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A problem of information geometry (differential-geometrical approach
in statistics), namely to construct an exponential family and a mixture
family on a smooth manifold in the parameter space $\ominus$ of states (density
operators) for finite quantum systems, is discussed: In $B(H^{N})(N$ by
$N$ matrix algebra), our statistical model is $S=\{\rho\in B^{++}(H^{N})=$ all
strictly positive hermitian matrices, with $\mathrm{T}\mathrm{r}\rho=1$ }, and we investigate
two families of $\rho(\theta)$ defined by

(e) $\rho(\theta)=\exp(\theta^{i}Ai^{-^{\psi}}(\theta))\theta\in\ominus=\mathrm{R}^{n}$ , $A_{i}\in\beta^{s}(H^{N})$

(m) $\rho(\theta)=\theta^{i}A_{i}+\theta^{0}A_{0}\theta\in\ominus=(0,1)^{n+1}\Sigma_{i=0}^{n}\theta^{i}=1$ ,
$A_{i}(\mathrm{T}\mathrm{r}A_{i}=1)\in B^{+}(H^{N})$

(The tensorial summation convention for repeated indices is used.)

We prove some of basic theorems known in the classical information ge-
ometry by extending the formulation to such a non-commutative smooth
manifold, and establish (1) existence of a pair of dual affine coordinate
systems in (e) and (m) indicating that these constitute a single, dually flat
manifold, (2) a projection theorem to insure the Cramer-Rao inequality
with an identification of the efficient estimator.

1. INTRODUCTION

The purpose of the present paper is to establish the answer to a question in mathematical theory of
statistics which has a rather long $\mathrm{h}\mathrm{i}\mathrm{s}\mathrm{t}_{0}\mathrm{r}\mathrm{y}[1][2][3]$ and has been informed recently to the community
of mathematical physicists by a good review article, Amari’s Differential-Geometrical Methods in
$stati_{Sti_{C}[4]}s$ . The question is situated in a central part of mathematical statistics i.e. parameter
estimation theory for a smooth manifold of probability distributions where one desires to find out
a best choice of the parameter values from given data by observation. To be concrete, two
important families of distributions which are hitherto studied intensively should be mentioned;
exponential family and mixture family.
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When a statistical physicists touches upon the above framework, specifically, upon the geometrical
aspect of the exponential fanily defined by

(e) $p(x, \theta)=\exp(\theta^{i}c_{i}(X)-\psi(\theta))(-\infty<\theta^{i}<\infty, i=1 ... n)$ , (1)

he should immediately understand the common idea that exists between the framework and the
usual statistical mechanics or statistical $\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{y}\mathrm{n}\mathrm{a}\mathrm{m}\mathrm{i}\mathrm{c}\mathrm{S}[5]$ . Let us consider the simplest example
of a one-parameter family of the manifold in (1) $S=\{p(\cdot\theta)=\exp(\theta C_{1}(X)-\psi(\theta))\}$ . In Physics,
this is the familiar Boltzmann distribution for a mechanical system with Hamiltonian $-C_{1}(x)$

immersed in a heat bath with temperature $\theta^{-1}$ , and $\psi(\theta)$ represents its free energy. Its extension
to a multi-dimensional manifold of the form (1) also appears in statistical thermodynamics, when
the mechanical system has several constants of motion other than the Hamiltonian. Even without
such constants, the form (1) may be used to improve the thermodynamic description of the system
in terms of the higher order $\mathrm{t}\mathrm{e}\mathrm{m}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e}\mathrm{S}[5]$ . In any case, the condition of normalization for
$p(x, \theta)$ (generally, in a measure space $\mu(x)$ ) is to specify the function $\psi(\theta)$ such that

$\psi(\theta)=\log\int\exp(\theta^{i}C_{i())d\mu(X)}x$ (2)

which can be identified with the (dimensionless) free-energy.

