# 楕円曲線上の共形場理論に付随した微分方程式系について

京大·数理研 鈴木 武史 (Takeshi Suzuki)

ABSTRACT. We study the SU(2) WZNW model over a family of elliptic curves. Starting from the formulation developed in [TUY], we derive a system of differential equations which contains the Knizhnik-Zamolodchikov-Bernard equations[Be1][FW]. Our system completely determines the N-point functions and is regarded as a natural elliptic analogue of the system obtained in [TK] for the projective line. We also calculate the system for the 1-point functions explicitly. This gives a generalization of the results in [EO2] for  $\widehat{\mathfrak{sl}}(2,\mathbb{C})$ -characters.

## §0. Introduction.

We consider the Wess-Zumino-Novikov-Witten (WZNW) model. A mathematical formulation of this model on general algebraic curves is given in [TUY], where the correlation functions are defined as flat sections of a certain vector bundle over the moduli space of curves. On the projective line  $\mathbb{P}^1$ , the correlation functions are realized more explicitly in [TK] as functions which take their values in a certain finite-dimensional vector space, and characterized by the system of equations containing the Knizhnik-Zamolodchikov (KZ) equations[KZ]. One aim in the present paper is to have a parallel description on elliptic curves. Namely, we characterize the N-point functions as vector-valued functions by a system of differential equations containing an elliptic analogue of the KZ equations by Bernard[Be1]. Furthermore we write down this system explicitly in the 1-pointed case.

To explain more precisely, first let us review the formulation in [TUY] roughly. Let  $\mathfrak{g}$  be a simple Lie algebra over  $\mathbb{C}$  and  $\widehat{\mathfrak{g}}$  the corresponding affine Lie algebra. We fix a positive integer  $\ell$  (called the level) and consider the integrable highest weight modules of  $\widehat{\mathfrak{g}}$  of level  $\ell$ . Such modules are parameterized by the set of highest weight  $P_{\ell}$  and we denote by  $\mathcal{H}_{\lambda}$  the left module corresponding to  $\lambda \in$  $P_{\ell}$ . By  $M_{g,N}$  we denote the moduli space of N-pointed curves of genus g. For  $\mathfrak{X} \in M_{g,N}$  and  $\vec{\lambda} = (\lambda_1, \ldots, \lambda_N) \in (P_\ell)^N$ , we associate the space of conformal blocks  $\mathcal{V}_g^{\dagger}(\mathfrak{X}; \vec{\lambda})$ . The space  $\mathcal{V}_g^{\dagger}(\mathfrak{X}; \vec{\lambda})$  is the finite dimensional subspace of  $\mathcal{H}_{\vec{\lambda}}^{\dagger} :=$  $\operatorname{Hom}_{\mathbb{C}}(\mathcal{H}_{\lambda_1} \otimes \cdots \otimes \mathcal{H}_{\lambda_N}, \mathbb{C})$  defined by "the gauge conditions". Consider the vector bundle  $\tilde{\mathcal{V}}_{g}^{\dagger}(\vec{\lambda}) = \bigcup_{\mathfrak{X} \in M_{g,N}} \mathcal{V}_{g}^{\dagger}(\mathfrak{X}; \vec{\lambda})$  over  $M_{g,N}$ . On this vector bundle, projectively flat connections are defined through the Kodaira-Spencer theory, and flat sections of  $\mathcal{V}_{q}^{\dagger}(\lambda)$  with respect to these connections are called the N-point correlation functions (or N-point functions). In the rest of this paper we set  $\mathfrak{g} = \mathfrak{sl}(2,\mathbb{C}) = \mathbb{C}E \oplus \mathbb{C}F \oplus \mathbb{C}H$ for simplicity, where E, F and H are the basis of g satisfying [H, E] = 2E, [H, F] =-2F, [E,F]=H. We identify  $P_{\ell}$  with the set  $\{0,\frac{1}{2},\ldots,\frac{\ell}{2}\}$  by the mapping  $\lambda \mapsto \frac{\lambda(H)}{2}$ .

In the case of genus 0, the space of conformal blocks is injectively mapped into  $V_{\lambda}^{\dagger} := \operatorname{Hom}_{\mathbb{C}}(V_{\lambda_1} \otimes \cdots \otimes V_{\lambda_N}, \mathbb{C})$  by the restriction map, where  $V_{\lambda} \subset \mathcal{H}_{\lambda}$  denotes

the finite dimensional irreducible highest weight left  $\mathfrak{g}$ -module with highest weight  $\lambda$ . This injectivity makes it possible to treat this model in a more explicit way as above, and the N-point functions are described by the vacuum expectation values of vertex operators.

On the other hand, in the case of genus 1 this injectivity does not hold, and in order to recover it we twist the space of conformal blocks by introducing a new parameter following [Be1,2][EO1][FW]. Because of the twisting, any N-point function in genus 1 can be calculated from its restriction to  $V_{\overline{\lambda}}$  (Proposition 3.3.2). It is natural to ask how the restrictions of the N-point functions are characterized as  $V_{\overline{\lambda}}^{\dagger}$ -valued functions. It turns out that the restricted N-point functions satisfy the equations (E1)–(E3) in Proposition 3.3.3. These equations are essentially derived by Bernard[Be1] for traces of vertex operators

$$\operatorname{Tr}_{\mathcal{H}_{\mu}}(\varphi_{1}(z_{1})\cdots\varphi_{N}(z_{N})q^{L_{0}-\frac{e_{v}}{24}}\xi^{\frac{H}{2}})\in V_{\vec{\lambda}}^{\dagger},$$

where  $z_1, \ldots, z_N, q, \xi$  are the variables in  $\mathbb{C}^*$  with |q| < 1,  $\varphi_j : V_{\lambda_j} \otimes \mathcal{H}_{\mu_j} \to \hat{\mathcal{H}}_{\mu_{j-1}}$   $(j = 1, \ldots, N)$  are the vertex operators for some  $\mu_i$   $(i = 0, \ldots, N)$  with  $\mu_0 = \mu_N = \mu$ ,  $L_0$  is defined by (1.2.1) and  $c_v = 3\ell/(\ell-2)$  (for the details, see §§3.4). It is proved that the space of restricted N-point functions is spanned by traces of vertex operators (Theorem 3.4.3) and hence Bernard's approach is equivalent to ours. However, the system (E1)–(E3) is not complete since it has infinite-dimensional solution space.

We will show that the integrability condition

$$\left(E \otimes t^{-1}\right)^{\ell-2\lambda+1} |\bar{v}(\lambda)\rangle = 0$$

for the highest weight vector  $|\bar{v}(\lambda)\rangle \in \mathcal{H}_{\lambda}$  implies the differential equations (E4), which determine the N-point functions completely combining with (E1)–(E3).

For 1-point functions, the equation (E4) can be written down explicitly, and the system (E1)-(E4) reduces to the two equations (F1)(F2) in Theorem 4.2.4. In the simplest case, the 1-point functions are given by the characters

$$\mathrm{Tr}_{\mathcal{H}_{\mu}}q^{L_0-rac{c_{
u}}{24}}\xi^{rac{H}{2}}\quad \left(\mu=0,rac{1}{2},\ldots,rac{\ell}{2}
ight),$$

and our system coincide with the one obtained in [EO2].

Recently Felder and Wieczerkowski give a conjecture on the characterization of the restricted N-point functions in genus 1 by using the modular properties and certain additive conditions[FW]. They confirm their conjecture in some cases by explicit calculations. We recover this result in  $\mathfrak{sl}(2,\mathbb{C})$  case by solving the equation (F2) (Proposition 4.2.5). The equation (F1) can be also integrated when the dimension of the solution space is small, and we can calculate the 1-point functions explicitly.

# §1. Representation theory for $\widehat{\mathfrak{sl}}(2,\mathbb{C})$ .

For the details of the contents in this section, we refer the reader to [Kac].

# 1.1 Integrable highest weight modules.

By  $\mathbb{C}[[x]]$  and  $\mathbb{C}((x))$ , we mean the ring of formal power series in x and the field of formal Laurent series in x, respectively. We put  $\mathfrak{g} = \mathfrak{sl}(2,\mathbb{C})$ . Let  $\mathfrak{h} = \mathbb{C}H$  be a Cartan subalgebra of  $\mathfrak{g}$  and  $(\ ,\ ): \mathfrak{g} \times \mathfrak{g} \to \mathbb{C}$  the Cartan-Killing form normalized by the condition (H,H)=2. We identify the set  $P_+$  of dominant integral weights with  $\frac{1}{2}\mathbb{Z}_{\geq 0}$ . For  $\lambda \in P_+$ , we denote by  $V_\lambda$  the irreducible highest weight left  $\mathfrak{g}$ -module with highest weight  $\lambda$  and by  $|v(\lambda)\rangle$  its highest weight vector.

