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Primal-Dual Combinatorial Relaxation
Algorithms for the Maximum Degree of

Subdeterminants
’Satoru IWATA £H &

Kazuo MUROTA EH —
Izumi SAKUTA fEH &

Abstract. A primal-dual framework of combinatorial relaxation algorithms is proposed for computing
the highest degree of a minor of order k of a rational function matrix. The algorithm can be used for
computing the index of nilpotency of a matrix pencil (or the index of the associated DAE). It is a linear
algebraic version of the Hungarian method for the assignment problem. The proposed framework stands
in contrast with the previous combinatorial relaxation algorithm based on weighted matchings, and may
also be regarded as an extension of the Wolovich algorithm for row/column properness. Several algorithms

are evaluated through computer experiments.

Key words. combinatorial relaxation, degree of subdeterminant, index of DAE, Kronecker form,

Smith-McMillan form at infinity

11.1 Introduction

~ Let A(z) = (A;;(z)) be an m x n rational function matrix wiph A;;j{z) being a rational function in
z with coefficients from the real number field R. This paper deals with algorithms for computing the

highest degree of a minor of order k (< min(m,n)) of A(z):
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61(4) = max{degdet A[L,J] | 1] = |J] = k}, (1)

where A[I,J] denotes the submatrix of A with row-set I and column-set J and the degree of a
rational function f(z) = p(z)/q(z) is defined by deg f(z) = degp(z) — degq(x). By convention we put
deg f(z) = —oo if f(z) = 0. This is one of the fundamental problems in combinatorial matrix theory (3]
and has various applications in practice.

By computing éx(A) (k = 1,2,:-:) we can obtain the Smith-McMillan fofm at infinity that is
known also as the structure at inﬁnity in the literature of control theory (Commault—Dion[S],' Hau-
tus[12], Verghese-Kailath[22]). When A(z) is a regular pencil of order n, on the other hand, §;(A)
(k = 1,2,--) determines the structural indices of its Kronecker form (see Murota[15,Section 2.2]), and
hence the index v as well as the dynamical'degree of freedom of the associated diﬂ"erential.-algebraic equa-
tions (DAEs) (Brenan-Campbell-Petzold[2], Gear[9,10], Hairer-Wanner[11]). To be specific, the index is
given By v = bn1(A) = 6n(A) + i, whereas the dynamical degree of freedom is equal to &, (A). Thus the
problem of computing 6, (A4) (k = 1,2, ) has a fundamental engineering significance.

The present paper aims to propose a primal-dual framework of combinatorial relaxation algorithms
for computing the maximum degree of subdeterminants. Like the Hungarian method for the assignment
problem [1,20], the algorithms keep a set of admissible potentials (feasible dual variables), which deter-
mines the estimate (dual objective value), and check its tightness (dual optimality) by solving a simpler
(restricted primal) problem. If it turns out to be nontight, we obtain information useful for modifying the
potentials as well as the matrix. Thus the proposed framework can be interpreted as a linear algebraic
version of the Hungarian method. It stands in contrast with the previous combinatorial relaxation algo-
rithm based on weighted-matchings, and may also be regarded as an extension of the Wolovich algorithm

for row/column properness. Several algorithms are evaluated through computer experiments.

11.2 Combinatorial relaxation algorithms

In this section, we present a new framework of combinatorial relaxation type algorithms for computing
6. This shares the approach of “combinatorial relaxation™ with the previous algorithm of Murota[15],
while featuring potentials (dual variables) rather than matchings in constructing the combinatorial esti-
mate. The proposed framework may bé thought of as a linear algebraic version of the primal-dual approach

to the assignment problem that is well known in the context of combinatorial optimization(1,20].
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11.2.1 Outline of the proposed framework

