0000000000
9190 1995 0 120-140 120

FEMER EOILTBBBERICHE L 2B HEXR KO WT
A« BEOF &K B (Takeshi Suzuki)

ABSTRACT. We study the SU(2) WZNW model over a family of elliptic curves.
Starting from the formulation developed in [TUY], we derive a system of differential
equations which contains the Knizhnik-Zamolodchikov-Bernard equations[Bel][FW].
Our system completely determines the N-point functions and is regarded as a natural
elliptic analogue of the system obtained in [TK] for the projective line. We also
calculate the system for the 1-point functions explicitly. This gives a generalization
of the results in [EO2] for 5i(2,C)-characters.

§0. Introduction.

We consider the Wess-Zumino-Novikov-Witten (WZNW) model. A mathemati-
cal formulation of this model on general algebraic curves is given in [TUY], where
the correlation functions are defined as flat sections of a certain vector bundle over
the moduli space of curves. On the projective line P!, the correlation functions are
realized more explicitly in [TK] as functions which take their values in a certain
finite-dimensional vector space, and characterized by the system of equations con-
taining the Knizhnik-Zamolodchikov (KZ) equations[KZ]. One aim in the present
paper is to have a parallel description on elliptic curves. Namely, we characterize the
N-point functions as vector-valued functions by a system of differential equations
containing an elliptic analogue of the KZ equations by Bernard[Bel]. Furthermore
we write down this system explicitly in the 1-pointed case.

To explain more precisely, first let us review the formulation in [TUY] roughly.
Let g be a simple Lie algebra over C and g the corresponding affine Lie algebra.
We fix a positive integer £ (called the level) and consider the integrable highest
weight modules of g of level £. Such modules are parameterized by the set of
highest weight P, and we denote by H) the left module corresponding to A €
P,. By M, n we denote the moduli space of N-pointed curves of genus g. For
X € My N and X = (Ay,...,An) € (P)V, we associate the space of conformal
blocks V; (%; X) The space V;' (%; X) is the finite dimensional subspace of 'H:‘.\. =
Homc(Hy, ®--- @ Hay, C) defined by “the gauge conditions”. Consider the vector
bundle f{;’(:() = Uzem, y VI(%; X) over M, y. On this vector bundle, projectively
flat connections are defined through the Kodaira-Spencer theory, and flat sections of
17;' (X) with respect to these connections are called the N-point correlation functions
(or N-point functions). In the rest of this paper we set g = s[(2,C) = CE@CF®CH
for simplicity, where E, F and H are the basis of g satisfying [H, E] = 2E, [H, F] =
—2F, [E,F] = H. We identify P, with the set { 0,3,... ,% } by the mapping
A &,‘,ﬁl

In the case of genus 0, the space of conformal blocks is injectively mapped into
V:\f := Homg(Vy, ® --- ® Va,,C) by the restriction map, where V), C H, denotes
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the finite dimensional irreducible highest weight left g-module with highest weight
A. This injectivity makes it possible to treat this model in a more explicit way as
above, and the N-point functions are described by the vacuum expectation values
of vertex operators.

On the other hand, in the case of genus 1 this injectivity does not hold, and
in order to recover it we twist the space of conformal blocks by introducing a
new parameter following [Bel,2][EO1][FW]. Because of the twisting, any N-point
function in genus 1 can be calculated from its restriction to V; (Proposition 3.3.2).
It is natural to ask how the restrictions of the N-point functions are characterized as
Vg -valued functions. It turns out that the restricted N-point functions satisfy the
equations (E1)-(E3) in Proposition 3.3.3. These equations are essentially derived
by Bernard[Bel] for traces of vertex operators

Tru, (01(21) - on(zn)go#E7) € V],

where z1,...,2N,¢,§ are the variables in C* with |¢| < 1, ¢; : Vy; @ H,; — 7:[#,'-1
(j =1,...,N) are the vertex operators for some y; (: =0,... ,N) with yg = pny =
i, Lo is defined by (1.2.1) and ¢, = 3¢/(£ — 2) (for the details, see §§3.4). It is
proved that the space of restricted N-point functions is spanned by traces of vertex
operators (Theorem 3.4.3) and hence Bernard’s approach is equivalent to ours.
However, the system (E1)-(E3) is not complete since it has infinite-dimensional
solution space.
We will show that the integrability condition

(E ®t_l)f——-2A+1 |

3(A)) =0

for the highest weight vector |5())) € H, implies the differential equations (E4),

which determine the N-point functions completely combining with (E1)—(E3).
For 1-point functions, the equation (E4) can be written down explicitly, and the

system (E1)—(E4) reduces to the two equations (F1)(F2) in Theorem 4.2.4. In the

simplest case, the 1-point functions are given by the characters

Tru"ql’w'?%ﬁ%t' (y:O,-;-,... ,g),
and our system coincide with the one obtained in [EO2].

- Recently Felder and Wieczerkowski give a conjecture on the characterization of
the restricted N-point functions in genus 1 by using the modular properties and
certain additive conditions[FW]. They confirm their conjecture in some cases by
explicit calculations. We recover this result in sl(2, C) case by solving the equation
(F2) (Proposition 4.2.5). The equation (F1) can be also integrated when the di-
mension of the solution space is small, and we can calculate the 1-point functions
explicitly.