The affine Lie algebra  $\widehat{\mathfrak{g}}$  associated with  $\mathfrak{g}$  is defined by

$$\widehat{\mathfrak{g}} = \mathfrak{g} \otimes \mathbb{C}((x)) \oplus \mathbb{C}c,$$

where c is an central element of  $\hat{g}$  and the Lie algebra structure is given by

$$[X \otimes f(x), Y \otimes g(x)] = [X, Y] \otimes f(x)g(x) + c \cdot (X, Y) \operatorname{Res}_{x=0}(g(x) \cdot df(x)),$$

for  $X, Y \in \mathfrak{g}$ ,  $f(x), g(x) \in \mathbb{C}((\xi))$ . We use the following notations:

$$X_{n} = X \otimes x^{n}, \ X = X_{0},$$

$$\widehat{\mathfrak{g}}_{+} = \mathfrak{g} \otimes \mathbb{C}[[x]]x, \ \widehat{\mathfrak{g}}_{-} = \mathfrak{g} \otimes \mathbb{C}[x^{-1}]x^{-1},$$

$$\widehat{\mathfrak{p}}_{+} = \widehat{\mathfrak{g}}_{+} \oplus \mathfrak{g} \oplus \mathbb{C}c.$$

Fix a positive integer  $\ell$  (called the level) and put  $P_{\ell} = \{0, \frac{1}{2}, \dots, \frac{\ell}{2}\} \subset P_{+}$ . For  $\lambda \in P_{\ell}$ , we define the action of  $\widehat{\mathfrak{p}}_{+}$  on  $V_{\lambda}$  by  $c = \ell \times id$  and a = 0 for all  $\mathfrak{a} \in \widehat{\mathfrak{g}}_{+}$ , and put

$$\mathcal{M}_{\lambda}=U(\widehat{\mathfrak{g}})\otimes_{\widehat{\mathfrak{p}}_{+}}V_{\lambda}.$$

Then  $\mathcal{M}_{\lambda}$  is a highest weight left  $\widehat{\mathfrak{g}}$ -module and it has the maximal proper submodule  $\mathcal{J}_{\lambda}$ , which is generated by the singular vector  $E_{-1}^{\ell-2\lambda+1}|v(\lambda)\rangle$ :

$$\mathcal{J}_{\lambda} = U(\widehat{\mathfrak{p}}_{-}) E_{-1}^{\ell-2\lambda+1} |v(\lambda)\rangle.$$

The integrable highest weight left  $\widehat{\mathfrak{g}}$ -module  $\mathcal{H}_{\lambda}$  with highest weight  $\lambda$  is defined as the quotient module  $\mathcal{M}_{\lambda}/\mathcal{J}_{\lambda}$ . We denote by  $|\overline{v}(\lambda)\rangle$  the highest weight vector in  $\mathcal{H}_{\lambda}$ . We introduce the lowest weight right  $\widehat{\mathfrak{g}}$ -module structure on

$$\mathcal{H}_{\lambda}^{\dagger} = \operatorname{Hom}_{\mathbb{C}}(\mathcal{H}_{\lambda}, \mathbb{C})$$

in the usual way, and denote its lowest weight vector by  $\langle \bar{v}(\lambda)|$ .

# 1.2. Segal-Sugawara construction and the filtration on $\mathcal{H}_{\lambda}$ .

Fix a weight  $\lambda \in P_{\ell}$ . On  $\mathcal{H}_{\lambda}$ , elements  $L_n$   $(n \in \mathbb{Z})$  of the Virasoro algebra act with the central charge  $c_v = 3\ell/(\ell+2)$  through the Segal-Sugawara construction

$$(1.2.1) L_n = \frac{1}{2(\ell+2)} \sum_{m \in \mathbb{Z}} \left\{ {\circ} \frac{1}{2} H_m H_{n-m} {\circ} + {\circ} E_m F_{n-m} {\circ} + {\circ} F_m E_{n-m} {\circ} \right\},$$

where " denotes the standard normal ordering. Put

$$X(z) = \sum_{n \in \mathbb{Z}} X_n z^{-n-1} \quad (X \in \mathfrak{g}), \ T(z) = \sum_{n \in \mathbb{Z}} L_n z^{-n-2}.$$

The module  $\mathcal{H}_{\lambda}$  has the decomposition  $\mathcal{H}_{\lambda} = \bigoplus_{d \geq 0} \mathcal{H}_{\lambda}(d)$ , where

$$\mathcal{H}_{\lambda}(d) = \{ |u\rangle \in \mathcal{H}_{\lambda} ; L_0|u\rangle = (\Delta_{\lambda} + d)|u\rangle \},$$

$$\Delta_{\lambda} = \frac{\lambda(\lambda + 1)}{\ell + 2}.$$

We define the filtration  $\{\mathcal{F}_{\bullet}\}$  on  $\mathcal{H}_{\lambda}$  by

$$\mathcal{F}_p \mathcal{H}_{\lambda} = \sum_{d \leq p} \mathcal{H}_{\lambda}(d)$$

and put  $\hat{\mathcal{H}}_{\lambda} = \prod_{d \geq 0} \mathcal{H}_{\lambda}(d)$  .

# 1.3. The Lie algebra $\widehat{\mathfrak{g}}_N$ .

Put  $L\mathfrak{g} = \mathfrak{g} \otimes \mathbb{C}((x))$ . For a positive integer N, we define a Lie algebra  $\widehat{\mathfrak{g}}_N$  by

$$\widehat{\mathfrak{g}}_N = \oplus_{j=1}^N L\mathfrak{g}_{(i)} \oplus \mathbb{C}c,$$

where  $L\mathfrak{g}_{(i)}$  denotes a copy of  $L\mathfrak{g}$  and c is a center. The commutation relations are given by

$$[\bigoplus_{j=1}^{N} X_j \otimes f_j, \bigoplus_{j=1}^{N} Y_j \otimes g_j] =$$

$$\bigoplus_{j=1}^{N} [X_j, Y_j] \otimes f_j g_j + \sum_{j=1}^{N} (X_j, Y_j) \operatorname{Res}_{\xi_j = 0} (g_j \cdot df_j) \cdot c.$$

For each  $\vec{\lambda} = (\lambda_1, \dots, \lambda_N) \in (P_\ell)^N$  a left  $\widehat{\mathfrak{g}}_N$ -module  $\mathcal{H}_{\vec{\lambda}}$  is defined by

$$\mathcal{H}_{\vec{\lambda}} = \mathcal{H}_{\lambda_1} \otimes \cdots \otimes \mathcal{H}_{\lambda_N}$$
.

Similarly a right  $\widehat{\mathfrak{g}}_N$ -module  $\mathcal{H}^{\dagger}_{\vec{\lambda}}$  is defied by

$$\mathcal{H}_{\vec{\lambda}}^{\dagger} = \mathcal{H}_{\lambda_1}^{\dagger} \hat{\otimes} \cdots \hat{\otimes} \mathcal{H}_{\lambda_N}^{\dagger} \cong \operatorname{Hom}_{\mathbb{C}}(\mathcal{H}_{\vec{\lambda}}, \mathbb{C}).$$

The  $\widehat{\mathfrak{g}}_N$ -action on  $\mathcal{H}_{\vec{\lambda}}$  is given by

$$c = \ell \cdot id$$
  $(\bigoplus_{j=1}^N a_j)|u_1 \otimes \cdots \otimes u_N\rangle = \sum_{j=1}^N \rho_j(a_j)|u_1 \otimes \cdots \otimes u_N\rangle$ 

for  $a_i \in L\mathfrak{g}_{(i)}(j=1,\ldots,N)$ , where we used the notations

$$|u_1 \otimes \cdots \otimes u_N\rangle = |u_1\rangle \otimes \cdots \otimes |u_N\rangle,$$
  
$$\rho_j(a)|u_1 \otimes \cdots \otimes u_N\rangle = |u_1 \otimes \cdots \otimes a \cdot u_j \otimes \cdots \otimes u_N\rangle$$

for  $|u_i\rangle \in \mathcal{H}_{\lambda_i}$   $(i=1,\ldots,N)$  and  $a\in L\mathfrak{g}$ . The right action on  $\mathcal{H}_{\vec{\lambda}}^{\dagger}$  is defined similarly. The module  $\mathcal{H}_{\vec{\lambda}}$  has the filtration induced from those of  $\mathcal{H}_{\lambda_j}$   $(j=1,\ldots,N)$ :

$$\mathcal{F}_p\mathcal{H}_{\vec{\lambda}} = \sum_{d \leq p} \mathcal{H}_{\vec{\lambda}}(d),$$

where

$$\mathcal{H}_{\vec{\lambda}}(d) = \sum_{d_1 + \dots + d_N = d} \mathcal{H}_{\lambda_1}(d_1) \otimes \dots \otimes \mathcal{H}_{\lambda_N}(d_N).$$

We put

$$V_{\vec{\lambda}} = V_{\lambda_1} \otimes \cdots \otimes V_{\lambda_N} \cong \mathcal{H}_{\vec{\lambda}}(0), \ V_{\lambda}^{\dagger} = \operatorname{Hom}_{\mathbb{C}}(V_{\vec{\lambda}}, \mathbb{C}).$$

# §2 The WZNW model in genus 0.

In this section we review the SU(2) WZNW model on the projective line  $\mathbb{P}^1$ .

## 2.1. The space of conformal blocks.

In this subsection we define the N-point functions on  $\mathbb{P}^1$  following [TUY] as sections of a vector bundle on the manifold

$$R_N = \{ (z_1, \dots, z_N) \in (\mathbb{C}^*)^N ; z_i \neq z_j \text{ if } i \neq j \}.$$

For a meromorphic function f(t) on  $\mathbb{P}^1$  and  $w \in \mathbb{C}$ , put

$$X[f(t)]_w = \mathop{\rm Res}_{t=w} f(t)X(t-w)dt,$$

$$T[f(t)\frac{d}{dt}]_w = \operatorname{Res}_{t=w} f(t)T(t-w)dt.$$

If f(t) has an Laurent expansion  $f(t) = \sum_{n \geq M} a_n (t - w)^n$  then  $X[f(t)]_w$  is an element of  $\widehat{\mathfrak{g}}$  given by

$$X[f(t)]_w = \sum_{n>M} a_n X_n.$$

For  $z = (z_1, \ldots, z_N) \in R_N$ , we set

$$\widehat{\mathfrak{g}}(z)=H^0(\mathbb{P}^1,\mathfrak{g}\otimes\mathcal{O}_{\mathbb{P}^1}(*\sum_{j=1}^N z_j)).$$

Then we have the following injection:

$$\widehat{\mathfrak{g}}(z) \rightarrow \widehat{\mathfrak{g}}_N,$$

$$X \otimes f(z) \mapsto X[f] := \bigoplus_{i=1}^N X[f]_{z_i}.$$

Through this map we regard  $\widehat{\mathfrak{g}}(z)$  as a subspace of  $\widehat{\mathfrak{g}}_N$  and the residue theorem implies that  $\widehat{\mathfrak{g}}(z)$  is a Lie subalgebra of  $\widehat{\mathfrak{g}}_N$ . We also use the following notation

$$T[g] = \bigoplus_{i=1}^{N} T[g]_{z_i}$$

for  $g \in H^0(\mathbb{P}^1, \Theta_{\mathbb{P}^1}(*\sum_{j=1}^N z_j))$ , where  $\Theta_{\mathbb{P}^1}$  denotes the sheaf of vector fields on  $\mathbb{P}^1$ .