All that stated in the above is well-known, and every physicist also knows how to replace the
classical distribution (1) and the related quantity (2) by quantum mechanical expressions in terms
of generally non-commuting operators. What we are going to discuss in the sequel is a special
geometrical aspect associated with the exponential family (1) that would be totally unfamiliar to
physicists but that has been fully elucidated in ref.[4], and we aim at establishing the same aspect
in a quantum mechanical framework. For this purpose, let us first outline briefly the known
result according to Amari’s description which relates the exponential family (1) to another family
i.e. the mixture family

(m) $p(x, \theta)=\theta^{i}C_{i}(X)+\theta^{0}C_{0}(X)$ $(C_{i}(X)>0,0<\theta^{i}<1, \Sigma_{i=1}^{n}\theta^{i}<1, i=1,2\cdots n)$ (3)

$=\theta^{i}C_{i}(x)+(1-\Sigma_{i=}^{n}\theta 1i)c_{0}(X)$ , $\int C_{i}(x)d\mu(X)=1(i=0,1, , . . n)$ , (4)

satisfying the normalization $\int p(x, \theta)d\mu(X)=1$ . This is the existence of a pair of dual coor-
dinate systems $(\theta, \eta)$ by means of which the two families (e) and (m) become one and identical
distribution, and is explained below more in detail.

Case for constituting the $\mathrm{m}$-family from a given $\mathrm{e}$-family $(\mathrm{e})arrow(\mathrm{m})$ in terms of $\eta=\eta(\theta)$

An inspection of expression (1) shows that the logarithm of $p(x, \theta)$ denoted by $l(x, \theta)$ is a linear
function in $\theta’ \mathrm{s}$ except the last $\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{m}-\psi(\theta)$ which is independent of the random variable $x$ . Then,

$E[\partial_{i}\partial_{j}l(X, \theta)]$ ( $=\mathrm{m}\mathrm{i}\mathrm{n}\mathrm{u}\mathrm{s}$ of the Fisher information metric tensor $g_{ij}$ )

$=-\partial_{i}\partial_{j}\psi(\theta)$ ( $\partial_{i}$ denotes $\partial/\partial\theta^{i}$)

$E[\partial_{i}\partial_{j}l(x, \theta)\partial_{k}l(X, \theta)]=0$ because $E[\partial_{k}l(x, \theta)]=0$ .

These relations yield two important geometrical results for the $\mathrm{e}$-family, namely

$g_{ij}(\theta)=E[\partial il(_{X,\theta)}\partial jl(X, \theta)]=E[(C_{i}(X)-\partial_{i}\psi)(C_{j}(X)-\partial_{j}\psi)]=\partial_{i}\partial_{j}\psi(\theta)$ (5)
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(The $\psi$-function plays a role of the so-called potential function),

and
$\mathrm{r}_{ij^{)}}^{(e_{k}}(\theta)\equiv E[\partial_{i}\partial_{j}l(x, \theta)\partial_{k}l(x, \theta)]=^{0}$ (6)

(Coefficients of the $\mathrm{e}$-connection vanish identically).

$\mathrm{E}\mathrm{q}.(5)$ implies that, according to a theorem of Amari (Th. 3.4 in ref.[4]) by taking another basis
of the tangent space $T_{\theta}$ which is biorthogonal to the starting one such that $\langle\partial jl, \partial^{k}p\rangle=\delta_{j}^{k}$ , we can
choose a new coordinate system $\eta_{i}=\eta_{i}(\theta)=\partial_{i}\psi(\theta)(i=1,2, \cdots n)$ which together with $\theta$ forms
a pair of mutually dual coordinate systems. $\mathrm{E}\mathrm{q}.(6)$ , on the other hand, implies that the starting
coordinate is affine, which ensures (by virtue of Th.3.5 in ref. [4]) that the above new coordinate
$\eta$ is also affine in the dual system, since

$\Gamma_{ij^{)}}^{(\mathrm{e}_{k}}+\Gamma_{ikj^{)}}^{(m}=\partial_{i}g_{jk}=0$ (by the choice of the dual pair $(\theta,$ $\eta)$ ) (7)

holds. Therefore, the same but dually written family $\overline{p}(x, \eta)\equiv p(x, \theta(\eta))$ may be represented in
the form (4) with $\theta’ \mathrm{s}$ being replaced by $\eta’ \mathrm{s}$ and with an appropriately chosen set of $C_{i}(x)’ \mathrm{S}$ .