For a rational function matrix A(z), let R and C denote the row-set and the column-set, respectively.
By potentials we mean integer numbers associated with rows or columns. With appropriately chosen
potentials, say, p = (pi | ¢ € R) and v = (v; | § € C), we compute an estimate :S\k(A;p,'y) of §;(A)
such that 6(A) < 3k(A;p,7). We then test for tightness (equali‘t‘y) in this inequality without computing
8x(A). If the estimate turns out to be nontight, we modify lthe matrix A(z) as well as the potentials.
The outline of the combinatorial relaxation algorithm to compute §; for a fixed k is summarized as
follows:
Phase 0: Choose appropriate (p,7).
Phase 1: Compute the combinatorial upper estimate ;S\k‘(A;p,-y).
Phase 2: Test whether gk(A;p, v) = 6x(A) or not. If the equality holds, output ’6\;;(A;p, ~) and stop.
Phase 3: Modify A to another matrix A’ and (p,7) to (p,v') such that 6k(A’)‘ = 6, (A) and gk(A’;p’, 7)<
gk (A; p,7), namely A’ has the same true value as A and an improved estimate. Put A := A’, p := p’,

v := %' and go to Phase 1.

11.2.2 Phase 1 — Combinatorial estimation

The combinatorial estimate, denoted as :S\k(A;p,-y) in Section 11.2.1, is specified in this section. Define

cij by
¢ij = deg Aij(z), e

where by convention we put ¢;; = —oc if A;j(x) = 0. We choose a set of potentials p = (p; [ i € R)

and v = (v; | 7 € C) which satisfies the condition

pi+7; 2cij fori€RandjeC. (2)

Such potentials are said to be admissible. Then for / C R and J C C with |I| = |J]| it holds that

deg det A[I, J] < p(I) + 7(J), SRR

wﬁere p(I) = Zpe and v(J) = Z“””v

€] Jj€J
By considering the maximum possible value of the right-hand side, i.e., by introducing
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Sk (A;py) = I J),
k(A py7) mi’i”()ﬂ'ﬂi’iﬂ)

we obviously have

p(I) +1(J) < 6x(A;p,7) , (4)

for I C R and J C C with |I| = |J| = k. The inequalities (3) and (4) imply

8k(4) < 8(43p,7), (5)
which shows that gk(A;p,'y) serves as an upper bound on the true value. Remember that (p,v) must

be admissible in the sense of (2) before (5) can be true.
The estimate gk(A;p,7) admits an alternative expression suitable for its efficient comput;ation. Con-

sider the following permutations for the row-set R and the column-set C of A:
T:{17""m}_)R such that Pr(1) Zpr(2)2'2pr(m); (6)
o:{l,...,n} »C such that v,(1) 2 Ye(2) 2 *** 2 Yo(n)- (7)

Then it is easy to see that

k k
6k(Aspyy) = pr(.-) + Z'Ya(j)-‘
i=1

j=1

11.2.3 Phase 2 — Test for tightness

This section provides a way to test whether 6§;(A) = Ek(A;p,‘y) or not without computing 6, (A)
directly.
Define I”,J”,I.,J. as follows:

I'={i€ R|pi>pr(k+1)} I={ieR|pi>pr ()} (8)
N={eCl7>v%umnh J={i€Clv 27} (9

Exceptionally, in case k = m, we put I' = [ = R and in case k = n, we put J* = J = C. Then p(I)
attains the maximum subject to |I| = k if and only if I¥ C I C I. Similarly ~(J) is maximized subject
to |J| = k if and only if J* C J C J. Therefore (4) holds with equality if and only if I! C I C | and
J C J CJ. Define a constant matrix A? by

) , . lim 717 A;;(x) ifielandjeJ;
At = (A, Al = z—o0
0 otherwise.

8 11.2.1. (tightness) The following three conditions (a)~(c) are equivalent.
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(2) 8x(A4) = 8k (A5 p,7)-
(b) There exist I D I* and J D J* such that rank A¥[1,J] = |{| = |J| = k.
(c¢) The following four conditions (r1)—(r4) are satisfied:

(r1) rank A}[R,C] > k;

(r2) rank A¥I*,C) = |It};

(r3) rank A*[R, J¥] = |J};

(r4) rank AY[1*,J%) > |1} + |JH - k.