**Definition 2.1.1.** For  $z=(z_1,\ldots,z_N)\in R_N$  and  $\vec{\lambda}=(\lambda_1,\ldots,\lambda_N)\in (P_\ell)^N$  we put

$$\begin{split} \mathcal{V}_0(z\,;\vec{\lambda}) \;&=\; \mathcal{H}_{\vec{\lambda}}\;/\widehat{\mathfrak{g}}(z)\mathcal{H}_{\vec{\lambda}}, \\ \mathcal{V}_0^\dagger(z\,;\vec{\lambda}) \;&=\; \{\; \langle \Psi|\in\mathcal{H}_{\vec{\lambda}}^\dagger\;;\; \langle \Psi|\widehat{\mathfrak{g}}(z)=0\;\} \\ &\cong \operatorname{Hom}_{\mathbb{C}}(\mathcal{V}_0(z\,;\vec{\lambda}),\mathbb{C})\,. \end{split}$$

We call  $\mathcal{V}_0^{\dagger}(z;\vec{\lambda})$  the space of conformal blocks (or the space of vacua) in genus 0 attached to  $(z;\vec{\lambda})$ .

For a vector space V and a complex manifold M, we denote by V[M] the set of multi-valued, holomorphic V-valued functions on M.

**Definition 2.1.2.** For  $\vec{\lambda} \in (P_{\ell})^N$ , an element  $\langle \Phi |$  of  $\mathcal{H}^{\dagger}_{\vec{\lambda}}[R_N]$  is called an N-point function in genus 0 attached to  $\vec{\lambda}$  if the following conditions are satisfied:

(A1) For each  $z \in R_N$ ,

$$\langle \Phi(z) | \in \mathcal{V}_0^{\dagger}(z; \vec{\lambda})$$

(A2) For j = 1, ..., N,

$$\partial_{z_j} \langle \Phi(z) | = \langle \Phi(z) | \rho_j(L_{-1}).$$

By  $\mathfrak{F}_0(\vec{\lambda})$  we denote the set of N-point functions in genus 0 attached to  $\vec{\lambda}$ .

Remark. The condition (A1) implies the following:

(A1') For each  $z \in R_N$ ,

$$\langle \Phi(z)|T[g]=0$$

for any  $g \in H^0(\mathbb{P}^1, \Theta_{\mathbb{P}^1}(*\sum_{j=1}^N z_j))$ .

# 2.2. Restrictions of the N-point functions to $V_{\vec{\lambda}}$ .

A remarkable property of the space of conformal blocks in genus 0 is the following:

Lemma 2.2.1. The composition map

$$V_{\vec{\lambda}} \hookrightarrow \mathcal{H}_{\vec{\lambda}} \rightarrow \mathcal{V}_0(z;\vec{\lambda})$$

is surjective. In other words, the restriction map

$$V_0^{\dagger}(z\,;\vec{\lambda}) \rightarrow V_{\vec{\lambda}}^{\dagger}$$

is injective.

This lemma implies that, for an N-point function  $\langle \Phi |$ , we can calculate  $\langle \Phi | u \rangle$  for any  $|u\rangle \in \mathcal{H}_{\vec{\lambda}}$ , from the data  $\{ \langle \Phi | v \rangle ; |v\rangle \in V_{\vec{\lambda}} \}$ . By  $\mathfrak{F}_0^r(\vec{\lambda})$  we denote the image of  $\mathfrak{F}_0(\vec{\lambda})$  in  $V_{\vec{\lambda}}^{\dagger}[R_N]$  under the restriction map. It is natural to ask how the set  $\mathfrak{F}_0^r(\vec{\lambda})$  is characterized in  $V_{\vec{\lambda}}^{\dagger}[R_N]$ , and the answer is given as follows:

**Proposition 2.2.2.** [TK] The space  $\mathfrak{F}_0^r(\vec{\lambda})$  coincides with the solution space of the following system of equations:

(B1) For each  $X \in \mathfrak{g}$ ,

$$\sum_{j=1}^{N} \langle \phi(z) | \rho_j(X) = 0.$$

(B2) [the Knizhnik-Zamolodchikov equations] For each j = 1, ..., N,

$$(\ell+2)\partial_{z_j}\langle\phi(z)|=\sum_{i\neq j}\langle\phi(z)|\frac{\Omega_{i,j}}{z_i-z_j},$$

where

$$\Omega_{i,j} = \frac{1}{2}\rho_i(H)\rho_j(H) + \rho_i(E)\rho_j(F) + \rho_i(F)\rho_j(E).$$

(B3) For each j = 1, ..., N,

$$\sum_{\substack{n_1+\cdots+n_N=\ell_j\\ =0}} \binom{\ell_j}{\vec{n}_j} \prod_{i\neq j} (z_i-z_j)^{-n_i} \langle \phi(z)| E^{n_1} v_1 \otimes \cdots \otimes v(\lambda_j) \otimes \cdots \otimes E^{n_N} v_N \rangle$$

for any  $|v_i\rangle \in V_{\lambda_i}$   $(i \neq j)$ . Here  $\ell_j = \ell - 2\lambda_j + 1$ ,  $\vec{n}_j = (n_1, \ldots, n_{j-1}, n_{j+1}, \ldots, n_N)$  and  $\binom{\ell_j}{\vec{n}_j}$  is the multinomial coefficient.  $\square$ 

Remark. The equation (B3) is a consequence of the integrability condition

(2.2.1) 
$$E_{-1}^{\ell-2\lambda_j+1}|\bar{v}(\lambda_i)\rangle = 0 \ (j=1,\ldots,N),$$

for the highest weight vector  $|\bar{v}(\lambda_i)\rangle \in \mathcal{H}_{\lambda_i}$ .

#### 2.3. Vertex operators.

We review the description of N-point functions by vertex operators.

**Definition 2.3.1.** For  $(\nu, \lambda, \mu) \in (P_{\ell})^3$  a multi-valued, holomorphic, operator valued function  $\varphi(z_1)$  on the manifold  $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$  is called a vertex operator of type  $(\nu, \lambda, \mu)$ , if

$$\varphi(z_1) : V_{\lambda} \otimes \mathcal{H}_{\mu} \to \hat{\mathcal{H}}_{\nu}$$

satisfies the following conditions:

(C1) For  $X \in \mathfrak{g}$ ,  $|v\rangle \in V_{\lambda}$  and  $m \in \mathbb{Z}$ ,

$$[X_m, \varphi(|v\rangle; z_1)] = z_1^m \varphi(X|v\rangle; z_1).$$

(C2) For  $|v\rangle \in V_{\lambda}$  and  $m \in \mathbb{Z}$ ,

$$[L_m, \varphi(|v\rangle; z_1)] = z_1^m \left\{ z_1 \frac{d}{dz_1} + (m+1)\Delta_{\lambda} \right\} \varphi(|v\rangle; z_1).$$

Here  $\varphi(|u\rangle; z_1) : \mathcal{H}_{\nu} \to \hat{\mathcal{H}}_{\mu}$  is the operator defined by  $\varphi(|u\rangle; z_1)|v\rangle = \varphi(z_1)|u\otimes v\rangle$  for  $|u\rangle \in V_{\lambda}$  and  $|v\rangle \in \mathcal{H}_{\nu}$ .

For vertex operators  $\varphi_j(z_j)$  (j = 1, ..., N), the composition  $\varphi_1(z_1) \cdots \varphi_N(z_N)$  makes sense for  $|z_1| > \cdots > |z_N|$  and analytically continued to  $R_N$ .

**Proposition 2.3.2.** [TK] The space  $\mathfrak{F}_0^r(\vec{\lambda})$  is spanned by the following  $V_{\vec{\lambda}}^{\dagger}$ -valued functions:

$$\langle v(0)|\varphi_1(z_1)\cdots\varphi_N(z_N)|v(0)\rangle$$
,

where  $\varphi_j$  (j = 1, ..., N) is the vertex operator of type  $(\mu_{j-1}, \lambda_j, \mu_j)$  for some  $\mu_i \in P_\ell$  (i = 0, ..., N) with  $\mu_0 = \mu_N = 0$ .

Proposition 2.3.3. [TK] Any nonzero vertex operator

$$\varphi(z_1): V_{\lambda} \otimes \mathcal{H}_{\mu} \to \hat{\mathcal{H}}_{\nu}$$

is uniquely extended to the operator

$$\hat{\varphi}(z_1): \mathcal{M}_{\lambda} \otimes \mathcal{H}_{\mu} \to \hat{\mathcal{H}}_{\nu}$$

by the following condition:

(2.3.1) 
$$\hat{\varphi}(X_n|u\rangle;z_1) = \operatorname{Res}_{w=z}(w-z_1)^n \hat{\varphi}(|u\rangle;z_1) X(w) dw,$$

for each  $|u\rangle \in \mathcal{M}_{\lambda}$ ,  $X \in \mathfrak{g}$  and  $n \in \mathbb{Z}$ .

Moreover,  $\hat{\varphi}$  has the following properties:

(2.3.2) 
$$\partial_z \hat{\varphi}(|u\rangle; z_1) = \hat{\varphi}(L_{-1}|u\rangle; z_1)$$
 for any  $|u\rangle \in \mathcal{M}_{\lambda}$ ,

$$(2.3.3) \hat{\varphi}(|u\rangle; z_1) = 0 \text{for any } |u\rangle \in \mathcal{J}_{\lambda} = U(\widehat{\mathfrak{p}}_{-}) E_{-1}^{\ell-2\lambda+1} |v(\lambda)\rangle.$$

The property (2.3.3) implies that  $\hat{\varphi}$  reduces to the operator

$$\hat{\varphi}(z_1): \mathcal{H}_{\lambda} \otimes \mathcal{H}_{\mu} \to \hat{\mathcal{H}}_{\nu}.$$

### §3 The WZNW model in genus 1.

In this section we consider the elliptic analogue of the story in the previous section. Our aim is to embed the set of N-point functions in genus 1 (Definition 3.1.3) into the set of  $V_{\vec{\lambda}}^{\dagger}$ -valued functions, and to characterize its image by a system of differential equations. We also show that the N-point functions are given by the traces of vertex operators.