§1. Representation theory for si(2, C).

For the details of the contents in this section, we refer the reader to [Kac].



1.1 Integrable highest weight modules.

By C[[z]] and C((z)), we mean the ring of formal power series in z and the field
of formal Laurent series in z, respectively. We put g = s{(2,C). Let h = CH be a
Cartan subalgebra of g and ( , ) : g x g — C the Cartan-Killing form normalized by
the condition (H, H) = 2. We identify the set P} of dominant integral weights with
%ZZO- For A € Py, we denote by V) the irreducible highest weight left g-module
with highest weight A and by |v(})) its highest weight vector.

The affine Lie algebra @ associated with g is defined by

§=90C((=)) ®Ce,
where c is an central element of § and the Lie algebra structure is given by
[X ® f(2),Y ® g(z)] = [X,Y] ® f(z)g() + ¢ (X,Y) Res(g(z) - df(2)),
for X,Y € g, f(z),9(z) € C((€)). We use the following notations:

Xn=X®xn, X=X0’
§+ =g0® C[[.’E]]:D, ﬁ— =g® C[x_l]x_la
P+ =0+ 090 Cc.
Fix a positive integer £ (called the level) and put P, = { 0,%,... ,£} C P;. For
A € P,, we define the action of 4 on V) by ¢ = £ x id and a = 0 for all a € gy,

and put :
My = U(ﬁ) ®ﬁ+ V.

Then M A is a highest weight left g-module and it has the maximal proper submod-
ule J», which is generated by the singular vector E72*1|v())):

Ir = UB-)ESH (V).

The integrable highest weight left g-module H, with highest weight X is defined
as the quotient module M, /J,. We denote by |5(\)) the highest weight vector in
‘H. We introduce the lowest weight right g-module structure on

H! = Homc(H,,C)

in the usual way, and denote its lowest weight vector by (o(\)].
1.2. Segal-Sugawara construction and the filtration on H,.

Fix a weight A € P;. On H), elements L, (n € Z) of the Virasoro algebra act
with the central charge ¢, = 3£/(£ + 2) through the Segal-Sugawara construction

1 1 o [ o ] [
(1-2-1) Ln = m Z {gEHmHn—mo + oEan—mo + oFmEn—mo} )
meEZ
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where $ 3 denotes the standard normal ordering. Put

X(z) =Y Xaz™' (X €9), T(z) =) Laz™"%

nEZ n€EZ
The module H) has the decomposition Hx = @a>oHa(d), where
Ha(d) = { [u) € Ha; Lolu) = (Ax +d)|u) },

AN +1)
A==

We define the filtration {F,} on Hj by

FpHa =Y _ Ha(d)
d<p

and put Hy = [Liso Ha(d)-
1.3. The Lie algebra gy.

Put Lg = g ® C((z)). For a positive integer N, we define a Lie algebra gy by

gy = @i, Loy & Ce,

123

- where Lg(;) denotes a copy of Lg and c is a center. The commutation relations are

given by
[®/L1 X; ® fi, ®1L.Y; ®g5] =

N
@i, [X;,Y5]® fig; + Z(Xj,Yj)ggil(gj -dfj)-c.
i=1 >

J=

For each X = (M,-- 5 An) € (Po)N aleft Gy-module Hy is defined by

Hx:HAl ®.“®HAN’
Similarly a right gy-module 'H;. is defied by
H“X =M} & - &M} = Homc(Hs,C).
The gn-action on Hy is given by
c=1/-1id

N
(@NL10)lu1 @ ®un) =Y pi(aj)lu1 @ - ®un)
i=1



for aj € Lg(j(j = 1,... ,N), where we used the notations

8B un) = 1) 8- @ un),
pi(@)u1 ® - Qun)=u1® - Qa-u;® - Qun)

for |u;) € Hx, (i =1,...,N) and a € Lg. The right action on ’H‘:.\. is defined simi-
larly. The module H; has the filtration induced from those of Hy; (j = 1,... ,N):

FpHz =Y Hx(d),

d<p

where
Hy(d)= Y. Ha(d)®: ®Hay(dn).
di+--+dn=d

We put
Vi =W, ® - ® Vay & Hz(0), V)i = Home(Vy, C).

§2 The WZNW model in genus 0.
In this section we review the SU(2) WZNW model on the projective line P.
2.1. The space of conformal blocks.

In this subsection we define the N-point functions on P! following [TUY] as
sections of a vector bundle on the manifold

Rv={(z1,...,28) €(C)N; zi # z; if i #j }.
For a meromorphic function f(¢) on P! and w € C, put
X[f () = Res S(OX(t - w)it,
T(f(t) ) = Res FOT(2 — w)it.