Case for constituting the $\mathrm{e}$-family from a given $\mathrm{m}$-family $(\mathrm{m})arrow(\mathrm{e})$ in terms of $\eta=\eta(\theta)$

We proceed to a similar analysis on (m), $\mathrm{e}\mathrm{q}_{\mathrm{S}}.(3)$ and (4), on the basis of two formulas corresponding
to (5) and (6) i.e.

$gij( \theta)=E[\partial il(_{X,\theta)}\partial jl(X, \theta)]=\int\frac{1}{p(x,\theta)}\partial_{ip}(x, \theta)\partial_{j}p(_{X,\theta})d\mu$

$= \int\frac{1}{p(x,\theta)}(Ci(X)-c0(X))(Cj(x)-c0(x))d\mu$ (8)

$\Gamma_{ijk}^{(m)}=E[\{\partial i\partial_{j}l(_{X,\theta)}+\partial il(x, \theta)\partial jl(x, \theta)\}\partial kl(x, \theta)]$

$= \int\frac{1}{p(x,\theta)}(\partial_{i}\partial_{jp}(X, \theta))\partial_{k}p(x, \theta)=0$ . (9)

As before, the result (8) guarantees the existence of the potential function

$\psi(\theta)\equiv\int p(x, \theta)\log p(X, \theta)d\mu$

which satisfies

$\partial_{i}\partial_{j}\psi(\theta)=\int\frac{1}{p(x,\theta)}(C_{i}(x)-C0(_{X)})(Cj(X)-c\mathrm{o}(x))d\mu=g_{ij}(\theta))$ (10)

indicating that the new coordinate $\eta(\eta_{i}\equiv\partial_{i}\psi)$ together with $\theta$ forms a pair of dual coordinate
systems. Also, the result (9) assures that this $\eta$ must be an affine coordinate for the dually
written family $\overline{p}(x, \eta)\equiv p(x, \theta(\eta))$ to be represented as in (1), namely

$\overline{p}(x, \eta)=\exp(\eta_{i}\overline{C}_{i}(x)-\psi(\eta))$ with some $\overline{C}_{i}(x)$ and $\overline{\psi}(\eta)$ .

From the above two-fold account, therefore, it can be observed that we are dealing with just a
single, smooth and flat manifold of distributions $S=\{p(x)\}$ which is represented merely in two
different coordinates. Our task in this paper, then, is to show the precisely same geometrical
structure in non-commutative algebras. This analysis is contained in the next two sections, and
the last section is devoted to the problem of estimation bound in quantum parameter-estimation
theory.
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2. QUANTUM STATISTICAL FORMULATION WITH CANON-
ICAL METRIC

The first attempt to extend the Riemannian metric structure for information geometry to a quan-
tum (non-commutative)framework was made by Ingarden et al [7] who noticed that the classical
expression (5), in its first equality, for the information metric tensor is inapplicable but that the
following expression still holds

$gij(\theta)---E(\partial i\partial j\log\rho)(\neq E(\partial i\log\rho\partial_{j}\log\rho))$ . (11)

They were able to remedy the unequated expression by means of an expansion formula for the
exponential operator $\exp\{A(\theta)-\log(\mathrm{T}\mathrm{r}e(\theta)A)\}$ such that

$g_{ij}( \theta)=\int_{0}^{1}d\lambda\langle e^{-}(\lambda A\partial_{i}A-\langle\partial_{i}A\rangle)e(\lambda A\partial_{j}A-\langle\partial jA\rangle)\rangle$ (12)

where the usual notation $\langle\cdot\rangle\equiv \mathrm{T}\mathrm{r}(\rho\cdot)$ is used in place of $E(\cdot)$ for a quantum-statistical expectation.
The expression of the right-hand side in (12) was frequently used first in Kubo’s $\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{y}[8]$ , and
its scalar-product nature was explicitly exploited in Mori’s $\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{k}[9]$ i.e.