### 3.1 Functions with quasi-periodicity.

First, we prepare some functions for the later use. Put  $D^* = \{ q \in \mathbb{C}^* ; |q| < 1 \}$  and introduce the following functions on  $\mathbb{C}^* \times D^*$ :

(3.1.1) 
$$\Theta(z,q) = \sum_{n \in \mathbb{Z} + \frac{1}{2}} (-1)^{n+1} q^{\frac{1}{2}n^2} z^n$$

$$= -\sqrt{-1} z^{\frac{1}{2}} q^{\frac{1}{8}} \prod_{n \ge 1} (1 - q^n) (1 - z q^n) (1 - z^{-1} q^{n-1}),$$
(3.1.2) 
$$\zeta(z,q) = \frac{z \partial_z \Theta(z,q)}{\Theta(z,q)}.$$

(3.1.3) 
$$\wp(z,q) = -z\partial_z \zeta(z,q) + 2\frac{q\partial_q \eta(q)}{\eta(q)},$$

where  $\eta(q)$  is the Dedekind eta function

$$\eta(q) = q^{\frac{1}{24}} \prod_{n>1} (1 - q^n).$$

The function  $\Theta(z,q)$  satisfies the heat equation

$$2q\partial_q\Theta(z,q)=(z\partial_z)^2\Theta(z,q).$$

The function  $\wp(z,q)$  satisfies  $\wp(qz,q) = \wp(z,q)$ , and  $\zeta(z,q)$  have the following quasi-periodicity:

(3.1.4) 
$$\zeta(qz,q) = \zeta(z,q) - 1.$$

For  $(z,q) \in \mathbb{C}^* \times D^*$  and  $\xi \in \mathbb{C}^*$ , we put

(3.1.5) 
$$\sigma_{\pm}(z,q,\xi) = \frac{\Theta(z^{-1}\xi^{\pm 1},q)\Theta'(1,q)}{\Theta(z,q)\Theta(\xi^{\pm 1},q)}$$

Here  $\Theta'(z,q) = z \partial_z \Theta(z,q)$ . The function  $\sigma_{\pm}(z,q,\xi)$  have the following properties:

(3.1.6) 
$$\sigma_{\pm}(qz, q, \xi) = \xi^{\pm 1}\sigma_{\pm}(z, q, \xi), \\ \sigma_{\pm}(z^{-1}, q, \xi) = -\sigma_{\mp}(z, q, \xi).$$

For  $\zeta(z,q)$  and  $\sigma_{\pm}(z,q,\xi)$ , we have the following expansion at z=1:

(3.1.7) 
$$\zeta(z,q) = \frac{1}{z-1} + \frac{1}{2} - 2\alpha(q)(z-1) + O(z-1)^2,$$

(3.1.8) 
$$\sigma_{\pm}(z,q,\xi) = \frac{1}{z-1} \mp \zeta(\xi,q) + \frac{1}{2}$$
$$-\sum_{n\geq 1} \left( \frac{n\xi^{-1}q^n}{1-\xi^{-1}q^n} + \frac{n\xi q^n}{1-\xi q^n} \right) (z-1) + O(z-1)^2,$$

where  $\alpha(q)$  is given by

(3.1.9) 
$$\alpha(q) = -\frac{q\partial_q \eta(q)}{\eta(q)} + \frac{1}{24}.$$

### 3.2. Twisting the space of conformal blocks.

In the case of genus 1 (or > 0), if we work with the formulation of [TUY], an N-point function is not determined by its restriction on  $V_{\bar{\lambda}}$ . In order to resolve this difficulty we "twist" the space of conformal blocks following [Be1,2][EO1][FW].

For  $q \in D^*$ , we consider the elliptic curve  $\mathcal{E}_q = \mathbb{C}^*/\langle q \rangle$ , where  $\langle q \rangle$  is the infinite cyclic group of automorphisms generated by  $z \mapsto qz$ . We denote by  $[z]_q$  the image of a point  $z \in \mathbb{C}^*$  on  $\mathcal{E}_q$  and put

$$T_N = \{ (z,q) = (z_1, \dots, z_N, q) \in (\mathbb{C}^*)^N \times D^* ; [z_i]_q \neq [z_j]_q \text{ if } i \neq j \}.$$

In the following we omit the subscript q in  $[z]_q$ . For  $(z,q) \in T_N$  and  $\vec{\lambda} = (\lambda_1, \ldots, \lambda_N) \in P_\ell$  we can define the space of conformal blocks attached to the elliptic curve  $\mathcal{E}_q$ :

$$\mathcal{V}_1^{\dagger}([z], q; \vec{\lambda}) = \{ \langle \Psi | \in \mathcal{H}_{\vec{\lambda}}^{\dagger} ; \langle \Psi | \mathfrak{g}([z], q) = 0 \},$$

where

$$\widehat{\mathfrak{g}}([z],q)=H^0(\mathcal{E}_q,\mathfrak{g}\otimes\mathcal{O}_{\mathcal{E}_q}(*\sum_{j=1}^N[z_j])),$$

but for our purpose we need to twist it as follows. We introduce a new variable  $\xi \in \mathbb{C}^*$ , and put

$$\widehat{\mathfrak{g}}([z],q,\xi) = \left\{ \ a(t) \in H^0(\mathbb{C}^*,\mathfrak{g} \otimes \mathcal{O}_{\mathbb{C}^*}(*\sum_{j=1}^N \sum_{n \in \mathbb{Z}} q^n z_j)) \ ; \ a(qt) = \xi^{\frac{H}{2}}(a(t))\xi^{-\frac{H}{2}} \ \right\}.$$

This space is regarded as the space of meromorphic sections of the  $\mathfrak{g}$ -bundle which is twisted by  $\xi^{\frac{H}{2}}$  along the cycle  $\{ [w] \in \mathcal{E}_q : w \in \mathbb{R}, q \leq w < 1 \}$ . For  $\xi = 1$ , we have

$$\widehat{\mathfrak{g}}([z],q,1)=H^0(\mathcal{E}_q,\mathfrak{g}\otimes\mathcal{O}_{\mathcal{E}_q}(*\sum_{j=1}^N[z_j])).$$

As in the previous section we have the following injection:

$$\widehat{\mathfrak{g}}([z], q, \xi) \to \widehat{\mathfrak{g}}_N$$

$$X \otimes f \mapsto X[f].$$

By this map we regard  $\widehat{\mathfrak{g}}([z],q,\xi)$  as a subspace of  $\widehat{\mathfrak{g}}_N$ . Furthermore we can easily have the following lemma.

**Lemma 3.2.1.** The vector space  $\widehat{\mathfrak{g}}([z],q,\xi)$  is a Lie subalgebra of  $\widehat{\mathfrak{g}}_N$ .  $\square$ 

Definition 3.2.2. Put

$$\begin{split} \mathcal{V}_{1}([z], q, \xi; \vec{\lambda}) &= \mathcal{H}_{\vec{\lambda}}/\widehat{\mathfrak{g}}([z], q, \xi)\mathcal{H}_{\vec{\lambda}}, \\ \mathcal{V}_{1}^{\dagger}([z], q, \xi; \vec{\lambda}) &= \{ \ \langle \Psi | \in \mathcal{H}_{\vec{\lambda}}^{\dagger} \ ; \ \langle \Psi | \widehat{\mathfrak{g}}([z], q, \xi) = 0 \ \} \\ &\cong \ \operatorname{Hom}_{\mathbb{C}}(\mathcal{V}_{1}([z], q, \xi; \vec{\lambda}), \mathbb{C}) \, . \end{split}$$

We call  $\mathcal{V}_1^{\dagger}([z], q, \xi; \vec{\lambda})$  the space of conformal blocks in genus 1 attached to  $([z], q, \xi; \vec{\lambda})$ . Following [TUY][FW], we define the N-point functions in genus 1 as follows:

**Definition 3.2.3.** An element  $\langle \Phi |$  of  $\mathcal{H}^{\dagger}_{\vec{\lambda}}[T_N \times \mathbb{C}^*]$  is called an N-point function in genus 1 attached to  $\vec{\lambda}$  if the following conditions are satisfied:

(D1) For each 
$$(z, q, \xi) \in T_N \times \mathbb{C}^*$$
,

$$\langle \Phi(z,q,\xi) | \in \mathcal{V}_1^{\dagger}([z],q,\xi;\vec{\lambda}).$$

(D2) For 
$$j = 1, ..., N$$
,

$$\partial_{z_i} \langle \Phi(z, q, \xi) | = \langle \Phi(z, q, \xi) | \rho_j(L_{-1})$$

(D3) 
$$\left( q \partial_q + \frac{c_v}{24} \right) \langle \Phi(z, q, \xi) | = \langle \Phi(z, q, \xi) | T \left[ \zeta(t/z_1, q) t \frac{d}{dt} \right],$$

where  $\zeta(t,q)$  is the function given by (3.1.2).

(D4)

$$|\xi \partial_{\xi} \langle \Phi(z,q,\xi)| = \langle \Phi(z,q,\xi)| \frac{1}{2} H[\zeta(t/z_1,q)].$$

We denote by  $\mathfrak{F}_1(\vec{\lambda})$  the set of N-point functions attached to  $\vec{\lambda}$ .