If f(t) has an Laurent expansion f(t) = ) .5 @n(t — w)™ then X[f(t)], is an
element of g given by -

X[f(t)]w = Z anXnp.

n>M

For z = (21,... ,2N) € Ry, we set
N
#(2) = H(P, g @ Op: (* Y _ z)).
j=1

Then we have the following injection:

d(z) — dn,
XQ® f(z) = X[fl:= ®X,X[fl-
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Through this map we regard g(z) as a subspace of gy and the residue theorem
implies that g(z) is a Lie subalgebra of gn. We also use the following notation

Tlg] = &L, Tlgl;
for g € H'(P!, Op: (* Ef]:l zj)), where Op: denotes the sheaf of vector fields on P!.

Definition 2.1.1. For z = (23,...,2x) € Ry and X = (A1,--.,AN) € (PN we
put

Vo(z;X) = Hz [8(z)H;,
Vi(z;X) = {(¥]enl; (P[E(z)=0}
= Homc(Vo(2 3 X),C) -
We call Vi(z; X)_. the space of conformal blocks (or the space of vacua) in genus 0
attached to (z;A).

For a vector space V and a complex manifold M, we denote by V[M] the set of
multi-valued, holomorphic V-valued functions on M.

Definition 2.1.2. For X € (P;)V, an element (®| of 'HJ".\.[RN] is called an N-point
function in genus 0 attached to A if the following conditions are satisfied:

(A1) For each z € Rp, »
(2(2)| € V§(=: %)

(A2) For j =1,...,N, :

9, (2(2)] = (2(2)lp;i(L-1)-

By 30(/_\')"we denote the set of N-point functions in genus 0 attached to X.
Remark. The condition (A1) implies the following: |

(A1") For each z € Ry,

(®(2)|T[g] =0

for any g € HO(P!, Op: (% Z;V:I zj)).

2.2. Restrictions of the N-point functions to Vse

A remarkable property of the space of conformal blocks in genus 0 is the following:
Lemma 2.2.1. The composition map

Vi = H; — Vo(z;X)

is surjective. In other words, the restriction map
Vi) - V;
is injective. ’

This lemma implies that, for an N-point function (®|, we can calculate (®|u) for
any |u) € Hy, from the data { (®|v) ; |v) € V5 }. By §5()) we denote the image of
Fo(X) in V; [Ry] under the restriction map. It is natural to ask how the set F5(X)

is characterized in V;\f [Rn], and the answer is given as follows:



Proposition 2.2.2. [TK] The space §5(X) coincides with the solution space of the
following system of equations:

(B1) For each X € g,
N

Y (8(z)les(X) = o0.

J=1

(B2) [the Knizhnik-Zamolodchikov equations] For each j = 1,...,N,

Qi
(€+2)05; ($(2)] = D_(d(2)| —L-,
i#j e
where 1
Q,; = 5pi(H)pi(H) + pi(E)p;(F) + pi(F)p;(E).
(B3) Foreachj =1,...,N,
¢; . :
> (F) e 6EIE 08008 0 B un)

nitetnn= 17 i)
=0

for any Iv.-) € Vy, (Z #]) Heref,- = 3—2)\j+1, T-ij = (nl,. NS (T PR PS (7 XN P ,nN)
and (:{' ) is the multinomial coefficient. O

Remark. The equation (B3) is a consequence of the i,nfegrability condition
(2.2.1) ES M s(0) =0(G =1,...,N),
for the highest weight vector |5(};)) € Hy;.

2.3. Vertex operators.

We review the description of N-point functions by vertex operators.

Definition 2.3.1. For (v,\,u) € (P¢)® a multi-valued, holomorphic, operator
valued function ¢(z;) on the manifold C* = C\ {0} is called a vertex operator of

type (v, A, p), if
e(z1) : \@H, —H,

satisfies the following conditions:

(C1) For X € g, |v) € V) and m € Z,
[Xms(lv);21)] = 27" 0(X|v);21).

(C2) For |v) € V) and m € Z,

(Lo, ([0} 20)] = 20" {z1%+(m+1)m}so(|v>;zl).

Here o(|u); z1) : H, — H, is the operator defined by ¢(|u); z1)|v) = ¢(21)|u @ v)
for |u) € V) and |v) € H,.

For vertex operators ¢j(z;) (j = 1,...,N), the composition ¢1(z1)---¢n(2n)
makes sense for |z;| > .-+ > |zn]| and analytically continued to Ry.
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Proposition 2.3.2. [TK] The space §5(X) is spanned by the following V;\T -valued
functions:

(v(0)la(z1) - - - on(2n)[0(0))

where ¢;(j = 1,...,N) is the vertex operator of type (uj_1,A;j,p;) for some
pi € P (i =0,...,N) with yo = py =0.

Proposition 2.3.3. [TK] Any nonzero vertex operator
e(z1) : VAQH, — H,
is uniquely extended to the operator
Hz1) : MA@ H, — H,
by the following condition:
(23.1) P(Xalu); 21) = Res (w — 21)"¢(lu); 21)X (w)do,
for each |u) € My, X € g and n € Z.

Moreover, ¢ has the following properties:

(2.3.2) 0:9(|u);z1) = ¢(L_1|u);21) for any |u) € M,
(233)  @(lu)iz)=0 forany ju) € Tx = UGBS |o(V)).