$\int_{0}^{1}d\lambda \mathrm{T}\mathrm{r}(e^{()A}X1-\lambda e^{\lambda A}Y)=\int_{0}^{1}d\lambda \mathrm{T}\mathrm{r}(e-\lambda)AY(1e^{\lambda}xA)$ , (13)

which is obtained by a change of integration variable $\lambdaarrow 1-\lambda$ and by virtue of the identity
$\mathrm{T}\mathrm{r}(XYZ)=\mathrm{T}\mathrm{r}(Yzx)$ . We shall denote the above expression $\mathrm{b}\mathrm{y}\ll X,$ $Y\gg \mathrm{i}\mathrm{n}$ contrast with the
Hilbert-Schmidt inner product $\langle$ X, $Y\rangle$ $=\mathrm{T}\mathrm{r}(XY)$ for all $X,$ $Y\in B^{s}(H)$ (and also its complexitized
generalization). Sometimes it is called Kubo-Mori/Bogoliubov inner-product. We prefer
the naming canonical inner-product for this and canonical metric for the metric induced by this
product. The reason will be made clear later.

An extensive study of the geometry in quantum statistics involving this inner product has been
made recently by $\mathrm{P}\mathrm{e}\mathrm{t}\mathrm{Z}[10]$ . Our present paper certainly has an intimate relation to this work
and $\mathrm{a}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}[11]$ : On reading carefully, we find that his context does not include a comprehensive
analysis of Amari’s notion of duality, to which all of our efforts will be devoted for elucidating the
points (in particular, the point stated in the last section of ref. [10]).

With above remarks about the previous papers important for us, we now state our formulation
of the problem as follows. Our object statistical model $S$ is a $C^{\infty}$ manifold in the parameter
space $\ominus(\theta^{1}, \theta^{2}, \cdots, \theta^{n})$ of all $N$-dimensional, invertible density matrices in $g++(H^{N})$ , and define
an exponential family

$(e)\rho(\theta)=\exp(\theta^{i}A_{i}-\psi(\theta))$ , $A_{i}\in B^{s}(H^{N})$ all hermitians $\in B(H^{N})$

with $\psi(\theta)=\log(\mathrm{T}\mathrm{r}e^{\theta^{i}A}:)$ for $\mathrm{T}\mathrm{r}\rho(\theta)=1$ , where the $\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{e}\ominus \mathrm{i}\mathrm{s}$ the open set $\mathrm{R}^{n}$ , (14)

also a mixture family

$(m)\rho(\theta)=\theta^{i}A_{i}+(1-\Sigma_{i=1}^{n}\theta^{i})A_{0}$ , $A_{i}\in B^{+}(H^{N})$ , $(i=0,1, \cdots, n)$

with $\mathrm{T}\mathrm{r}A_{i}(i=0,1, \cdots, n)=1$ , where the space $\ominus$ is the open set $(0,1)^{n},$ $\sum_{i=1}^{n}\theta^{i}<1$ . (15)

55



For simplicity, our analysis is restricted to real fields in the algebra, where the dimensionality $n$

of the parameter space must be $n \leq\frac{1}{2}N(N+1)-1$ (cf. ref.[6]). Then, the problem is to answer
to the question whether a pair of dual coordinate systems $(\theta, \eta)$ exists in the family (e) or (m),
whether these coordinates are affine, and finally whether these two families are identical with each
other. The affirmative answers should be given in parallel with the analysis outlined in Section
1 for the classical formulation.

First we show an essential ingredient about non-commutative differentiations which distinguish
the operation on $c$-number and on matrix-valued manifolds: if $X(\theta)$ denotes a $C^{\infty}$ function in a
commutative manifold, the meaning of partial derivation $\partial_{i}X(\theta)$ is well-known to satisfy locally
$\partial_{j}\partial_{i}X(\theta)=\partial_{i}\partial_{j}X(\theta)$ . This can be modified, once $X(\theta)$ belongs to a matrix manifold $S(\subset$

$B(H^{N}))$ , such that only the commutative part of derivatives with $X(\theta)$ satisfies this relation. Our
prescription for this problem is given in ref. [6] and summarized as follows.