Remark. (i) The condition (D1) implies the following:

(D1') For each 
$$(z, q, \xi) \in T_N \times \mathbb{C}^*$$
,

$$\langle \Phi(z,q,\xi)|T[g]=0$$

for any  $g \in H^0(\mathcal{E}_q, \Theta_{\mathcal{E}_q}(*\sum_{j=1}^N z_j)) = H^0(\mathcal{E}_q, \mathcal{O}_{\mathcal{E}_q}(*\sum_{j=1}^N z_j)t\frac{d}{dt}).$ 

(ii) The equations (D1)-(D4) are compatible with each other due to (3.1.4), e.g.

$$\left[\xi \partial_{\xi} - \frac{1}{2} H[\zeta(t/z_{j})], X[f(t,q,\xi)]\right] =$$

$$X[\xi \partial_{\xi} f(t,q,\xi)] - \frac{1}{2} [H,X][\zeta(t/z_{j},q)f(t,q,\xi)] \in \widehat{\mathfrak{g}}([z],q,\xi).$$

for  $X[f] \in \widehat{\mathfrak{g}}([z], q, \xi)$ . Conversely, the compatibility condition demands (3.1.4) for  $\zeta$ .

(iii) In (D3) and (D4) we can replace  $\zeta(t/z_1, q)$  with  $\zeta(t/z_j, q)$  (j = 2, ..., N) provided (D1) since

$$(3.2.2) \zeta(t/z_1,q) - \zeta(t/z_j,q) \in H^0(\mathcal{E}_q,\mathcal{O}_{\mathcal{E}_q}(*\sum_{i=1}^N z_j)).$$

The finite-dimensionality of the space  $\mathcal{V}_1^{\dagger}([z], q, \xi; \vec{\lambda})$  can be shown in a similar way as in [TUY]. The compatibility of (D1)–(D4) implies that there exists a vector bundle  $\tilde{\mathcal{V}}_1^{\dagger}(\vec{\lambda})$  over a domain  $U \subset T_N \times \mathbb{C}^*$  which has  $\mathcal{V}_1^{\dagger}([z], q, \xi; \vec{\lambda})$  as a fiber at  $([z], q, \xi) \in U$ , with the integrable connections defined by the differential equations (D2)–(D4). In particular the dimension of the fiber  $\mathcal{V}_1^{\dagger}([z], q, \xi; \vec{\lambda})$  does not depend on  $([z], q, \xi)$ .

# 3.3 Restrictions of N-point functions to $V_{\vec{\lambda}}$ .

In this subsection we see that, as a consequence of the twisting, an N-point function in genus 1 is determined from its restriction to  $V_{\vec{\lambda}}$  (Proposition 3.3.2). We also give the characterization of N-point functions as  $V_{\vec{\lambda}}^{\dagger}$ -valued functions (Theorem 3.3.4).

**Lemma 3.3.1.** Let S be the subspace of  $\mathcal{H}_{\vec{\lambda}}$  spanned by the vectors

$$\rho_1(H_{-1})^k|v\rangle \quad (|v\rangle \in V_{\vec{\lambda}}, \ k \in \mathbb{Z}_{\geq 0}).$$

Then for  $(z, q, \xi) \in T_N \times \mathbb{C}^*$  such that  $\xi \neq q^n$   $(n \in \mathbb{Z})$ , the natural map

$$\mathcal{S} \to \mathcal{V}_1([z], q, \xi; \vec{\lambda})$$

is surjective. In other words the restriction map

$$\mathcal{V}_1^{\dagger}([z], q, \xi; \vec{\lambda}) \rightarrow \operatorname{Hom}_{\mathbb{C}}(\mathcal{S}, \mathbb{C})$$

is injective.

**Proof.** This is shown by noting the fact that, for  $\xi \neq q^n$   $(n \in \mathbb{Z})$ , the space  $\widehat{\mathfrak{g}}([z], q, \xi)$  is spanned by the following  $\mathfrak{g}$ -valued functions

$$H \otimes 1, \ H \otimes (\zeta(t/z_i,q) - \zeta(t/z_j,q)), \ H \otimes (t\partial_t)^n \wp(t/z_j,q),$$
  
$$E \otimes (t\partial_t)^n \sigma_+(t/z_j,q,\xi), \ F \otimes (t\partial_t)^n \sigma_-(t/z_j,q,\xi) \ (i,j=1,\ldots,N, \ n=0,1,\ldots).$$

Let  $\langle \Phi |$  be an N-point function in genus 1 and  $|u\rangle$  be a vector in  $\mathcal{H}_{\vec{\lambda}}$ . By Lemma 3.3.1 we can express  $\langle \Phi(z,q,\xi)|u\rangle$  as a combination of

$$\langle \Phi(z,q,\xi) | \rho_1(H_{-1})^n | v \rangle \ (n \in \mathbb{Z}_{\geq 0}, |v\rangle \in V_{\vec{\lambda}}).$$

Combining with (D4) we have the procedure to rewrite  $\langle \Phi(z,q,\xi)|u\rangle$  as a combination of

$$(\xi \partial_{\xi})^n \langle \Phi(z, q, \xi) | v \rangle \quad (n \in \mathbb{Z}_{\geq 0}, |v\rangle \in V_{\vec{\lambda}}).$$

Furthermore it is easily seen that we need finitely many data for each  $|u\rangle$ :

**Proposition 3.3.2.** For  $|u\rangle \in \mathcal{F}_p\mathcal{H}_{\vec{\lambda}}$ , there exist functions

$$a_{i,n}(z,q,\xi) \ (i=1,\ldots,\dim V_{\vec{\lambda}}, \ n=1,\ldots,p)$$

on  $T_N \times \mathbb{C}^*$  such that

$$\langle \Phi(z,q,\xi)|u\rangle = \sum_{i,n} a_{i,n}(z,q,\xi) \left(\xi \partial_{\xi}\right)^{n} \langle \Phi(z,q,\xi)|b_{i}\rangle$$

for any  $\langle \Phi | \in \mathfrak{F}_1(\vec{\lambda})$ , where  $\{ |b_i \rangle ; i = 1, \ldots, \dim V_{\vec{\lambda}} \}$  is a basis of  $V_{\vec{\lambda}}$ .

By  $\mathfrak{F}_1^r(\vec{\lambda})$  we denote the image of  $\mathfrak{F}_1(\vec{\lambda})$  in  $V_{\vec{\lambda}}^{\dagger}[T_N \times \mathbb{C}^*]$  under the restriction map to  $V_{\vec{\lambda}}$ , which is injective by the above proposition.

Next, as in the case of genus 0, we consider the characterization of  $\mathfrak{F}_1^r(\vec{\lambda})$  in  $V_{\vec{\lambda}}^{\dagger}[T_N \times \mathbb{C}^*]$ . First, we have the following.

**Proposition 3.3.3.** The restriction  $\langle \phi |$  of an N-point function satisfies the following equations.

(E1) 
$$\sum_{j=1}^{N} \langle \phi(z,q,\xi) | \rho_{j}(H) = 0.$$

(E2) For each 
$$j = 1, \ldots, N$$
,

$$\begin{split} &(\ell+2)\left(z_{j}\partial_{z_{j}}+\Delta_{\lambda_{j}}\right)\left(\Theta(\xi,q)\langle\phi(z,q,\xi)|\right)=\\ &\xi\partial_{\xi}\left(\Theta(\xi,q)\langle\phi(z,q,\xi)|\right)\rho_{j}(H)+\sum_{i\neq j}\Theta(\xi,q)\langle\phi(z,q,\xi)|\Omega_{i,j}(z_{j}/z_{i},q,\xi), \end{split}$$

where

$$\Omega_{i,j}(t,q,\xi) = \frac{1}{2}\zeta(t,q)\rho_{i}(H)\rho_{j}(H) + \sigma_{+}(t,q,\xi)\rho_{i}(F)\rho_{j}(E) + \sigma_{-}(t,q,\xi)\rho_{i}(E)\rho_{j}(F).$$
(E3)
$$(\ell+2)q\partial_{q}\left(\Theta(\xi,q)\langle\phi(z,q,\xi)|\right) = (\xi\partial_{\xi})^{2}\left(\Theta(\xi,q)\langle\phi(z,q,\xi)|\right) + \sum_{i=1}^{N}\Theta(\xi,q)\langle\phi(z,q,\xi)|\Lambda_{i,j}(z_{i}/z_{j},q,\xi).$$

Here

$$\Lambda_{i,j}(t,q,\xi) = \frac{1}{4} \left( \zeta(t,q)^2 - \wp(t,q) \right) \rho_i(H) \rho_j(H)$$
  
+  $\omega_+(t,q,\xi) \rho_i(E) \rho_j(F) + \omega_-(t,q,\xi) \rho_i(F) \rho_j(E),$ 

where  $\omega_{\pm}(t,q,\xi)$  denote the functions defined by

$$\omega_{\pm}(t,q,\xi) = \frac{1}{2} \left\{ \partial_t \sigma_{\pm}(t,q,\xi) + (\zeta(t,q) \pm \zeta(\xi,q)) \sigma_{\pm}(t,q,\xi) \right\},\,$$

which are holomorphic at t = 1.

For the proof of Proposition 3.3.3, we refer the reader to [FW].

Remark. The equation (E2) is derived by Bernard as a equation for the trace of the vertex operators (see §§3.4), he also derived (E3) in a special case. The equations (E2)(E3) are called the Knizhnik-Zamolodchikov-Bernard (KZB) equations in [Fe][FW].

Note that the system of equations (E1)-(E3) is not holonomic since we have j+2 parameters  $z_1, \ldots, z_N, q, \xi$ , but have only j+1 differential equations, which are compatible each other.

The differential equations (E2) and (E3) are of order 1 with respect to  $z_j$  (j = 1, ..., N) and q respectively. Hence to characterize  $\mathfrak{F}_1^r(\vec{\lambda})$  in  $V_{\vec{\lambda}}[T_N \times \mathbb{C}^*]$ , it is sufficient to obtain equations which determine the  $\xi$ -dependence of the restricted N-point functions and they are obtained as follows.

