
Abstract:

In this paper, we first give a brief introduction to Ritt-Wu Method, then
show the posibility of doing some computations over successive algebraic ex-
tension field by Ritt-Wu method. At the end of this paper, the relation
between factorization of polynomials and the computation of primitive ele-
ment is also discussed.

3.1 Introduction to $\mathrm{R}\mathrm{i}\mathrm{t}\mathrm{t}- \mathrm{W}\mathrm{u}\mathrm{S}$

) method

Let $I\backslash ^{\nearrow}$ be a field of characteristic zero, $y_{1},$ $y_{2},$ $\cdots,$ $y_{n}$ a set of $n$ variables
with a fixed ordering $y_{1}<\cdots<y_{n}$ . The class $\mathrm{c}1_{\mathrm{S}}(f)$ of a non-zero polynomial
$f$ in the ring $I\mathrm{t}^{\nearrow}[y1, y2, \cdots, y_{n,x}]$ is defined to be the largest subscript of $y_{i}’s$

indeed occurring in $f$ if any, otherwise $0$ , and $y_{c}$ is called the main varable
of $f$ if $c=cl_{S}(f)\neq 0$ . The coefficient of the term of highest degree of the
main variable is called the initial of $f$ , denoted by Init $(f)$ .
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Let $f$ and $g$ be two polynomials in the ring $K[y_{1}, y_{2}, \cdots, y_{n}],$ $c=cl_{S}(f)\neq$

$0$ . We say that $g$ is reduced with respect to $f$ if $cls(g)<cl_{S}(f)$ or $cls(g)\geq$

$cl_{S}(f)$ but $deg_{y_{\mathbb{C}}}g<deg_{y}cf$ .

Apparently, if $g$ is not reduced with respect to $f$ , we can find $I,$ $Q,$ $R\in$

$I\backslash ^{J}[\prime y1, y_{2}, \cdots , y_{n}]$ such that

$I\cdot g=Q\cdot f+R$

with $cls(I)<cl_{S}(f)$ and $R$ reduced with respect to $f$ .

The polynomial $R$ above is called the pseudo-remainder of $g$ with
respect to $f$ , denoted by prem$(f, g)$ , and the procedure to get $R$ from $f$ and
$g$ is called pseudo-division.

Remark: In practice, in order to control the growth of the degree and
the number of terms of polynomials, we should choose the polynomial $I$ in
pseudo-division carefully.

A finite set $A$ of polynomials $A_{1},$ $A_{2},$ $\cdots,$ $A_{r}$ is called an ascending set
if $r=1$ and $A_{1}\neq 0$ or $r>1,0<cls(A_{1})<\cdots<cls(A_{r})$ and $A_{j}$ is reduced
with respect to $A_{i}$ for all $j>i$ . Furthermore, if all the polynomials of $A$

except $A_{1}$ are linear with respect to their own main variables, then it is called
quasi-linear ascending set.

If a polynomial $f$ is reduced with respect to any polynomial of an asend-
ing set $A$ , then we say it is reduced with respect to $A$ , otherwise, we can
define the pseudo-remainder prem$(f, A)$ of $f$ with respect to $A$ inductively
as

prem $(f, A_{1}, \cdots , A_{s})=p_{\Gamma}em(prem(f, A1, \cdots, AS-1), A_{S})$

For any polynomial set $\mathcal{F}$ , we denote the set of common zeros of poly-
nomials in $\mathcal{F}$ by Zero $(\mathcal{F})$ . If $G$ is another (non-zero) polynomial, we write
Zero $(\mathcal{F}/G)$ for $Zero(\mathcal{F})\backslash Zero(c)$ .

For any polynomial set $\mathcal{F}$ , we can find an ascending set $C\mathrm{f}\mathrm{r}\mathrm{o}\mathrm{n}\mathrm{l}$ the ideal
Ideal $(\mathcal{F})$ generated by the polynomials in $\mathcal{F}$ such that any polynomial of $\mathcal{F}$
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has pseudo-remainder $0$ with respect to $C$ , and so

Zero$(C/J)\subset Zero(PS)\subset Zero(C)$

where $J$ is the product of initials of plolynomials in $C$ . The ascending set
having such properties is called characteristic set of $\mathcal{F}$ .

Let $A:A_{1}(y_{1}),$ $A_{2}(y1, y_{2}),$ $\cdots$ , $A_{r}(y_{1}, \cdots, y_{r})$ be an ascending set. $A$ is
said to be irreducible if $A_{i+1}$ , as a polynomial in $I\mathrm{f}_{i}[y_{i+1}]$ , is irreducible,
where $I\backslash ^{\nearrow}0=I\{,$ $K_{i}$ is the field $K_{i-1}(\alpha_{i})$ obtained from the field $I<_{i-1}$ by the
adjunction of a root $\alpha_{i}$ of $A_{i}$ . The field $I\{_{r}$ is called successive algebraic
extension field of $I${ with adjoining polynomials $A_{1},$ $\cdots$ , $A_{r}$ or simply $A$ .