Suppose that $X(\theta)$ is hermitian and invertible for every fixed values of $\theta$ . $Then_{f}$ a partial
differentiation $\partial_{i}$ on $X(\theta)$ should be replaced by

$\delta_{i}X=\partial_{i}X+[X, \triangle_{i}]$ , $\partial_{i}X\in C(X)$ , $\sqrt{-1}\triangle_{i}\in B^{s}(H^{N})$ , (16)

where $C(X)$ denotes the commutant of $Xi.e$ . $C(X)=\{A\in B(H^{N}), [A, X]=0\}$ and [X, $\triangle_{i}$ ] $\in$

$C(X)^{\perp}with$ respect to the Hilbert-Schmidt inner product: Representation (16) exhibits a unique
orthogonal decomposition of $\delta_{\mathfrak{i}}X$ by this inner product into a commutative part and a commutator
part with $X$ .

The $n$-tuple $(\delta_{1}, \delta_{2}, \cdots\delta_{n})$ forms a vector of super-operators on $S$ (a basis of the non-commutative
tangent space $T_{\theta}$ ) whose basic property reads

i) it is a covariant vector: by a $c$-number transformation of parameter $\thetaarrow\overline{\theta}$

$\delta_{i}=\frac{\partial\overline{\theta}^{j}}{\partial\theta^{i}}\overline{\delta}_{j}$ (more precisely, $\partial_{i}=\frac{\partial\overline{\theta}^{j}}{\partial\theta^{i}}\overline{\partial}_{j}$ and $\triangle_{i}=\frac{\partial\overline{\theta}^{j}}{\partial\theta^{i}}\triangle_{j}-$ hold) (17)

ii) derivation property under a fixed $C(X)$ with some $X\in B^{S}(HN)$

$\delta_{i}(c_{1}X_{1}+c_{2}X_{2})=c_{1}\delta_{i}x1+c_{2}\delta_{i}X_{2}$ ( $c_{1,2}$ are $c$ number constants)

$\delta_{i}(X_{1}X_{2})=(\delta_{i}x_{1})x_{2}+X_{1}(\delta_{i}x_{2})$ (18)

\"ui) for any differentiable function of $X$ i.e. $F(X)$ , together with (16),

$\delta_{i}F(X)=\partial_{i}F(X)+[F(X), \triangle_{i}]$ , $\partial_{i}F(X)\in C(X)$ (19)

implying that the commutativity holds for $\partial_{i^{\mathrm{S}};}’\partial_{i}\partial_{j}=\partial_{j}\partial_{i}$ .

iv)
$\delta_{i}\delta_{jj}X=\partial_{i}\partial X+[\partial_{i}X, \triangle_{j}]+[\partial jx, \triangle i]+[x, \partial_{i}\triangle j]+[[X, \triangle i],$ $\triangle_{j}]$ (20)

and hence
$\delta_{i}\delta_{j}-\delta_{ji}\delta=[\cdot, \Sigma_{ij}]$

where
$\Sigma_{ij}=\partial_{i}\triangle j-\partial_{j}\triangle_{i}-[\triangle_{i}, \triangle j]$ (21)

which characterizes the non-commutativity of the derivation $\delta_{i^{\mathrm{S}}}’$ .
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We now have our central proposition for connecting a derivative of a positive hermitian and its
logarithmic derivative.

Proposition 1. If $X(\theta)(\in S)$ is a strictly positive hermitian ( $\in B^{++}(H^{N})$ , the two kinds of
derivatives $\delta_{i}X$ and $\delta_{i}\log X$ are related through

$\delta_{i}X=\int_{0}^{1}d\lambda X^{1-}\lambda(\delta_{i}\log X)x\lambda=\int_{0}1)d\lambda X^{\lambda}(\delta i\log Xx1-\lambda$ . (22)

When applied this proposition to an invertible density matrix $\rho$ , we immediately obtain, for the
question of Ingarden et al. in eq.(ll),

Proposition 2. The tensor $g_{ij}(\theta)$ of the canonical metric for the density matrix $\rho(\in S)$ , which
is defined by

$gij(\theta)=\langle\delta i\log\rho, \delta_{j\rho}\rangle(=\langle\delta_{i}\rho, \delta_{j}\log\rho\rangle)$ ,

can be written as
$g_{ij}( \theta)=\int_{0}^{1}d\lambda \mathrm{T}\mathrm{r}(^{1-\lambda}\rho(\delta_{i}\log\rho)_{\beta}\lambda(\delta j\log\rho))$