Let  $\langle \Phi |$  be an N-point function and  $\langle \phi |$  its restriction to  $V_{\overline{\lambda}}$ . We put  $\mathcal{M}_{\overline{\lambda}}^{\dagger} = \operatorname{Hom}_{\mathbb{C}}(\mathcal{M}_{\lambda_1} \otimes \cdots \otimes \mathcal{M}_{\lambda_N} \mathbb{C})$  and regard  $\langle \Phi |$  as an  $\mathcal{M}_{\overline{\lambda}}^{\dagger}$ -valued function. Then as a special case of integrability condition, we have for each non negative integer k

(3.3.1) 
$$\langle \Phi | v_1 \otimes \cdots \otimes F^k E_{-1}^{\ell-2\lambda_j+1} v(\lambda_j) \otimes \cdots \otimes v_N \rangle = 0$$

for any  $|v_i\rangle \in V_{\lambda_i}$   $(i \neq j)$ , where  $|v(\lambda_j)\rangle$  denotes the highest weight vector in  $\mathcal{M}_{\lambda_j}$ . On the other hand, by Proposition 3.3.2 we can rewrite the left hand side of (3.3.1) as a combination of

$$(\xi \partial_{\xi})^{n} \langle \Phi | v \rangle = (\xi \partial_{\xi})^{n} \langle \phi | v \rangle \quad (n = 0, 1, \dots, \ell - 2\lambda_{j} + 1, |v|) \in V_{\vec{\lambda}}).$$

Now the equality (3.3.1) implies the differential equation for  $\langle \phi |$  with respect to  $\xi$  of order at most  $\ell - 2\lambda + 1$ . We denote this differential equation by

$$\langle \phi | v_1 \otimes \cdots \otimes F^k E_{-1}^{\ell-2\lambda_j+1} v(\lambda_j) \otimes \cdots \otimes v_N \rangle = 0.$$

**Theorem 3.3.4.** The space  $\mathfrak{F}_1^r(\vec{\lambda})$  coincides with the solution space of the system of equations (E1)–(E4), where (E4) is given by

(E4) For each 
$$j = 1, ..., N$$
 and nonnegative integer  $k \leq \sum_{i=1}^{N} \lambda_i + \ell - 2\lambda_j + 1$ ,

$$\langle \phi(z,q,\xi)|v_1\otimes\cdots\otimes F^k E_{-1}^{\ell-2\lambda_j+1}v(\lambda_j)\otimes\cdots\otimes v_N\rangle=0$$

for any  $|v_i\rangle \in V_{\lambda_i} (i \neq j)$ .

**Proof.** It is enough to prove that the dimension of the solution space of the system (E1)-(E4) is not larger than  $\dim_{\mathbb{C}} \mathfrak{F}_1(\vec{\lambda}) = \dim_{\mathbb{C}} \mathfrak{F}_1^r(\vec{\lambda})$ .

Fix  $(z,q) \in T_N$  and let  $\langle \phi(\xi) | = \langle \phi(z,q,\xi) |$  be a  $V_{\vec{\lambda}}^{\dagger}$ -valued function on  $\mathbb{C}^*$  which satisfies (E1) and (E4). From  $\langle \phi(\xi) |$ , we construct an element  $\langle \Phi(\xi) |$  of  $\mathcal{M}_{\vec{\lambda}}^{\dagger}[\mathbb{C}^*]$  which satisfies

(i) 
$$\langle \Phi(\xi)|v\rangle = \langle \phi(\xi)|v\rangle \text{ for } |v\rangle \in V_{\vec{\lambda}},$$

(ii) 
$$\langle \Phi(\xi) | \in \mathcal{V}_1^{\dagger}([z], q, \xi; \vec{\lambda}) \text{ for each } \xi \in \mathbb{C}^*,$$

(iii) 
$$\xi \partial_{\xi} \langle \Phi(\xi) | = \langle \Phi(\xi) | \frac{1}{2} H[\zeta(t/z_1)],$$

The well-definedness is proved by induction with respect to the filtration  $\{\mathcal{F}_{\bullet}\}$  using Lemma 3.2.1 and the compatibility condition (3.2.1). Moreover we can show that  $\langle \Phi(\xi)|$  belongs to  $\mathcal{H}_{\vec{\lambda}}^{\dagger}$ , that is,

$$\langle \Phi(\xi)|u_1\otimes\cdots\otimes a\cdot E_{-1}^{\ell-2\lambda+1}v(\lambda_j)\otimes\cdots\otimes u_N\rangle=0$$

for any j = 1, ..., N,  $|u_i\rangle \in \mathcal{M}_{\lambda_i}$  and  $a \in U(\widehat{\mathfrak{p}}_-)$ . This is reduced to (E4) also by induction.

Now we have the injective homomorphism from the solution space of (E1)-(E4) to the space of functions on  $\mathbb{C}^*$  satisfying (ii) and (iii); the latter space has the same dimension as  $\mathcal{V}_1^{\dagger}([z], q, \xi; \vec{\lambda})$ .  $\square$ 

In the case of N=1 we can write down the differential equations (E4) explicitly as we will see in §4.

### 3.4 Sewing procedure.

In this subsection we show that the N-point functions in genus 1 are given by the traces of vertex operators and hence Bernard's approach is equivalent to ours. For this purpose we construct an N-point function in genus 1 from an N+2-point function in genus 0. This construction is known as the sewing procedure.

Fix  $\mu \in P_{\ell}$  and  $\vec{\lambda} = (\lambda_1, \dots, \lambda_N) \in (P_{\ell})^N$ , and consider a sequence of vertex operators  $\varphi_j(z_j) : V_{\lambda_j} \otimes \mathcal{H}_{\mu_j} \to \hat{\mathcal{H}}_{\mu_{j-1}}$  for some  $\mu_{j-1}, \mu_j \in P_{\ell}$  with  $\mu_0 = \mu_N = \mu$ . For  $|u\rangle = |u_1 \otimes \cdots \otimes u_N\rangle \in \mathcal{H}_{\vec{\lambda}}$ , we put

$$\Phi_0(|u\rangle;z) = \hat{\varphi}_1(|u_1\rangle;z_1)\hat{\varphi}_2(|u_2\rangle;z_2)\cdots\hat{\varphi}_N(|u_N\rangle;z_N):\mathcal{H}_{\mu}\to\hat{\mathcal{H}}_{\mu},$$

where  $\hat{\varphi}_{j}(z_{j})$  means the extended vertex operator in the sense of Proposition 2.3.3. We define a  $\mathcal{H}_{\vec{\lambda}}^{\dagger}$ -valued function on  $T_{N} \times \mathbb{C}^{*}$  by

$$\langle \Phi_1(z,q,\xi)|u\rangle = \operatorname{Tr}_{\mathcal{H}_{\mu}} \left( \Phi_0(|u\rangle;z) q^{L_0 - \frac{c_v}{24}} \xi^{\frac{H}{2}} \right)$$

for  $|u\rangle \in \mathcal{H}_{\vec{\lambda}}$ .

**Proposition 3.4.1.** The element  $\langle \Phi_1 |$  of  $\mathcal{H}_{\vec{\lambda}}[T_N \times \mathbb{C}^*]$  defined by (3.4.1) is an N-point function in genus 1.

*Proof.* First we prove that  $\langle \Phi_1 |$  satisfies the condition (D1).

Fix any  $X \otimes f \in \widehat{\mathfrak{g}}([z], q, \xi; \vec{\lambda})$  and  $|u\rangle \in \mathcal{H}_{\vec{\lambda}}$ , and put

$$\langle \Phi_1 | X(t) | u \rangle dt = \operatorname{Tr}_{\mathcal{H}_u} \Phi_0(|u\rangle; z) X(t) q^{L_0 - \frac{c_v}{24}} \xi^{\frac{H}{2}} dt.$$

This is a holomorphic 1-form on  $\mathbb{C}^* \setminus \{ q^n z_j \in \mathbb{C}^* ; n \in \mathbb{Z}, j = 1, \ldots, N \}$ . Then by (2.3.1), what we should show is the following.

(3.4.2) 
$$\sum_{j=1}^{N} \operatorname{Res}_{t=z_{j}} f(t) \langle \Phi_{1} | X(t) | u \rangle dt = 0.$$

But we have

$$\begin{split} f(t)\langle \Phi_1|X(t)|u\rangle dt &= f(t)\mathrm{Tr}_{\mathcal{H}_{\mu}}X(t)\Phi_0(|u\rangle;z)q^{L_0-\frac{c_{\nu}}{24}}\xi^{\frac{H}{2}}dt \\ &= f(t)\mathrm{Tr}_{\mathcal{H}_{\mu}}\Phi_0(|u\rangle;z)q^{L_0-\frac{c_{\nu}}{24}}\xi^{\frac{H}{2}}X(t)dt \\ &= f(qt)\mathrm{Tr}_{\mathcal{H}_{\mu}}\Phi_0(|u\rangle;z)X(qt)q^{L_0-\frac{c_{\nu}}{24}}\xi^{\frac{H}{2}}d(qt) \\ &= f(qt)\langle \Phi_1|X(qt)|u\rangle d(qt), \end{split}$$

where we used the commutativity of vertex operators and currents, and

$$f(t)\xi^{\frac{H}{2}}(X(t))\xi^{-\frac{H}{2}} = f(qt)X(t), \ q^{L_0}(X(t))q^{-L_0} = X(qt)q.$$

Therefore we have  $f(t)\langle \Phi_1|X(t)|u\rangle dt \in H^0(\mathcal{E}_q,\omega_{\mathcal{E}_q}(\sum_{j=1}^N*[z_j]))$ , where  $\omega_{\mathcal{E}_q}$  denotes the sheaf of 1-forms on  $\mathcal{E}_q$ . This implies (3.4.2).