In the present paper, we will discuss some computations over such suc-
cessive algebraic extension field.

3.2 Some Computations over Successive Al-
gebraic Extenslon Field

In this section, we first discuss the computations of miminal polynomial
and primitive element based on Ritt-Wu method, then discuss the relation
between the polynomial factorization and the compuation of primitive ele-
ments.

Let $\mathrm{A}_{1}(y_{1}),$ $A_{2}(y_{2}),$ $\cdots,$ $A_{r}(yr)$ be an irrducible ascending set. As dis-
cussed in last section, we can get a successively algebraic extension field $E$

by adjoining the polynomials $A_{1}(y_{1}),$ $A_{2}(y_{2}),$ $\cdots$ , $A_{r}(y_{r})$ to the ground field
$I\backslash ^{r}’$ . In fact, we have

Proposition: $E\simeq K[y_{1}, y2, \cdots , y_{r}]/<A_{1},$ $\cdots$ , $A_{r}>$ , where $<A_{1},$ $\cdots,$ $A_{r}>$

is the ideal generated by $A_{1},$
$\cdots,$

$A_{r}$ .

So each element of $E$ can be treated as a multivariate polynimial $e(y_{1}, \cdots, y_{r})$

with $deg_{y}.\cdot e<deg_{y_{i}}A_{i}$ . And the computations in $E$ can be considered as those
of polynomials modulo $<A_{1},$ $\cdots$ , $A_{r}>$ .

Proposition: Let $A:\mathrm{A}_{1}(y_{1}),$ $A_{2}(y_{2}),$ $\cdots,$ $A_{r}(y_{r})$ be an irreducible as-
cending set, then the set of all the polynomials which have pseudo-remainder
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$0$ with respect to $A$ is a prime ideal of polynomial ring $I<[y_{1}, \cdots, y_{n}]$ under
the ordinary polynomial addition and multiplication. Furthermore, it is also
a maximal ideal if $r=n$ .

In fact,

Proposition Let $A$ be an irreducible ascending set. Then the ideal of
all the polynomials which have pseudo-remainder $0$ with respect to $A$ is the
same with the ideal generated by the polynomials of $A$ .

The above proposition tell us that it is possible to carry out the compu-
tations in $E$ by Ritt-Wu method.

Proposition Let $f(y_{1}, \cdots, y_{r}, y)$ and $g(y_{1}, \cdots, yr’ y)$ be two polynomial
over $E,$ $C$ be the characteristic set of $\mathrm{f}^{A_{1},\cdots,A_{r}},$ $f(y1, \cdots, yr’ y),$ $g(y1, \cdots, y_{r}, y)\}$

under order $y_{1}<\cdots<y_{r}<y$ . Then the polynomial of $C$ which contain-
ing only the variable $y$ is the greatest common divisor of $f(y_{1}, \cdots, y_{r}, y)$ and
$g(y_{1}, \cdots , y_{r}, y)$ over $E$ .

Proposition Let $f(y_{1}, \cdots, y_{r}, y)$ be a non-zero polynomial of $y$ over $E$ ,
then the characteristic set of $\{f(y1, \cdots, y_{\Gamma}, y), A_{1}, \cdots, A_{r}\}$ under order $y<$

$y_{1}<\cdots<y_{r}$ must contains a polynomial with only $y$ as its variable.

Let $e(y_{1}, \cdots, y_{r})$ be an element in $E$ and let $g(y_{1}, \cdots, yr’ y)=y-e(y_{1}, \cdots, y_{r})$ ,

then

Proposition Let $m(y)$ be the polynomial of $y$ in the characteristic
set of $\{g(y1, \cdots, y_{r}, y), A_{1,r}\ldots, A\}$ under ordering $y<y_{1}<\cdots<y_{r}$ . If
$m(y)=m_{1}(z)\cdots m_{t}(z)$ , then there is one and only one $m_{i}(z)$ having pseudo-
remainder $0$ with respect to the ascending set $\{A_{1}, \cdots, A_{r}, g(y_{1}, \cdots, y_{r}, y)\}$ .
In fact, this $m_{i}(z)$ is the minimal polynomial of the elment $e(y_{1}, \cdots, y_{r})$ .

As we know, any seperable finite extension is a simple extension, so

Proposition $E$ is a simple extension of $K$ .

The following proof to this proposition is belong to Van de Waerdan.
Since some facts from this proof will fit our purpose, we repeat it here.
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Proof: First we prove the proposition for two elments $\alpha,$
$\beta$ . Let $f(x)$

and $g(x)$ be the minimal polynomials of $\alpha$ and $\beta$ respectively. We take a field
in which $f(x),$ $g(x)$ split. Let the distinct zeros of $f(x)$ be $\alpha_{1}=\alpha,$ $\alpha_{2},$ $\cdot\cdot,$

$,$

$\alpha_{r}$

and let those of $g(x)$ be $\beta_{1}=\beta,$ $\beta_{2},$
$\cdots,$

$\beta_{S}$ .