$=\ll\delta_{i}\log\rho,$ $\delta j\log\rho\gg$ $(=g_{ji}(\theta))$ . (23)

Proof of (22). All what we need is to relate $\delta_{i}X$ in (16) and $\delta_{i}\log X$ in (19) (i.e. $F(X)\equiv\log X$ ).
For this we can use

[X, $\triangle$] $= \int_{0}^{1}d\lambda X\lambda[\log x, \triangle]X^{1\lambda}-$

obtainable from the integration of both sides of the identity $\frac{d}{d\lambda}(X^{\lambda}\triangle x-\lambda)=X^{\lambda}[\log X, \triangle]X^{-}\lambda$

from $\lambda=0$ to $\lambda=1$ .

As to Proposition 2, we should remark that the starting definition of the canonical metric,
$\langle\delta_{i}\log\rho, \delta j\rho\rangle$ , stems from a more general scope of dual metrics which we will discuss in the next
section (cf. ref.[6]).

Combining Proposition 2 with property iv) for a repeated derivation $\delta_{i}\delta_{j}$ , we have, for answering
to the question in (11),

Theorem 1. The canonical metric can be written as

$gij(\theta)=-\langle\delta_{i}\delta j\log\rho(\theta)\rangle=\ll\delta i\log\rho,$ $\delta j\log\rho\gg$ , (24)

where the derivation $\delta_{i}$ on the matrix space is defined in (16) or (19).

Proof. Using iv) with $X=\log\rho$ , we compute $\langle\rho, \delta_{i}\delta_{j}\log\rho\rangle$ to obtain

$\mathrm{T}\mathrm{r}(\rho\delta_{ij}\delta\log\rho)=\mathrm{T}\mathrm{r}\rho\partial i\partial_{j}\log\rho+\mathrm{T}\mathrm{r}\rho[[\log\rho, \triangle i],$ $\triangle_{j}]$

(the rest three terms in (20) vanish because $\partial_{iij}X,$$\partial\triangle$ etc. $\in C(\rho)$ )

$=-\mathrm{T}\mathrm{r}\partial i\log\rho\partial_{j}\rho-\mathrm{T}\mathrm{r}[\log\rho, \triangle i][\rho, \triangle_{j}]=-\langle\delta i\log\rho, \delta j\rho\rangle$ .

It should be remarked that the above two propositions and hence Theorem 1 have the validity
under very general conditions: it does not require the affine entrance of the parameter $\theta$ in the
exponential operators. This remark holds also to the following basic theorem about the Umegaki
relative entropy, namely
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Theorem 2. Let $D(\rho, \sigma)$ denotes the relative entropy $\mathrm{T}\mathrm{r}\rho(\log\rho-\log\sigma)(\rho, \sigma\in S)$ . Then,

$D( \rho, \rho+d\rho)=D(\rho+d\rho, \rho)=\frac{1}{2}g_{ij}(\theta)d\theta^{i}d\theta^{j}+O(d\theta^{3})$

where
$d\rho=\delta_{i\rho}d\theta^{i}$ . (25)

The proof was given in refs.[7] and [12]. Thus, the general validity of the context in this section is
the very reason of our naming canonical metric rather than Kubo-Mori/Bogoliubov. Discussions
about non-canonical metrics must be postponed for later publications.

3. THE MAIN THEOREMS

Two theorems to be presented, Theorem 3 and 4, correspond to Amari’s Th.3.4 and 3.5, respec-
tively, adapted to the present non-commutative version.

Definition 1. For a given basis vector $\{\delta_{i}\}$ in the tangent space $T_{\theta}$ , another basis vector $\{\delta^{i}\}$

which satisfies
$\langle\delta_{i}\rho, \delta^{j}\log\rho\rangle=\ll\delta_{i}\log\rho,$ $\delta j\log\rho\gg=\delta_{i}^{j}(\mathrm{K}\mathrm{r}\mathrm{o}\mathrm{n}\mathrm{e}\mathrm{c}\mathrm{k}\mathrm{e}\mathrm{r}\delta)$ (26)

is said to be biorthogonal to $\{\delta_{i}\}$ . Then, this $\{\delta_{i}\}$ is biorthogonal to $\{\delta^{i}\}$ so that the relation
is mutual. (The $\delta_{i^{\mathrm{S}}}$