According to Proposition 11.2.1. above, the test for Ek = 6} in Phase 2 can be reduced to computing

the ranks of the four constant matrices. Actually, for (r1), (r2) and (r4), we use the Gaussian elimination
by elementary row transformations, and for (r3), we use the Gaussian elimination by elementary column

transformations.

11.2.4 Phase 3 — Modification

When the estimate gk(A;p,—y) has turned out to be nontight, we modify the matrix as well as the
potentials. Recall that the maximum degree of subdeterminants of a fixed order is invariant under biproper

equivalence transformations. That is,

Al(z) =U(z)A(z)V (z) ’ (10)

satisfies 6;(A’) = 6, (A) if both U(z) and V(z) are biproper. We use this type of transformation in
the modification of the matrix A(z).

Let U be a nonsingular constant matrix of order m such that
Uni =0 if pr > pi,

and define a transformation matrix U(z) by

U(z) = diag (z;p) - U - diag (z; —p), (11)

where diag (z; p) designates the diagonal matrix diag (z?!,z?2,---,z?m). Then U(z) is a biproper

matrix. Similarly, using a nonsingular constant matrix V that satisfies the condition:
Vie =0 if va > 7j,

we define a transformation matrix V(z) by

V(c) = diag (z;—7) - V - diag (zi7), | (12)

which is also a biproper matrix.
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We now explain how to construct such a pair of constant matrices U and V efficiently according to
which of the four conditions (rl)—(r4) is violated by the constant matrix A? (see Proposition 11.2.1. (c)).
When (r1) is violated: In the course of checking the condition (rl) by means of the Gaussian row

elimination with column pivoting, applied to the matrix A} with rows rearranged by 7 according to

the magnitude of p;, we obtain a nonsingular matrix § of order m such that Sr(yry) =0if Il <iand
that SA® has (m — rank A?) zero vectors among its row vectors. Let H be a subset of I such that

|H| = |I| = k+ 1 and (SA*)[H,C] = O. Construct the constant matrix U as follows:

U[H,R) = S[H,R), UR~ H,H) =0, U[R— H,R - H) = Liz_p|, (13)

where I|p_ | denotes the unit matrix. Let V be the unit matrix of order n.

When (r2) is violated: In checking the condition (r2) by the Gaussian row elimination with column
pivoting, applied to the matrix A![I%,C] with rows rearranged by T according to the magnitude of p;,
we obtain a nonsingular matrix S of order |I*| such that S,(y,y = 0 if I < i and that S - A8, C)
has (|I*| — rank A}[I*, C)) zero row vectors. Let H C I? be the singleton set corresponding to a zero
row vector in S - A’[I”,C‘].. Then construct U asin (13). Let V be the unit matrix of order n.

When (r8) is violated: In checking the condition (r3) by the Gaussian column elimination with row
pivoting, applied to the matrix A*[R,J!] with columns rearranged by o according to the magnitude
of v;, we obtain a nonsingular matrix S of order |J}| such that Se(iyeqy = 0if 1 < j and that
AY[R,J%) - S has (]J?] — rank A}[R, J*)) zero column vectors. Construct the constant matrix V of

" order n in a similar (transposed) way as we constructed U in the case of (r2), namely

V[C,H] = S[C, H), V[H,C - H| =0, V[C - H,C — H] = ljc_p|. (14)

Let U be the unit matrix of order m.
When (r4) is violated: In the course of checking the condition (r4) by means of the Gaussian row
elimination with column pivoting, applied to the matrix A8[I*, J¥] with rows rearranged by T according
to the magnitude of p;, we obtain a nonsingular matrix S of order |I¥| such that Seyr(iy =001 < i
and that S-A![I*, J*] has (|/*|—rank A![I}, J¥]) zero row vectors. Let H be a subset of I® corresponding
to (k — |J*| + 1) zero row vectors in S - A*[I*, J!]. Then construct the constant matrix U in the same
way as in (13). Let V be the unit matrix of order n.
After modifying the matrix A(z) to A’(z) by (10) with U(z) and V(z) thus constructed, the set of
potentials is updated as follows. Put c(.j = deg A"»j(:c) similarly to (1). It follows from (10), (11) and (12)

that
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diag (z; —p) - A'(z) - diag (z; —7) = U - diag (z; —p) - A(z) - diag (z; —7) - V,

which, together with (2), implies

pi+7v; >ci; fori€R andje€C. (15)

