation
Consider for an integer n > 3 a free Z module F), generated by the following elements

ai a2 ap
—N— - % - i,
(1"'&])(&1"}'1"'01 +a2+1)...(...n)
az ap ai

(PP @I (TR @)

= (-PE ) (TR @)

a ay ap—1

= (PP ERE e ()

and their cyclic permutations of 1,2, --- ,n, where
a; 21, p=>3.

The element above will be called an (oriented) p-juzu, and each part sandwiched by paren-
thesis a bead. When a; = 1 we often write

. =
J inplaceof ( j ).

Under this convention, F3 is generated by one element 123 = 231 = 312.
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Fy is generated by 1234 = —2341 = 3412 = —4123 and
12(34) = 2(34)1 = (34)12, 23(41), 34(12), 41(23).
Fy is generated by 123f15 = 23451 = - .- and the cyclic permutations of 1,2, 3,4,5 of
123(45), 1(23)(45), and 12(345);

notice that 123(45) = —23(45)1 = 3(45)12 = —(45)123.
Fg is generated by 123456 = —234561 = --- and the cyclic permutations of

1234(56), 123(456), 12(34)(56), 1(23)4(56), (12)(34)(56), 12(3456), 1(23)(456).
Let A, be the algebra generated by F;, equipped with the product A such that
Jp AN Jy = (=)@ g A g, |
where J,, is a p-juzu, and
JpNJy =0 if J, and J; have a common bead.

On the algebra A, we are going to define a boundary operator @ = 9,,. We define it for the
n-juzu 12...n, and extend it by Z-linearlity and the chain rule

O{Jp N Jg} = 0p{Jp} A Jg + (=T, A9 {J,}
When describing a juzﬁ in F,, we often omit redundant informations, for instance, in place

of .
12.--(n—a)(n—a+1---n),

we would write

a a a
A~ A~ N
...(...n), ...(n_a)(...) or 1...(...).
Definition. '
(n—-1)/2 a n—a
6{1..71}:2 Z ...(...n)/\...n(...)’ n: odd
cyclic a=2
nf2-1 a n—a
e = =
A1---n}= Z Z(_) (TR A (T
*cyclic a=2
n/2 n/2
+(_)n/2 Z (n)/\n(), n: even,
Fcyclic/2
where the sum over *cyclic means the alternating sum for 1,2,...,n, and the sum over

tcyclic/2 means the alternating sum for 1,2,...,n/2. Please check that this definition is
consistent under cyclic permutations of 1,2,...,n.
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Let us show some examples:

9{123} =0,
0{1234} = 12(34) A'34(12) — 23(41) A 41(23),
8{12345} = 123(45) A 45(123) + 234(51) A 51(234) + - - - + 512(34) A 34(512),
8{123456} = 1234(56) A 56(1234) — 2345(61) A 61(2345) + - - - — 6123(45) A 45(6123)
— {123(456) A 456(123) — 234(561) A 561(234) + 345(612) A 612(345)},
8{1234567} = 12345(67) A 67(12345) + - - - 4 71234(56) A 56(71234)
+ 1234(567) A 567(1234) + - - - + T123(456) A 456(7123),
8{12345678} = 123456(78) A 78(123456) — - - - + - - - — 812345(67) A 67(812345)
~ {12345(678) A 678(12345) — - - - + - - - — 81234(567) A 567(81234)}
4 1234(5678) A 5678(1234) — - - - + - - - — 4567(8123) A 8123(4567);

now you can do it by yourself. The rest of this section is devoted to a proof of the following

Theorem.
00 = 0.
Lemma 1. For even n,
n/2 n/2 n/2 n/2
= A~ e A
9 Z e (TRA ()] = Z M (A n(70)
*cyclic/2 +cyclic
Proof. We have
n/2 nf2
A A=
a[z ]: S (TR AT
*cyclic/2
n/2 n/2
+(M S (TR A (T
+cyclic/2

the last term is a product of an (n/2 4 1)-juzu and an n/2-juzu, so they are commutative;
thus by the definition of +cyclic/2, the two sums can be unified to the sum over *cyclic. O

Thus we have
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Lemma 2.
00{1---n} n: even

n/2-1 n—a a n—a
Z Z [( )28{--- (< n)}/\ .n(’.’..\)+1...(f'.’.‘ﬁ)/\a{...n(’.’ﬁ)}J
*cyclic a=2 !
n/2 n/2
+(=)2 Y AL (TR An(T),
+cyclic
00{1---n} n: odd
' (n—1)/2 a n—a a n—a
=Z Z [ {-(TRIA-- (..)+(_)a+1...(Tt’.‘,;)/\a{...n(’:’..\)}},
cyclic a=2
Lemma 3. Forevenn,
o{1---(T )
[("—a)/zl “+b_1 /Ja\ n—,a/—\b+1
Z (=) EZ( e ( ...n) (TR k(T )
k=0
n—a a /b\ n—b
+Z( e (T )---(---k)/\---k(ﬁ)}
(n—a+1)/2-1 (n—at1)/2 a (n—a+1)/2
FEIRYDE ST (kTR YA (TR T ),
k=0

where 6%¢™ = 0 or 1 if a is odd or even, respectively.