The property (2.3.3) implies that ¢ reduces to the operator
Pz1): HA®@H, — H,.
§3 The WZNW model in genus 1.

In this section we consider the elliptic analogue of the story in the previous
section. Our aim is to embed the set of N-point functions in genus 1 (Definition

3.1.3) into the set of V/.\T -valued functions, and to characterize its image by a system

of differential equations. We also show that the N-point functions are given by the
traces of vertex operators.

3.1 Functions with quasi-periodicity.

First, we prepare some functions for the later use. Put D* = {¢€ C*; |g| <1}
and introduce the following functions on C* x D*:

(3.1.1) e(Z,Q)‘—‘ Z (_1)n+1q12~n2zn

n€Z+1 :
= —\/-:iz%q% H(l _ qﬂ)(l _ an)(l _ z—lqn—l),
n>1
— zBZG)(z, q)
612 (m0) =G0
(3.1.3) p(2,9) = —20.((z,q) + 2____q3q17(q)

n(q) ’
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where 7(g) is the Dedekind eta function

n(g) =g¢% [J(1-q).

n>1
The function ©(z, ¢) satisfies the heat equation
298,0(2,q) = (29,)?0(2,9).

The function p(z, ) satisfies p(gz,q) = p(z, q), and ((z, ¢) have the following quasi-
periodicity: .

(3.1.4) ¢(gz,9) = ¢(z,9) — 1.
For (z,q) € C* x D* and £ € C*, we put

O(="1¢*,90'(1,9)
O(z, 9)0(¢*, 9)
Here ©'(z,q) = 20,0(z,q). The function o4(2,¢,£) have the following properties:

ai(qz, q7£) = Eilai(zaqaf) y
U:k(z—l,‘bé.) = —UrF(Z,‘Jaf) .

(3.1.5) 01(2,9,§) =

(3.1.6)

For ¢(z,q) and o4(z,q,€), we have the following expansion at z = 1:

(3.1.7) (z,q) = ;1_1 + % —2a(q)(z — 1) + O(z — 1)?,
(318)  oa(naf)= = FLED 4

> (1716;-31;“ * 1n—£§q") (=D +0G-1%
n>1

where a(q) is given by

_ @Omlg) 1
(3.1.9) a(q) = _"7(—Q) + 2

3.2. Twisting the space of conformal blocks.

In the case of genus 1 (or > 0), if we work with the formulation of [TUY], an
N-point function is not determined by its restriction on V. In order to resolve this
difficulty we “twist” the space of conformal blocks following [Bel,2][EO1][FW].

For ¢ € D*, we consider the elliptic curve £'q' = C*/(q), where (g) is the infinite
cyclic group of automorphisms generated by z — gz. We denote by [z], the image
of a point z € C* on &, and put

Tn ={(z,9) =(21,..,2n8,0) € (C*)N x D*; [zi]g # [25)g if s # 5 }.
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In the following we omit the subscript ¢ in [2]4. For(z,q) € Ty and X=(A1,...,AN) €
P, we can define the space of conformal blocks attached to the elliptic curve &;:

V(b e ) = { (¥l e 1 ; (Pla(izl,a) =0 ),
where

N
8], 0) = H'(6,8© O, (+ Y_[=3]),
=1

but for our purpose we need to twist it as follows. We introduce a new variable
¢ € C*, and put

N

(=), 4,6) = { a(t) € HY(C*,g® Oc+(x Y > q"2;)) 5 a(qt) = €% (a(t))6™ % } :

j=1n€zZ

This space is regarded as the space of meromorphic sections of the g-bundle which
is twisted by €7 along the cycle { [w] € s weRg<Sw<1} Forf =1, we
have

o N
8((z)a,1) = H*(E,,8® Og,(+ Y _[z]).

i=1
As in the previous section we have the following injection:

8(lh0,6) ~ Gn
XQf — X[f]

By this map we regard §([2], ¢, &) as a subspace of gn. Furthermore we can easily
have the following lemma.

Lemma 3.2.1. The vector space §([z], ¢,€) is a Lie subalgebra of gy. O
Definition 3.2.2. Put

Vi(lz], 4,6 X) = Hy/a([z), ¢, €)H5.,
Vi(lzl,¢,6 %) = { (¥l e HL 5 (V[E([=], ¢,6) =0}
= Homc(vl([z]v q, 6; X), C) .

We call VI ([2), 4, ¢; X) the space of conformal blocks in genus 1 attached to ([z], ¢, ¢; X)
Following [TUY][FW], we define the N-point functions in genus 1 as follows:

Definition 3.2.3. An element (®| of 'H‘;\.[TN x C*] is called an N-point function

in genus 1 attached to X if the following conditions are satisfied:

(D1) For each (z,¢,§) € Tn x C*,

(®(2,4,6)] € VI([2), 4,6 V).
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(D2) For j =1,...,N,
0., (#(2,0,€)] = (8(2,0,6)los(L )
(D3)
(00 + 53) (@100 = @, OIT ¢t/ 00t .

where ((t, q) is the function given by (3.1.2).
(D4)
1
é.aE(@(z’ q, f)l = (Q(z’ q, £)|§H[C(t/21 ’ q)]

We denote by §;(X) the set of N-point functions attached to X.