We update the set of potentials to improve the estimate exploiting the fact that (15) above holds with
strict inequality for some i € R and 7 € C. Roughly speaking, we reduce the potentials of such rows or
columns without violating the admissibility. More specific description is given below according to which
condition of the four is violated.

When (rl) is violated:

, max{max(c;; — v;), max_ i = Yok} ifiel;
P = jed JE(C-J) T (16)
Pi otherwise;
’ _ ’ ’
;= f',fgig(c.'j - pi)- (17)
When (r2) is violated:
’ max{mag(cﬁ) - ), max C:]_7a(k)} ifie It
Py = J€J JE(C-J) (18)
pi otherwise;
75 rinEaR(C., Pi) (19)
When (r3) is violated:
) max{max(cﬁj - p,-),. max _ cgj - p,.(k)} if j € JY
v, o= iel ie(R-T) (20)
;5 otherwise;
Y = max(c; —v%). 21
pi = max(cl 7)) e
When (r4) is violated:
pi — B ifie H; v; if j € JY; o
pi = V= (22)
Pi otherwise, v+ 8 otherwise,
where
B =min{p. i) = Prquaery Vo(ai) T Yo( 841 (23)
min  (px +7; — ¢i;)}-
heH. €t J hj }
Exceptionally, the first term is excluded from the minimization when /! = R and the second is

excluded when J! = C.

As to the admissibility of the updated set of potentials, the following lemma holds.
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#%® 11.2.2. The updated set of potentials (p’,v') is admissible with respect to the modified matrix A’
That is, p! +‘y;- > cfj fori€ Rand j € C.
The following theorem shows that the estimate is improved by the modification described above.

TEIE 11.2.3. The following inequality holds:

Sk (A 0',7") < Bk(Asp, 7). (24)

11.2.5 Algorithm description

We have so far fixed the size k of a submatrix. It is necessary to compute §; for k = 1,2,...,r for
obtaining the Smith-McMillan form at infinity.
Before describing the whole algorithm, we should remark how we can detect §; = —oo. For a rational

function

ajzdl +agzfe 4+ ... 4 agzz:dl

1= e

(di >dg >+ > dy),

we define min-deg f(z) = d¢ — degq(z) with respect to its expression. Put dpis = min min-deg A;;(x)
J
while dmax = maxdeg A;;(z). If 6; is finite, it must satisfy 6x > k- dmin. Hence we can conclude that

i,
6 = —oo when Szk(A;p,'y) < k - dpin for some admissible (p,~).

We now summarize the algorithm for computing éx for & = 1,2,...,7(= rank A) as follows. It is
not necessary to input r, since it is computed in the procedure. Algorithm for computing 6;.(A)
(k=1,2,...)

Step 0: Compute dpin. Set k := 1. Find a set of initial potentials (p,v) which satisfies p; + v; > c;;

fori€e Rand j € C.

Step 1: Compute
k k
6 = Zpr(i) + Z'Ya(j),
i=1 1=1

where 7 and o are permutations such that p.(;) 2 pr(2) 2+ 2 Pr(m) 2nd Yo(1) 2 Yo(2) 2
2 Yo(ny- If Ek < k - dnin, then halt (at this point (k — 1) equals the rank ).
Step 2: Put
Y= {i€ R|pi > pr(ean}s I:'={i€ R|pi 2 pr(iy}
JU={G€C |7 > Yok b J={€eC| 2wk

where exceptionally I* = R and J* = C in case k = m and k = n, respectively. Put
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] lim 7P Ay (z) ifielandjeJ;
A” = r—o0o
ij
0 otherwise.