’ transform covariantly, whereas $\delta^{i}’ \mathrm{s}$ do contravariantly, hence, $\{\delta^{i}\}$ may be
called a basis of cotangent space denoted by $T_{\theta}^{*}.$ ) The biorthogonal bases exist in $S$ as far as the
metric $g_{ij}$ is non-degenerate, since then

$\delta^{j}=g^{jk}\delta_{k}$ where $g^{jk}=(G^{-1})^{jk}$ with $G=(g_{ij})$ . (27)

A new coordinate system { $\eta_{i},$ $\eta=\eta(\theta)$ and $\theta=\theta(\eta)$ } by which $\{\delta_{i}\}$ is transformed into $\{\delta^{i}\}$ and
conversely, namely

$\delta_{i}=\frac{\partial\eta_{k}}{\partial\theta^{i}}\delta^{k}$ and $\delta^{i}=\frac{\partial\theta^{k}}{\partial\eta_{i}}\delta_{k}$ , (28)

is said to be dual to the original coordinate system $\{\theta^{i}\}$ , and by virtue of its mutuality, the two
systems are said to be mutually dual.

Theorem 3. A necessary and sufficient condition for a pair of dual coordinate systems $(\theta, \eta)$

to exist in the smooth manifold $S$ with a non-degenerate metric is that at least one of the metric
tensor $g_{ij}(\theta)$ or $g^{ij}(\eta)$ can be given in terms of a scalar function $\psi(\theta)$ or $\phi(\eta)$ (called the potential
function) by

$g_{ij}( \theta)=\frac{\partial^{2}\psi}{\partial\theta^{i}\partial\theta^{j}}$ , or $g^{ij}( \eta)=\frac{\partial^{2}\phi}{\partial\eta_{i}\partial\eta_{j}}$ , (29)

and once this is satisfied, the other is automatically satisfied by the Legendre transformation

$\eta_{i}=\frac{\partial\psi}{\partial\theta^{i}}$ or $\theta^{i}=\frac{\partial\psi}{\partial\eta_{i}}$ with the identity $\psi(\theta)+\phi(\eta)-\theta^{i}\eta_{i}=0$ . (30)

Proof of this theorem is precisely same as that provided by Amari for his Th. 3.4 in ref.[4].
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Definition 2.* Given a Riemaniann metric $g_{ij}(\theta)$ in the smooth manifold $S$ in terms of two
differentiable functions $L(\rho)$ and $R(\rho)$ of $\rho=\rho(\theta)$ such that

$gij(\theta)=\langle\delta_{i}L(\rho), \delta jR(\rho)\rangle$ $(=\mathrm{T}\mathrm{r}\delta_{i}L(\rho)\delta_{j}R(\rho))=\langle\delta iR(\rho), \delta jL(\rho)\rangle$ . (31)

A coefficient of the affine connection associated with $L$ and that associated with $R$ is defined,
respectively, by

$\Gamma_{ijk}^{L}(\theta)=\langle\delta j\delta iL(\rho), \delta_{k}R(\rho)\rangle$ , $\Gamma_{ijk}^{R}(\theta)=\langle\delta j\delta iR(\rho), \delta_{k}L(\rho)\rangle$ , (32)

which satisfy
$\partial_{ig_{jk}}(\theta)=\Gamma^{L}(ijk)\theta+\Gamma_{ik}^{R}(j\theta)$ . (33)

These are called the dual affine connections with respect to the Riemannian metric $g_{ij}(\theta)$ . Best
example of such is the $\alpha-$ connection with respect to the Fisher metric in the classical framework
discussed in ref.[4] (cf. ref.[6] for the non-commutative extension). A vanishing of $\Gamma_{ijk}^{L}(\theta)$ for all
$\dot{i},j,$ $k$ implies that the coordinate $\theta$ along a path satisfies $\ddot{\theta}=0$ whose solution is a geodesic with
respect to the metric $g_{ij}$ , and the (every component of) $\theta$ is called an $L$-affine coordinate (or, the
manifold $S$ is $L$-flat with respect to $g_{ij}$ ).