Next we prove that  $\langle \Phi |$  satisfies the equation (D2)-(D4). It is obvious that  $\langle \Phi |$  satisfies (D2) from (2.3.2). We give a proof of (D4). The equation (D3) is proved in a similar way. We chose (z,q) from the region  $1 > |z_1| > |z_2| > \cdots > |z_N| > |q|$ , where  $\langle \Phi_1 |$  is a convergent power series. Let  $Z_r = \{|w| = r\}$  be a cycle with anticlockwise orientation. We have

$$\begin{split} &2\pi\sqrt{-1}\langle\Phi_1|H[\zeta(t/z_1)]|u\rangle\\ &=\mathrm{Tr}_{\mathcal{H}_{\mu}}\int_{Z_1}\zeta(t/z_1)H(t)\Phi_0(|u\rangle;z)q^{L_0-\frac{c_v}{24}}\xi^{\frac{H}{2}}dt\\ &-\mathrm{Tr}_{\mathcal{H}_{\mu}}\int_{Z_q}\zeta(t/z_1)\Phi_0(|u\rangle;z)H(t)q^{L_0-\frac{c_v}{24}}\xi^{\frac{H}{2}}dt\\ &=\mathrm{Tr}_{\mathcal{H}_{\mu}}\left\{\int_{Z_q}\zeta(q^{-1}t/z_1)-\int_{Z_q}\zeta(t/z_1)\right\}\Phi_0(|u\rangle;z)H(t)q^{L_0-\frac{c_v}{24}}\xi^{\frac{H}{2}}dt. \end{split}$$

By  $\zeta(t) = \zeta(q^{-1}t) - 1$ , we conclude

$$\begin{split} \langle \Phi_1 | H[\zeta(t/z_1)] | u \rangle &= \frac{1}{2\pi\sqrt{-1}} \mathrm{Tr}_{\mathcal{H}_\mu} \int_{Z_q} \Phi_0(|u\rangle;z) H(t) q^{L_0 - \frac{c_u}{24}} \xi^{\frac{H}{2}} dt \\ &= \mathrm{Tr}_{\mathcal{H}_\mu} \left( \Phi_0(|u\rangle;z) H q^{L_0 - \frac{c_u}{24}} \xi^{\frac{H}{2}} \right). \end{split}$$

This proves (D4).  $\square$ 

By Proposition 3.4.1 we have the mapping from  $\mathfrak{F}_0(\mu, \vec{\lambda}, \mu)$  to  $\mathfrak{F}_1(\vec{\lambda})$ . We denote this mapping by  $s_{\mu}$ . The following proposition follows from "the factorization property" proved in [TUY].

**Proposition 3.4.2.** The following map is bijective.

$$\bigoplus_{\mu \in P_{\ell}} s_{\mu} : \bigoplus_{\mu \in P_{\ell}} \mathfrak{F}_{0}(\mu, \vec{\lambda}, \mu) \rightarrow \mathfrak{F}_{1}(\vec{\lambda}). \quad \Box$$

By Proposition 2.3.2 and Proposition 3.4.2 we get the following.

**Theorem 3.4.3.** The space  $\mathfrak{F}_1^r(\vec{\lambda})$  is spanned by the functions

$$Tr_{\mathcal{H}_{u}}\varphi_{1}(z_{1})\cdots\varphi_{N}(z_{N})q^{L_{0}-\frac{c_{u}}{24}}\xi^{\frac{H}{2}},$$

where  $\varphi_j(z_j)$  (j = 1, ..., N) is the vertex operator of type  $(\mu_{j-1}, \lambda_j, \mu_j)$  for some  $\mu_i \in P_\ell$  (i = 1, ..., N + 1) with  $\mu := \mu_0 = \mu_N$ .

Remark. The integral representations of the above functions are obtained in [BF].

# §4 Explicit formulas for 1-point functions in genus 1.

In this section, we see how the system (E1)-(E4) determine the 1-point function explicitly (Theorem 4.2.4). We also solve the system in a few cases.

# 4.1. The 1-point functions in genus 1.

Fix a weight  $\lambda$  and consider the set  $\mathfrak{F}_1^r(\lambda)$  of restricted 1-point functions in genus 1, which is, by Theorem 3.4.3, spanned by the following  $V_{\lambda}^{\dagger}$ -valued functions:

$$|\langle \phi_{\mu}(z_1, q, \xi)| := \operatorname{Tr}_{\mathcal{H}_{\mu}} \varphi(z_1) q^{L_0 - \frac{c_{\nu}}{24}} \xi^{\frac{H}{2}} \quad (\mu \in P_{\ell}),$$

where  $\varphi(z_1)$  is the vertex operator of type  $(\mu, \lambda, \mu)$ . We put

$$L = \ell - 2\lambda$$
.

Note that a nonzero vertex operator of type  $(\mu, \lambda, \mu)$  exists if and only if  $\lambda$  and  $\mu$  satisfy

$$\lambda \in \mathbb{Z}, \ \frac{\lambda}{2} \le \mu \le \frac{\lambda + L}{2},$$

and the vertex operators are unique up to constant multiples. In particular we have

$$\dim_{\mathbb{C}} \mathfrak{F}_1(\lambda) = L + 1.$$

As we have seen in Theorem 3.3.4, the restrictions of 1-point functions  $\langle \phi |$  are characterized by (E1)–(E4). The equation (E2) now implies

$$\langle \phi(z_1, q, \xi) | = z_1^{-\Delta_{\lambda}} \langle \phi(1, q, \xi) |.$$

Hence in the following we specialize  $z_1 = 1$  and put  $\langle \phi(\xi, q) | = \langle \phi(1, q, \xi) |$ . By the condition (E1), we can identify  $\mathfrak{F}_1^r(\lambda)$  with the space spanned by the following function:

$$\phi_{\mu}(\xi,q) \quad \mu = \frac{\lambda}{2}, \frac{\lambda+1}{2}, \ldots, \frac{\lambda+L}{2},$$

where  $|0_{\lambda}\rangle$  is the weight 0 vector in  $V_{\lambda}$  defined by

$$|0_{\lambda}\rangle = \frac{1}{\lambda!}F^{\lambda}|v(\lambda)\rangle.$$

From the equation (E3) we immediately have the following heat equation.

**Proposition 4.1.1.** For  $\phi \in \mathfrak{F}_1^r(\lambda)$ ,

$$\begin{split} &(\ell+2)q\partial_q(\Theta(\xi,q)\phi(\xi,q)) = \\ &\left\{ (\xi\partial_\xi)^2 - \lambda(\lambda+1) \left( \wp(\xi,q) - 2\frac{q\partial_q\eta(q)}{\eta(q)} \right) \right\} (\Theta(\xi,q)\phi(\xi,q)). \end{split}$$

Remark. The heat equations for 1-point functions are studied by Etingof and Kirillov in more general cases:  $\mathfrak{g} = \mathfrak{sl}(n,\mathbb{C}), \ V_{\lambda} = S^{\lambda n}\mathbb{C}^n \ (\lambda \in \mathbb{Z}), \text{ where } S^m \text{ denotes } m$ -th symmetric product and  $\mathbb{C}^n$  the defining representation of  $\mathfrak{g}$  [EK].

# 4.2 The differential equation with respect to $\xi$ .

This subsection is devoted to write down differential equations for by  $\phi \in \mathfrak{F}_1^r(\lambda)$ derived from (E4):

$$\langle \phi | F^k E_{-1}^{L+1} | v(\lambda) \rangle = 0 \quad (0 \le k \le \lambda + L + 1).$$

Among them the only nontrivial equality is the following:

$$\langle \phi | F^{\lambda + L + 1} E_{-1}^{L + 1} | v(\lambda) \rangle = 0,$$

because other equalities fall into trivial by (E1).

To rewrite (4.2.1) as a differential equation with respect to  $\xi$ , we consider the following set of vectors in  $\mathcal{M}_{\lambda}$ 

$$\left\{ |u^{k}\rangle = \frac{1}{(\lambda+k)!} F^{\lambda+k} E^{k}_{-1} |v(\lambda)\rangle ; k = 0, 1, \dots \right\}$$

Note that  $|u^0\rangle = |0_{\lambda}\rangle$ . The following lemma plays a key role in the following discussions.

**Lemma 4.2.1.** For  $k \in \mathbb{Z}_{\geq 0}$ , we have

$$(4.2.2) \qquad \frac{1}{2}H[\zeta(z,q)]|u^{k}\rangle \equiv \\ -\frac{1}{2}|u^{k+1}\rangle + (k+\lambda)\zeta(\xi,q)|u^{k}\rangle + k(L-k+1)\beta(\xi,q)|u^{k-1}\rangle \bmod \widehat{\mathfrak{g}}([\mathbf{z}],q,\xi)\mathcal{M}_{\lambda},$$

where  $\beta(\xi,q)$  is given by

(4.2.3) 
$$\beta(\xi,q) = \frac{q\partial_q \Theta(\xi,q)}{\Theta(\xi,q)} - 3\frac{q\partial_q \eta(q)}{\eta(q)}.$$

For  $\langle \Phi | \in \mathfrak{F}_1(\lambda)$ , we put  $\vec{\Phi} = {}^t(\langle \Phi | u^0 \rangle, \dots, \langle \Phi | u^L \rangle)$ . Then by  $\langle \Phi | u^{L+1} \rangle = 0$  and Lemma 4.2.1, we obtain the following differential equation for  $\vec{\Phi}$ .

**Proposition 4.2.2.** For  $\langle \Phi | \in \mathfrak{F}_1(\lambda)$ , we have

$$(4.2.4) \qquad \xi \partial_{\xi} \vec{\Phi}(\xi,q) \ = \ \mathcal{A}_{L+1}(\xi,q) \vec{\Phi}(\xi,q) \ + \ \lambda \zeta(\xi,q) \vec{\Phi}(\xi,q).$$
 Here,  $\mathcal{A}_{L+1}$  is an  $(L+1) \times (L+1)$  tri-diagonal matrix given by 
$$\begin{pmatrix} 0 & -\frac{1}{2} \\ 1 \cdot L \cdot \beta & \zeta & -\frac{1}{2} \\ & 2 \cdot (L-1) \cdot \beta & 2\zeta & -\frac{1}{2} \\ & & \cdots & \cdots \\ & & (L-1) \cdot 2 \cdot \beta & (L-1)\zeta & -\frac{1}{2} \\ & & L \cdot 1 \cdot \beta & L\zeta \end{pmatrix},$$

where the functions  $\zeta(\xi,q)$  and  $\beta(\xi,q)$  are given by (3.1.2) and (4.2.3).