If the four conditions (rl)~(r4) in Proposition 11.2.1. are satisfied, then output ’6\,:. If at least
one condition of the four is violated, go to Step 3. If k = min(m,n), then halt. Otherwise k:=k + 1
and go to Step 1.
Step 3: Modify the matrix A(x) and the potentials as described in (16)-(22), according to which of
(r1)—(r4) is violated. Go to Step 1.
In the algorithm described above, we may start with an arbitrary set of admissible potentials. It is
desirable, however, to adopt reasonably small integers as the initial potentials.

One of the natural choices is to put

pi = maxci; fori€ R, ;=0 forjyjeC. (25)
jeC

In this case, y; = 0 for j € C throughout the computation. Hence p; for i € R always coincide
with the row degrees. Since J! = @ and J = C, the four rank conditions in the test for tightness (see
Proposition 11.2.1. ) are reduced to a couple of conditions (rl) and (r2). This algorithm will be called
the row-degree method, and is an extension of the well-known algorithm for 6, (A) of an m X n row-full
rank matrix A(z) based on the concept of row properness (Wolovich [23]).

Another natural choice is, of course, the symmetric (transposed) version of the above, i.e.,

pi =0 forie R, ;= mea})l(c.-j for j € C. (26)
3

This algorithm, however, does not behave in a symmetric manner to the row-degree method. This
is because the symmetry between rows and columns is broken in the way of modification. In fact, any
condition of the four may possibly be violated. Thus this algorithm is not the “column-degree method,”

and the primal-dual framework is not a simple extension of the Wolovich algorithm.

11.3 Experimental evaluation

11.3.1 Method

We make experiments on Sun SPARC Station 10 to evaluate the three combinatorial relaxation type
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algorithms, the primal-dual method (PD) with initial potentials given by (26), the row-degree method
(RD) and the matching method (M). All of these are implemented in C language. For comparison we also
realize the elimination method (E) in Maple (a computer algebraic system).

Our program restricts input matrices to Laurant polynomial matrices of which each entry is a poly-
nomial in ¢ and 1/z.

We provide two types of sample problems, regular pencils (P) and band matrices (B). A regular pencil

zE — F used here is generated randomly in the following way:

g with probability 232 for g = +1,42,...,+K;
2

Ei; =
0 with probability p,
- h  with probability 37 for h = £1,£2,...,£K;
ij =

0 with probability q.

We put K'=1, p=0.0625 and ¢=0.5.

On the other hand, we provide band matrices in the following way. First we put

X =diag(z;d), d= (d1,d2,...dn),

where d; is generated randomly as follows:

for =0,+1,+2,...,+L.

1
d; =€ with babilit
wi proally2L+1

With a lower bidiagonal matrix

1
1 1
P=
1 1
z
and an upper bidiagonal matrix
1 1
Q= .
1 z
1

we construct a pentadiagonal (band) matrix A(z) = P2XQ?. We put L = 10. Obviously, both P and
Q are biproper, and hence the Smith-McMillan form at infinity of A(z) is the same as that of X, which

is easily obtained by sorting (d;,...,dn). Therefore, we know §;(A) in advance and we use this type of
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matrices as sample data to encertain that our program returns correct answers.
We measure CPU time and the number of modifications (for PD, RD, and M) to evaluate each

algorithm.

11.3.2 Results

Before we report experimental results, we should note that the time complexity is V(rmn max(m,n))
if (dmax — dmin) is bounded by a constant. In fact, we have (dmax — dmin) < 1 with the pencils and

(dmax = dmin) < 2L + 2 with the band matrices. Therefore the time complexity is V(rmn max(m,n)).