Remark. (i) The condition (D1) implies the following:
(D1') For each (z,q,€) € Ty x C*,

(2(2,4,6)IT[g] =0

for any g € H® (Eq,qu(*E 125)) = HY(Ey, Og, (* EJ ) z,)tdt)
(ii) The equations (D1)—~(D4) are compatible with each other due to (3.1.4), e.g.

(321) Jeoc- -;-H[c(t/z,-)l, X{f(t,0,0))| =
X[£0:f(t,q,6)] - [H X][C(t/zpq)f(t ¢,6)] € 8([2], 4, €)-

for X[f] € 9([2], ¢,€). Conversely, the compatlblhty condition demands (3.1.4) for

¢.
(iii) In (D3) and (D4) we can replace ¢(t/z1,q) with ((t/z;,¢9) (j = 2,...,N)

provided (D1) since

N

(3.2.2) C(t/21,9) — C(t/2),9) € H*(E;, Og,(x D 2))).

i=1

The finite-dimensionality of the space VI ([2), ¢, &; X) can be shown in a similar
way as in [TUY]. The compatibility of (D1)-(D4) implies that there exists a vector
bundle V{(X) over a domain U C Ty x C* which has Vi([z], ¢, X) as a fiber at
([2], ¢, €) € U, with the integrable connections defined by the differential equations

(D2)—(D4). In particular the dimension of the fiber V;r ([2], ¢, &; X) does not depend
on ([z], g, ).

3.3 Restrictions of N-point functions to V5.
In this subsection we see that, as a consequence of the twisting, an N-point
function in genus 1 is determined from its restriction to V5 (Proposition 3.3.2). We

also give the characterization of N-point functions as Vg -valued functions (Theorem
3.3.4).
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Lemma 3.3.1. Let § be the subspace of H; spanned by the vectors
p1(H-1)F|v) (lv) € Vi, k € Zxq).
Then for (z,q,€) € Ty x C* such that £ # ¢ (n € Z), the natural map
5 = Vi(leha: &%)
is surjective. In other words the restriction map
Vi([#),4,6X) — Home(S,0)
is injective.

Proof. This is shown by noting the fact that, for { # ¢" (n € Z), the space
8([2], ¢, ) is spanned by the following g-valued functions

HQ 1’ H® (((t/zh q) - C(t/zj,q)) ’ HQ® (tat)nso(t/zjaq),
E Q@ (t8y)"0+(t/2j,4,€), F @ (td)"0_(t/zj,¢,€) (1, =1,... ,N, n=0,1,...).

a

Let (®| be an N-point function in genus 1 and |u) be a vector in H;. By Lemma
3.3.1 we can express (®(z, ¢,£)|u) as a combination of

(8(2, 4, &)1 (H_1)"[v) (n € Zno, |v) € V).

Combining with (D4) we have the procedure to rewrite (®(z, ¢, {)|u) as a combina-
tion of

(Eaf)n (Q(zv q, é)lv) (TI. € ZEO, "U> € V;\') .
Furthermore it is easily seen that we need finitely many data for each |u):

Proposition 3.3.2. For |u) € F,Hz, there exist functions
ai,n(z,q,ﬁ) (Z =1,... ,dimVx, n=1,... ,p)

on T x C* such that

(®(2,0,6)lu) = D ai,n(2,4,6) (€3¢)" (B(2, ¢, €)|bs)

for any (®| € F1(X), where { |b;); i=1,... ,dim V5 } is a basis of V5.

By 8;(;\') we denote the image of §;(}) in fo [T x C*] under the restriction map
to Vx, which is injective by the above proposition.

Next, as in the case of genus 0, we consider the characterization of SI(X) in
V; [T x C*]. First, we have the following.
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Proposition 3.3.3. The restriction (¢| of an N-point function satisfies the follow-
ing equations.

(E1)

N

N (6(2,4,6)lpi(H) = 0.

J=1
(E2) Foreachj=1,... ,N,

(€ +2) (2;8;; + Ax;) (O(€,9)(b(2, ¢, )]) =

faf (6(67 q)<¢(z’ q, 6)]) pJ(H) + Z @(6’ Q)(¢(z’ q, E)Iﬂi,j(zj/zh q, 5)7
i#£]

where
Q2i,i(t,9,6) =
50 0P (H) + 04,0, 0pi(F)pi(E) +0_(t,0,E)pi(E)py(F).
(E3)
(£+2)a8, (O£, 0)($(2,0, E)]) = |
(£80° (OE (65,0 D) + 3 06 6z, i s(ei/2510,6)