For $k\neq 1$ , the equation $\alpha_{i}+x\beta_{k}=\alpha_{1}+x\beta_{1}$ has at most one root $x$ in $K$

for every $i$ and every $k\neq 1$ . If we take $c$ different from the roots of all these
linear equations, we have $\alpha_{i}+c\beta_{k}\neq\alpha_{1}+c\beta_{1}$ for every $i$ and $k\neq 1$ .

Let $\theta=\alpha_{1}+c\beta_{1}=\alpha+c\beta$ , then we can assert that $\theta$ would be a
primitive element of $K(\alpha, \beta)$ . In fact, $\beta$ satisfies the equations $g(\beta)=0$

and $f(\theta-c\beta)=f(\alpha)=0$ , with coefficients in $I<(\theta)$ . The polynomial $g(x)$ ,
$f(\theta-cx)$ have only the root $\beta$ in common by the choice of $c$ . But $\beta$ is a
simple root of $g(x)$ , therefore, $g(x)$ and $f(\theta-cx)$ have but one linear factor
$x-\beta$ in common. The coefficients of this greatest common divisor and so $\beta$

must lie in $I\{’(\theta)$ . Thus we have $I<(\alpha, \beta)=I<(\theta)$ .

This completes the proof of theorem for $r=2$ . Once it is proved for $r-$

$1(\geq 2)$ , we have $I\{’(\alpha_{1}, \cdots, \alpha_{r-1})=I<(\eta)$ and so $I<(\alpha_{1}, \cdots, \alpha_{r})=I\{’(\eta, \alpha)r=$

$I\{(\theta)$ according to the already proved part of theorem.

$i$ From the proof, we can see that,

Proposition For almost all vectors $(C_{1}, \cdots, C_{\Gamma})\in I<^{n},$ $\sum_{t}ci\alpha_{i}$ would give
a primitive element of $E$

So the task to find a primitive element for $E$ is to choose a vector
$(C_{1}, \cdots, C_{\Gamma})$ and check if it is a primive element, this is equivalent to check if
its miminal polynomial has degree $\Pi deg_{y}.\cdot A_{i}$ .

The above technique for finding the primitive elements is not new, but
each author has their own method to check the primitiveness of the element,

here we want tell the Ritt-Wu method can also fit this purpose.

$i$ From now on, we suppose we have found a primitive element $\theta$ for the
successive algebraic exension field $E$ of $I\backslash ^{\nearrow}$ and its minimal polynomial $\uparrow n(x)$ .

Without loss of generality, we can consider $E$ as an extension field of $I\backslash ’$

’
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by adjoining $m(x)$ . Let $f(y_{1}, \cdots , y_{r}, y)$ be a squarefree polynomial of variable
$y$ over $E$ , then it can be writen into the form $f(x, y)$ .

Proposition If $f(x, y)$ is irreducible over $E$ , then for almost all $c\in E(\mathrm{o}\mathrm{r}$

in $K$ ), the characteristic set of $\{m(x), f(x, y), z-(y+cx)\}$ is quasi-linear.

Proposition Suppose $f(x, y)=f_{1}(x, y)\cdots f_{\ell}(x, y)$ , where $f_{i}(x, y)$ are
irreducible polynomials over $E$ . Then for almost all integer $c\in E$ , a element
of the form $y+cx$ would be a primitive element $(0\mathrm{e}\mathrm{r}I\{)$ of the extension
fields of $E$ obtained by adjoining the polynomials $f_{i}(x, y)$ respectively.

Proposition Let $y+cx$ be the form mentioned in the above proposition,
$g_{i}(z)$ its minimal polynomial $(\mathrm{o}\mathrm{v}\mathrm{e}\mathrm{r}I\{)$ as a primitive element of the extension
field of $E$ obtained by adjoining polynomial $f_{i}(x, y)$ . Then if $g(z)$ be the
polynomial of $z$ in the characteristic set of $\{m(x), f(x, y), z-(y+cx)\}$ under
order $z<x<y$ , we have $g_{i}(z)|g(z)$ for all $i$ .

Proposition Let $g(z)$ as above. Suppose $g(z)=\Pi_{i}g_{i}’(z)$ , where $g_{i}’(z)$

are the irreducible factors of $g(z)$ over $I\{’$ , then $gcd(g_{i}’(y-cx), f(x, y))$ is an
irreducible factor of $f(x, y)$ over $E$ if it is not equal to 1. Furthermore, such
greatest common divisors can give out all the irreducible factors of $f(x, y)$

over $E$ .
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