#£ 1 Statistics over 10 pencils of each size. CPU time in seconds and the number

of modifications show the mean values of 10 iterations (K = 1l,p = 0.0625,q =
0.5;Sun SPARC Station 10).
n
Algorithms
: 8 16 32 64 128
oD CPU time (s) 6.67 x1073 | 6.17 x10? | 8.72x 107! | 7.73 S
Stand. Dev. 8.61 x10~3 | 8.05x10™3 | 1.77x 1072 | 1.20 x 107} —_
# Moaiﬁcations 0.3 0.9 1.0 0.6 —
"D CPU time (s) 117 x10"2 | 567 x107% | 5.70 x 107! | 6.91 9.87 x 10
Stand. Dev. 8.05 x 1073 | 8.61x107% | 2,19 x1072 | 1.04 x 10~! | 5.33 x 107!
# Modifications 0.7 1.1 0.8 0.7 0.1
v CPU time (s) 1.17 x 10”2 | 6.83x 1072 | 6.62x10"! | 7.61 1.04 x 102
Stand. Dev. 8.05x107% | 946 x107% | 3.04 x10"% | 1.41 x107! | 4.56 x 10~!
# Modifications 0.1 0.3 0.2 0.1 0.0
. CPU time (s) 3.23 4.41 x 10 1.10 x 103 — —
Stand. Dev. 4.83 x 10”1 | 4.94 2.11 x 10 — —

Tables 1 and 2 show the results for the pencils and the band matrices, respectively. Algorithm
(PD) failed for n = 128 because of a memory shortage. The experiments with algorithm (E) for
large n were given up because it would have taken many days.

It is observed in our experiment that for n X n matrix A, approximately V(n®*) time is needed
by each of combinatorial relaxation algorithm, while the worst case time complexity is V(n*) since
rank A = n both in problem type (P) and in (B). On the other hand, the elimination method
takes approximately V(n*) time in our experiment, whereas the number of operations on rational

functions is. V(n®).
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% 2 Statistics over 10 band matrices of each size. CPU time in seconds and the number of
modifications show the mean values of 10 iterations (L = 10; Sun SPARC Station 10).

n
Algorithms
8 16 32 64 128
pp | CPU time (s) 1.50 x 1072 | 1.03 x 10~} | 9.92x 107! | 1.19 x 10 —
Stand. Dev. 527 x 1073 | 1.31 x 1072 | 354 x1072 | 3.22 x 10~} —
# Modifications 6.5 12.1 15.9 18.1 —
"D CPU time (s) 150 x 102 | 9.83 x 1072 | 1.01 1.11 x 10 1.41 x 102
Stand. Dev. 527 x 1073 | 1.46 x 10~2 | 492 x1072% | 2,03 x 10”7} | 7.38 x 10~}
# Modifications 5.5 11.9 15.7 18.1 18.9
" CPU time (s) 1.50 x 102 | 113 x 107! | 937 x 10"} | 1.04 x 10 1.35 x 102
Stand. Dev. 1.23 x107% | 189 x1072 | 281 x10"2 | 257 x 10"} | 1.81
# Modifications || 3.6 6.8 8.5 10.2 11.6
. CPU time (s) 2.92 4.52 x 10 7.65 x 102 1.28 x 104 -
Stand. Dev. 1.12 4.13 x 10 6.94 x 102 1.27 x 10% —

In the above experiment, no distinction in computing time is recognized among algorithms
(PD), (RD), and (M). Since algorithm (RD) lacks symmetry, it is natural that this algorithm
takes longer time than the other algorithms for a matrix with a special structure. For example,

let us consider

1 1 1 1
1 T z? "}
Az) = 1 z? z? z2(n-1)
1 I'n—] x?(n—l') x(n—1)2
(1)

#%& 3 CPU time in seconds and the number of modifications for the matrix A(z) of (1) with
n=186.

Algorithms || CPU time (s) | # Modifications

PD 1.67 139
RD 2.03 156
M 8.33x107* |0

The results for the matrix with n=16 are shown on Table 3.
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11.4 Conclusion

In this paper, we have proposed a primal-dual framework of combinatorial relaxation algo-
rithms for computing the maximum degree of subdeterminants. Furthermore, we have realized
combinatorial relaxation algorithms in computer program and made experiments. It turns out
that combinatorial relaxation algorithms are effective for computing the maximum degree of sub-

determinants and the index of nilpotency.
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