i,j=1
Here

(¢t 9)? — p(t,9)) pi(H )p;(H)
E)p,(F) + w—(ts ng)pi(F)pj(E),

| =

Ai,j(t7 q, 6) =
+ w4 (t,q,&)pi

~~~

where w4 (t,q, &) denote the functions defined by

wi(t0,€) = 3 {002(t,0,€) + (0(t,0) £ (€, 0o (1,0,)},

which are holomorphic at t = 1.
For the proof of Proposition 3.3.3, we refer the reader to [FW].

Remark. The equation (E2) is derived by Bernard as a equation for the trace of
the vertex operators (see §§3.4), he also derived (E3) in a special case. The equa-
tions (E2)(E3) are called the Knizhnik-Zamolodchikov-Bernard (KZB) equations
in [Fe][FW].

Note that the system of equations (E1)—(E3) is not holonomic since we have
J + 2 parameters z,...,2N,q, {, but have only j + 1 differential equations, which
are compatible each other.
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The differential equations (E2) and (E3) are of order 1 with respect to z; (j =
1,...,N) and ¢ respectively. Hence to characterize 37(X) in Vz[Tn x C*], it is
sufficient to obtain equations which determine the £-dependence of the restricted
N-point functions and they are obtained as follows.

Let (®| be an N-point function and (¢| its restriction to Vx. We put M; =

Hom¢(M), ® -+ ® My, C) and regard (®| as an M}-valued function. Then as a
special case of integrability condition, we have for each non negative integer k

(3.3.1) (Bl ® - @ FETM (1)@ - Qun) =0

for any |vi) € Vi, (i # j), where |v(};)) denotes the highest weight vector in M ;.
On the other hand, by Proposition 3.3.2 we can rewrite the left hand side of
(3.3.1) as a combination of

(€0¢)™(Blv) = (£8¢)™(dlv) (n=0,1,...,£—2);+1,[v) € V5).

Now the equality (3.3.1) implies the differential equation for (¢| with respect to £
of order at most £ — 2X + 1. We denote this differential equation by

($lor ® - @ FFELT To(0) @ - @ uy) = 0.
Theorem 3.3.4. The space Si’(/_\') coincides with the solution space of the sysfem
of equations (E1)-(E4), where (E4) is given by
(E4) For each j = 1,... ,N and nonnegative integer k < Z;N=1 Ai+L€—-2)+1,

(6(2,0,6)|v1 ® --- ® FFE 7PN y()) @ --- @ wn) =0,

for any |v;) € Vy,(z # j).
Proof. It is enough to prove that the dimension of the solution space of the system
(E1)—~(E4) is not larger than dimc §1(A) = dimc §7(A).

Fix (z,q) € T and let (¢(¢)| = (#(2,¢,€)| be a V;-va.lued function on C* which

satisfies (E1) and (E4). From (¢(¢)|, we construct an element (®(£)| of MT;\.[C*]
which satisfies

() (@(E)o) = (#(E)Io) for [v) € Vs,
(i) (2(6)] € VI([], 9,6 %) for each ¢ €C*,
(i) €0a(®)] = (RO AL/ ),

The well-definedness is proved by induction with respect to the filtration {F, }
using Lemma 3.2.1 and the compatibility condition (3.2.1). Moreover we can show

that (®(¢)| belongs to ’Htx, that is,

(@)1 ® - @a-EFMu()))® - ®un) =0



for any j =1,...,N, |u;) € M), and a € U(p_). This is reduced to (E4) also by
induction.

Now we have the injective homomorphism from the solution space of (E1)—(E4)
to the space of functions on C* satisfying (ii) and (iii); the latter space has the

same dimension as V;r ([z),9,&; X) O
In the case of N = 1 we can write down the differential equafions (E4) explicitl
as we will see in §4. ‘
3.4 Sewing procedure.

In this subsection we show that the N-point functions in genus 1 are given by
the traces of vertex operators and hence Bernard’s approach is equivalent to ours.
For this purpose we construct an N-point function in genus 1 from an N + 2-point
function in genus 0. This construction is known as the sewing procedure.

Fix p € P, and X = (A1y-++ 5 AN) € (Pe)N, and consider a sequence of vertex
operators ¢;(z;) : Va; ® Hy; — ’Ftﬂj_l for some pj_y1,pj € Py with po = pun = p.
For |u) = |u1 ® --- ® un) € Hz, we put ’

Bo(Ju); 2) = Pa(lur); 21)@2(luz); 22) - - e (lun)i 2n) : Hy = H,

where ¢;(z;) means the extended vertex operator in the sense of Proposition 2.3.3.
We define a ’H;-valued function on Ty x C* by

(3.4.1) (®1(2,9,6)lu) = Try, (q’o(|u);2)qL°—%5%)

for Ju) € H;.

Proposition 3.4.1. The element (®;| of H3[Tn x C*] defined by (3.4.1) is an
N -point function in genus 1.

Proof. First we prove that (®,| satisfies the condition (D1).