It is remarkable that the equation (4.2.4) can be written in the following form:

$$\xi \partial_{\xi} \left( \Theta^{-\lambda} \vec{\Phi} \right) = \mathcal{A}_{L+1} \left( \Theta^{-\lambda} \vec{\Phi} \right).$$

By Proposition 4.2.2 we can write  $\langle \Phi | u^k \rangle$  as a combination of differentials of  $\phi := \langle \Phi | u^0 \rangle$  with respect to  $\xi$ ; e.g.

$$\begin{split} \langle \Phi | u^1 \rangle &= -2 \xi \partial_\xi \phi \,, \\ \langle \Phi | u^2 \rangle &= -2 \left( \xi \partial_\xi - \zeta \right) \langle \Phi | u^1 \rangle - 2 L \beta \phi \\ &= 4 \left( \xi \partial_\xi - \zeta \right) \xi \partial_\xi \phi - 2 L \beta \phi \,, \\ & etc... \end{split}$$

In general, we have the following lemma by simple calculations.

**Lemma 4.2.3.** For k = 1, ..., L + 1, we have

$$\Theta^{-\lambda}\langle\Phi|u^k\rangle = (-2)^k \mathrm{Det}\left[\xi\partial_\xi\cdot I_k - \mathcal{A}_{L+1}^{(k)}\right]\left(\Theta^{-\lambda}\phi\right) ,$$

where  $I_k$  is the  $k \times k$ -identity matrix and  $\mathcal{A}_{L+1}^{(k)}$  is the  $k \times k$ -matrix given by the first  $k \times k$  block of  $\mathcal{A}_{L+1}$ :

Here, for an  $n \times n$ -matrix  $A = (a_{i,j})$  with elements in some, possibly non-commutative, ring, **Det** A is defined inductively as follows:

**Det**
$$A = a_{1,1}$$
 for  $n = 1$ ,

$$\mathbf{Det} A = \mathbf{Det} A_{1,1} \cdot a_{1,1} - \mathbf{Det} A_{1,2} \cdot a_{1,2} + \cdots + (-1)^{n-1} \mathbf{Det} A_{1,n} \cdot a_{1,n},$$

where  $A_{i,j}$  is the matrix given by removing the *i*-th row and *j*-th column from A.

Through this lemma, we can rewrite (4.2.1) explicitly as a differential equation for  $\phi \in \mathfrak{F}_1^r(\lambda)$  of order L+1 with respect to  $\xi$ . Combining with Proposition 4.1.1 we get the following.

**Theorem 4.2.4.** The space  $\mathfrak{F}_1^r(\lambda)$  coincides with the solution space of the following system of differential equations.

$$(F1) \qquad (\ell+2)q\partial_{q}\left(\Theta(\xi,q)^{-\lambda}\phi(\xi,q)\right) = \\ \left\{ (\xi\partial_{\xi})^{2} + 2(\lambda+1)\zeta(\xi,q)\xi\partial_{\xi} - L(\lambda+1)\frac{q\partial_{q}\Theta(\xi,q)}{\Theta(\xi,q)} \right\} \left(\Theta(\xi,q)^{-\lambda}\phi(\xi,q)\right).$$

$$(F2) \qquad \mathbf{Det}\left[\xi\partial_{\xi}\cdot I_{L+1} - \mathcal{A}_{L+1}(\xi,q)\right] \left(\Theta(\xi,q)^{-\lambda}\phi(\xi,q)\right) = 0.$$

*Remark.* (i) It can be easily checked directly that the solution space of (F1)(F2) is (L+1)-dimensional.

(ii) For  $\lambda = 0$ , the vertex operator  $\varphi_{\mu}(|0\rangle_{0}; z)$  is equal to the identity operator on  $\mathcal{H}_{\mu}$  up to a constant multiple. Thus the 1-point function  $\phi_{\mu}$  is nothing but the character

$$\chi_{\mu}^{(\ell)}(\xi,q) = \operatorname{Tr}_{\mathcal{H}_{\mu}} q^{L_0 - \frac{c_{\nu}}{24}} \xi^{\frac{H}{2}} = \frac{\Theta_{2\mu+1,\ell+2}(\xi,q) - \Theta_{-2\mu-1,\ell+2}(\xi,q)}{\sqrt{-1}\Theta(\xi,q)},$$

where  $\Theta_{m,k}(\xi,q)$  is the theta function of level k defined by

$$\Theta_{m,k}(\xi,q) = \sum_{n \in \mathbb{Z} + \frac{m}{2k}} q^{kn^2} \xi^{kn}.$$

In the case of  $\ell = 1, 2$ , the system (F1)(F2) coincides with the one obtained in [EO2].

We can easily solve (F2) by noting the above remark (ii).

**Proposition 4.2.5.** For  $\lambda \in P_{\ell}$  and  $q \in D^*$ , the functions

$$\Theta(\xi,q)^{\lambda}\chi_{\mu}^{(\ell-2\lambda)}(\xi,q) \quad \left(\mu=0,\frac{1}{2},\ldots,\frac{\ell-2\lambda}{2}\right)$$

form a basis of the solution space of (F2).  $\square$ 

#### 4.3. Some solutions.

In this subsection we determine the trace of vertex operators explicitly when  $L = \ell - 2\lambda \le 1$ , by solving the differential equations (F1) and (F2).

Case L=0:

In this case the space  $\mathfrak{F}_1^r(\lambda)$  is spanned by the single function

$$\phi_{\frac{\lambda}{2}}(\xi,q) = \operatorname{Tr}_{\mathcal{H}_{\frac{\lambda}{2}}} \varphi(|0\rangle_{\frac{\lambda}{2}}; 1) q^{L_0 - \frac{c_v}{24}} \xi^{\frac{H}{2}}.$$

On the other hand, by Proposition 4.2.5, any solution of (F2) is given in the following form:

$$\phi(\xi, q) = a(q)\Theta(\xi, q)^{\lambda} \chi_0^{(0)}(\xi, q) = a(q)\Theta(\xi, q)^{\lambda}$$

with some function a(q), and the equation (F1) now implies  $\partial_q a(q) = 0$ . Therefore, we have

(4.3.1) 
$$\phi_{\frac{\lambda}{2}}(\xi, q) = \Theta(\xi, q)^{\lambda}$$

under the appropriate normalization.

Case L=1:

The space  $\mathfrak{F}_1^r(\lambda)$  has dimension 2 and it is spanned by

$$\phi_{\mu}(\xi,q) = \operatorname{Tr}_{\mathcal{H}_{\mu}} \varphi(|0\rangle_{\mu};1) q^{L_0 - \frac{c_v}{24}} \xi^{\frac{H}{2}} \quad \left(\mu = \frac{\lambda}{2}, \frac{\lambda+1}{2}\right).$$

On the other hand, by substituting

$$a_0(q)\Theta(\xi,q)^{\lambda}\chi_0^{(1)}(\xi,q) + a_1(q)\Theta(\xi,q)^{\lambda}\chi_{\frac{1}{2}}^{(1)}(\xi,q)$$

for  $\phi(\xi,q)$  in (F1), and using (F1) for  $L=1,\lambda=0$ , we find that the functions

$$\eta(q)^{-\frac{\lambda}{2\lambda+3}}\Theta(\xi,q)^{\lambda}\chi_{\nu}^{(1)}(\xi,q) \quad \left(\nu=0,\frac{1}{2}\right)$$

are solutions of the system. By comparing the exponents of q, we conclude

(4.3.2) 
$$\phi_{\frac{\lambda}{2}}(\xi, q) = \eta(q)^{-\frac{\lambda}{2\lambda+3}} \Theta(\xi, q)^{\lambda} \chi_0^{(1)}(\xi, q),$$

$$\phi_{\frac{\lambda+1}{2}}(\xi, q) = \eta(q)^{-\frac{\lambda}{2\lambda+3}} \Theta(\xi, q)^{\lambda} \chi_{\frac{1}{2}}^{(1)}(\xi, q).$$

#### REFERENCES

- [Be1] D. Bernard, On the Wess-Zumino-Witten models on the torus, Nucl. Phys. B303 (1988), 77-93.
- [Be2] D. Bernard, On the Wess-Zumino-Witten models on Riemann surfaces, Nucl. Phys. B309 (1988), 145-174.
- [BF] D. Bernard and G. Felder, Fock representations and BRST cohomology in SL(2) current algebra, Commun. Math. Phys. 127 (1990), 145-168.
- [BPZ] A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite dimensional conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B241 (1984), 333-380.
- [EK] P. Etingof and A. Kirillov, Jr., On the affine analogue of Jack's and Macdonald's polynomials, Yale preprint (1994), hep-th/9403168, to appear Duke Math. J..
- [EO1] T. Eguchi and H. Ooguri, Conformal and current algebras on a general Riemann surface, Nucl. Phys. B282 (1987), 308-328.
- [EO2] T. Eguchi and H. Ooguri, Differential equations for characters of Virasoro and affine Lie algebras, Nucl. Phys. B313 (1989), 482-508.
- [Fe] G. Felder, Conformal field theory and integrable systems associated to elliptic curves, to appear in th Proceeding of the International Congress of Mathematicians, Zurich (1994).
- [FW] G. Felder and C. Wieczerkowski, Conformal blocks on elliptic curves and the Knizhnik-Zamolodchikov-Bernard equations, hep-th/941104 (1994).
- [Ka] V. Kac, Infinite dimensional Lie algebras, Cambridge University Press., Third edition, 1990.
- [KZ] V.Z. Knizhnik and A.B. Zamolodchikov, Current algebra and Wess-Zumino models in two dimensions, Nucl. Phys. B247 (1984), 83-103.
- [TK] A. Tsuchiya and Y. Kanie, Vertex operators in conformal field theory on P<sup>1</sup> and monodromy representations of braid group, Adv. Stud. in Pure Math. 16 (1988), 297.
- [TUY] A. Tsuchiya, K. Ueno and Y. Yamada, Conformal field theory on universal family of stable curves with gauge symmetries, Adv. Stud. in Pure Math. 19 (1989), 459-566.