Proof. Writing the cyclic sums explicitly, in the definition of the boundary operator, we
have

(n=1)/2n—1 Aa n—a
o{1---n} = Z Z...(...k)/\...k("’..‘.), n: odd
a=2 k=0
nf2-1 a n—a
e =
.n} = Z( )Z( Yo (e ck(T)
a=2
n/2-1 "/2 n/2
(—)™/? Z (=)o (- k(A), n: even
where k = 0 means k = n. We can mal\e them together, i.e. «for any n > 3, we have
(n—l)/2l n—a
Z (=)an+D) Z( Yrnt1) (T ) Y
n/2—1 n/2 n/2

A R DG LEN G YN T}
k=0
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Let us add in this formula an extra information the place of n:

ey 2 n—a
Z ( Je(n+1) Z( yertD) (T KA R(T0)
a—2

n-—a
_,_Z(-_)k(nﬂ)...n...(...k)/\...k(fT?.'.?)
nf2
nf2-1 n/2
+ geven(—)n/? Z( Yooi(coone ) A BT,
k=0

Put n = m in this formula, and subtitute m in the juzus by (*- n), and the index m by
n — b+ 1; then we get

b

o1 (7 M)
[(n—b)/2] a—1 a+b—1 b n—a-—-b+1
Z (- )a(n—b) Z( )k(n=0) . k)/\-n(f'-/-?)---k( )
a=2
n—b b @ n—a
_|_Z( Y= (TR R A k()
k=a
(n—b+1)/2—-1 (“',‘_”/'i'l)ﬂ b (n—b+1)/2
even n— v A A
+ 62V (—) b/ Z (=) (kYA (TR k(T ).
k=0

One has only to exchange the indices a and b, and assume n even. 0O

We shall prove the theorem only when n is even, because the odd case can be proved
quite analogously. By Lemma 3, one knows that every term of the expression of 90{1:--n}
in Lemma 2 is the product of three juzus in the form

a b n—a n—b

S (T and (T

)

where
a,b>2, a+b<n-3,

which shall be called a term of type (a)(b) = (b)(a). See Figure 10. Without loss of
generaity we assume a < n/2. When b < [(n — a)/2], the sum of the terms of type (a)(b) in
the expression is (—)?® times

n—a a n—b n—a

Z( )aZ( e (7 )...(.’./.\E),\...k(’fﬁ)/\...n(’f’ﬁ)

Zcyclic

+ Z( )bZ( )kb...(ﬂ)...(.’fﬁ)/\...k(f.’..\)/\...n(’?’ﬁ),

+cyclic
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where both terms comes from the second term in the expression in Lemma 3. We deform
the expression of the second term by the formulae

n—a n—b n-b n—a
BT A ;-;.,.n(’?’.‘.“) = (=) n (T A k(T
a a b

...(.".’.‘ﬁ)...(...k)_( )(r—a—bt+1)(k— a+1)...(ﬂ)...(.’.’.‘ﬁ),

and put k¥ = n — [; then the second term equals

a b n—b n—a

Z Z( Y Con =D (TR A (T A (n = DT,

Zcyclic I=b

where

K=b+kbtab+(n—a-b+1)(k—a+1).

Perform the *cyclic permutation to change n to ! (accordingly n — ! changes to n), which
causes the multiplication by (—)', and change the index [ into k; then the consequent ex-
pression is exactly the same to the first term times (—)%*!. Since

K+l=a+ak+1 mod 2,

the sum of the first and the second terms is zero.

When [(n — a)/2] < b < n/2, the terms of type (a)(b) appear in the first and the second
lines in Lemma 3; when b > n/2, such terms appear in the first term in Lemma 3 and the
second term of the sum in Lemma 2. One can prove the vanishing of the sum in the same
way as in the case above. When a or b equals n/2, sﬂ:uatmn is 51mpler In this way we
complete the proof of the Theorem.
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Figure 1. Juzu 12..n
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(12)354 " (12)345 (12)435
O O
(12)3(45) (12)(34)5

Figure 2. Segment (12)345

[ ® N\

12345

(23)(45)

(12)(34)

(12) (45)

Figure 3. Boundary of 12345
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Figure 4. Truncation of a 2-simplex
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/ ((56)1) \

(34)(56) (23)(56)

1234(56)

(1 2)(56) (4(56))

Figure 5. Boundary of 1234(56)
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Figure 6. Boundary of 123456
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Figure 7. Barycentric subdivision
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(234)x(5(67)1)

(123)x(45(67))

Figure 8. Boundary of 12345(67)
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((12)3)

(1 23)x(45(67))

\/ (123)x((45)67) (1(23))

Figure 9. Prism (123)x(4567)
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