Fix any X ® f € §([z],¢,{; A) and |u) € Hy, and put

(@)X (t)|u)dt = Tra, ®o(|u); 2)X (t)gEo~HET dt.
This is a holomorphic 1-form on C*\ { ¢"z; €e C*; n € Z,j = 1,... ,N }. Then
by (2.3.1), what we should show is the following.

N
(3.4.2) > Res f(t){®1|X(t)[u)dt = 0.
=1 "

But we have
FON®1IX (t)|u)dt = f(2)Tra, X (£)®o(Ju); 2)gho~ e ™ dt
= f(t)Try, Bo(|u); 2)g™~ ¢ F X(2)dt

= f(qt)Trs, Bo(|u); 2)X (qt)g o~ 3 ¢ ¥ d(qt)
= f(gt)(®@11X(gt)|u)d(qt),
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where we used the commutativity of vertex operators and currents, and

FOEFX@)ET = fa)X(t), = (X(t))g° = X(qt)g.

Therefore we have f(t)(®;|X(t)|u)dt € HO(Sq,wgq(z;V:l *[2;])), where we, denotes
the sheaf of 1-forms on £,. This implies (3.4.2).

Next we prove that (®| satisfies the equation (D2)—(D4). It is obvious that (@]
satisfies (D2) from (2.3.2). We give a proof of (D4). The equation (D3) is proved
in a similar way. We chose (z,¢) from the region 1 > |z1| > |22| > -+ > |zn| > |q|,
where (®;| is a convergent power series. Let Z, = {|w| = r} be a cycle with
anticlockwise orientation. We have :

21/~ 1{ @1 | H[((t/21)]|u)
=TI"H“/Z C(t/zl)H(t)(boﬂu);z)qLo_%g%dt

~Tom, [ Ct/z0) () E (@) E
= Try, { [ e - [ c(t/zl)} Bo(lu); ) H(t)g~ % ¢ ¥t

By ((t) = {(¢~t) — 1, we conclude

1
27y/—1
= Try, (<I>0(|u);z)HqL°_%*€%) .

(@1|H[C(t/z1)]|u) =

Try Do(|u); 2)H t)qL"_%%f%dt
"z
q9

This proves (D4). O

By Proposition 3.4.1 we have the mapping from Fo(, X, p) to KI(X) We denote
this mapping by s,. The following proposition follows from “the factorization
property” proved in [TUY].

Proposition 3.4.2. The following map is bijective.

& su: @ Fo(i, X, p) = F(X). O

P
nEP, LEP,

By Proposition 2.3.2 and Proposition 3.4.2 we get the following.
Theorem 3.4.3. The space &”{(X) is spanned by the functions

—tu H
Try, 1(21) - on(zn)g™0 ™ HET,

where ¢;(z;) ( = 1,...,N) is the vertex operator of type (p;j—1,A;j, pj) for some
pi € Pp(i=1,... ,N+1) with p:= po = pn.

Remark. The integral representations of the above functions are obtained in [BF].



§4 Explicit formulas for 1-point functions in genus 1.

In this section, we see how the system (E1)-(E4) determine the 1-point function
explicitly (Theorem 4.2.4). We also solve the system in a few cases.

4.1. The 1-point functions in genus 1.

Fix a weight A and consider the set §7(A) of restricted 1-point functions in genus
1, which is, by Theorem 3.4.3, spanned by the following V; -valued functions:

($u(z1,4, )] = Trn, p(21)g" " HET (ue Po),
where ¢(z1) is the vertex operator of type (u, A, u). We put
L=1¢-2A\
Note that a nonzero vertex operator of type (u, A, 1) exists if and only if A and p

satisfy

AEZ, é< <¥,

and the vertex operators are unique up to constant multiples. In particular we have

dimeF1(\) = L+ 1.

As we have seen in Theorem 3.3.4, the restrictions of 1-point functions (@] are
characterized by (E1)-(E4). The equation (E2) now implies

( (Zlaqa g)l —Z—Ak( (L%E)l‘

Hence in the following we specialize z; = 1 and put {¢(¢,q)] = (¢(1,¢,€)|. By

the condition (E1), we can identify §7(\) with the space spanned by the following

function:
A A+1 A+ L

¢u(§aq) /"_"2' 2 ?”‘)T’

where |0,) is the weight 0 vector in V), defined by
|0x) = —F'\|v(/\))

From the equation (E3) we immediately have the following heat equation.

Proposition 4.1.1. For ¢ € §7()),
(£ +2)q8,(0(£,9)6(€,9)) =

{(635)2 CAG+1) (so@, g) — 22%1(0) q("()q)) } (O(6,9)9(E, ).

Remark. The heat equations for 1-point functions are studied by Etingof and Kir-
illov in more general cases: g = sl(n,C), V) = S*"C" () € Z), where S™ denotes
m-th symmetric product and C" the defining representation of g [EK].
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4.2 The differential equation with respect to £.

This subsection is devoted to write down differential equations for by ¢ € F7(A)
derived from (E4):

(GIFFEL (M) =0 (0<k<A+L+1).
Among them the only nontrivial equality is the following:
(4:2.1) C(GIFMEH R (Y) =0,

because other equalities fall into trivial by (E1).
To rewrite (4.2.1) as a differential equation with respect to £, we consider the
following set of vectors in M,

Ky _ 1 A+k pk b=
{lu)—(/\_*_k)!F EZ |lv(A); k=0,1,... |
Note that |u®) = |0)). The following lemma plays a key role in the following dis-

cussions.

Lemma 4.2.1. For k € Z3¢, we have

(4:22) SHI gl =

——%Iu"“) + (k+ 26 lu*) + k(L — &+ 1)B(€, 9)u* ") mod §([a], ¢, ) M,
where B(€,q) is given by

_99,9(&a9)  ,499m(q)
(4.23) PoD= "ok a0

For (®] € §1()), we put & = *((®[u°),... ,(®[ul)). Then by (®|uL*!) = 0 and

Lemma 4.2.1, we obtain the following differential equation for &.

Proposition 4.2.2. For (®| € §1()), we have

(424) £0c8(6,9) = ALni(6, 986 9) + M DE(E )
Here, Ap 4, is an (L +1) x (L + 1) tri-diagonal matrix given by

(o \

L-1-2: (Z-1¢ -
\ L.1.-p8 L¢ )

N




where the functions ((¢,q) and B(€, q) are given by (3.1.2) and (4.2.3).

It is remarkable that the equation (4.2.4) can be written in the following form:
(8¢ (0728) = Apy (0728).

By Proposition 4.2.2 we can write (®|u*) as a combination of differentials of ¢ :=
(®|u®) with respect to ¢; e.g.

(Qli"’l) = "'2£af¢a
(Blu®) = —2(£0¢ — () (®lu') — 2LB4
=4(£9 — ()€0:4 — 2LB¢,

etc...

In general, we have the following lemma by simple calculations.

Lemma 4.2.3. Fork=1,... ,L+ 1, we have
0~ (@lu*) = (~2)*Det [¢3- I — AL, ] (079) |

where I is the k x k-identity matrix and 'A(Lk-f)-l is the k x k-matrix given by the
first k X k block of Ap41:

o -
Lp ¢ -
AL-1)8 2 -

[N
./

B

N

\ (k=1)L—k+2)8 (k-1)¢/

Here, for an nxn-matrix A = (a; j) with elements in some, possibly non-commutative,
ring, DetA is defined inductively as follows:

DetA = a;,; forn =1,

DetA = DetAl,l ca11 — DetAl,z *Q12 + -+ (—1)"‘1DetA1,n * 01,
where A; j is the matrix given by removing the i-th row and j-th column from A.
O ,

Through this lemma, we can rewrite (4.2.1) explicitly as a differential equation
for ¢ € FT()) of order L + 1 with respect to {. Combining with Proposition 4.1.1
we get the following,.
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Theorem 4.2.4. The space F7(\) coincides with the solution space of the following
system of differential equations.
(F1)
(£+2)gd, (06, 9)4(¢,9)) =
99,9(¢(,9)

{coo® + 20+ Ve 60 - 10+ VBEED Y (0e, e, 0).
(F2) |

Det [éaf * IL+1 - -AL+1(£’ Q)] (9(6, Q)_A¢(€1 Q)) = 0.

Remark. (i) It can be easily checked directly that the solution space of (F1)(F2) is
(L + 1)-dimensional.

(ii) For A = 0, the vertex operator ¢,(|0)o; ) is equal to the identity operator
on H, up to a constant multiple. Thus the 1-point function ¢, is nothing but the
character

D€, g) = Tra, gbo— 5 ¥ = O2u+1,642(£,9) — ©—24-1,e42(£, 9)
M 11 = u

B V-16(¢,q) ’

where O, k(£, ¢) is the theta function of level k£ defined by

Omi(€, )= > ¢Fmekn.

n€Z+ %

In the case of £ = 1,2, the system (F1)(F2) coincides with the one obtained in
[EO2]. '

We can easily solve (F2) by noting the above remark (ii).
Proposition 4.2.5. For A € Py and q € D*, the functions

- 1 £—2)\
6(67 Q)AXELE 2)‘)(61 q) (“ = 0) 57 I T)

form a basis of the solution space of (F2). O

4.3. Some solutions.

In this subsection we determine the trace of vertex operators explicitly when
L = ¢ — 2\ < 1, by solving the differential equations (F1) and (F2).

Case L=0:
In this case the space §j()) is spanned by the single function

H

$3(6,9) = Tra, 0(10)y; 1)glo—¢7,

On the other hand, by Proposition 4.2.5, any solution of (F2) is given in the fol-
lowing form:

8(€,9) = a(0)O(€, " x P (€, 9) = a(q)O (£, 9)*
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with some function a(g), and the equation (F1) now implies 94a(g) = 0. Therefore,
we have

(4.3.1) $3(&,9) = O(6,9*
under the appropriate normalization.
Case L=1:

The space §7()) has dimension 2 and it is spanned by

cy H A X
460 = Trmo(0ha > #¢F  (u=3,232).

On the other hand, by substituting ' ,
ao(9)0(¢,9)*x0" (6, 9) + a1(0)0(, )X} (€, 9)

for ¢(&,¢) in (F1), and using (F1) for L = 1, A = 0, we find that the functions

n(q)~m% @(ﬁ,vq)*x(u”(ﬁ,q) (V =0, %)

are solutions of the system. By comparing the exponents of ¢, we conclude
: o
63(6,9) = n(a) 7O, ) X" (6, 0),
ba41(6:9) =n(9)"TFO(£,9)xy (€, 0)-
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