Theorem 4. Suppose that the manifold $S$ is equipped with a Riemannian metric $g_{ij}(\theta)$ as
identified in Definition 2 i.e. in the form (31), and that the coordinate $\theta$ is $L$-affine, then there
exists in $S$ a pair of dual coordinate systems $(\theta, \eta)$ such that the $\theta$ is $L$-affine and the $\eta$ is R-affine
coordinate system.

Before going into proof of this theorem, it would be worthwhile to remark about the problem
of torsion (Amari’s procedure of proving his Th.3.5 assumes a torsion-free manifold, and hence
cannot be applied here straightforwardly). Consider the two expressions of connections $\Gamma_{ijk}^{L}(\theta)$

and $\Gamma_{ijk}^{R}(\theta)$ in (32), where these are not in general symmetric with respect to the first two indices
$i$ and $j$ because of the non-commutativity of $\delta_{i}$ and $\delta_{j}$ indicated in (20).

Definition 3. The torsion $S_{ijk}^{L,R}$ associated with $\Gamma_{ijk}^{L,R}$ is defined by

$s_{ijk}^{L,R}=\Gamma^{L,R}-ijk\Gamma^{L}\mathrm{j}i’ kR$ . (34)

Lemma. The two torsions associated with $L(\rho)$ and $R(\rho)$ are given in terms of $\triangle_{i^{\mathrm{S}}}$
’ in (20) as

follows.

$s_{ijk}^{L}=\mathrm{T}\mathrm{r}[L(\rho), [\triangle_{i}, \triangle j]][R(\rho), \triangle_{k}]$ , $s_{ijk}^{R}=\mathrm{T}\mathrm{r}[R(\rho), [\triangle_{i}, \triangle j]][L(\rho), \triangle_{k}]$ . (35)

When both $L(\rho)$ and $R(\rho)$ belong to $C(\rho)$ for a fixed value of $\theta$ , then these are identical to each
other by virtue of $[L(\rho), R(\rho)]=0$ , i.e.

$S_{ijk}^{L}=S^{R}ijk$ . (36)

This Lemma can be proved straightforwardly by using the basic property of non-commutative
derivations iv) to compute $\Gamma_{ijk}^{L,R}$ .

The identity (36) yields now an important result which we list in

$*$ We avoid the standard definition of connection in terms of covariant derivatives which is stin not yet fully

established on non-commutative manifolds.
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Theorem 5. If the manifold $S$ of density matrices $\rho(\theta)$ is $L$ -torsion free $(S_{ijk}^{L}=0\forall\dot{i}, j, k)$ , then
it is also $R$-torsion free. In other words, if $\Gamma_{ijk}^{L}=\Gamma_{jik}^{L}$ holds for all $i,$ $j,$ $k’ \mathrm{s}$ , then also $\Gamma_{ijk}^{R}=\Gamma^{R}jik$ .

Proof of Theorem 4. The condition that the coordinate $\theta$ is $L$-affine means $\Gamma_{ijk}^{L}=0$ for all
$\dot{i},j,$

$k’ \mathrm{s}$ , and of course $S_{ijk}^{L}=0$ . Hence, also $S_{ijk}^{R}=0$ which yields the symmetry $\Gamma_{ijk}^{R}=\Gamma_{jik}^{R}$ . By
virtue of the duality relation (33),

$\partial_{igjk}(\theta)=\Gamma_{ik}^{R}(j)\theta=\Gamma_{k}R\partial ij=kgji(\theta)$ , or $\partial_{igkj}=\partial_{k}gji$

which shows the existence of another coordinate system $\eta$ such that

$g_{ij}= \frac{\partial\eta_{j}}{\partial\theta^{i}}=\frac{\partial\eta_{i}}{\partial\theta^{j}}$ (because $g_{ij}=g_{ji}$ ).

Thus, there should exist a scalar function $\psi(\theta)$ such that $g_{ij}(\theta)=\partial_{i}\partial_{j}\psi(\theta)$ i.e. the potential
function. From Theorem 3, therefore, the two coordinate systems $(\theta, \eta)$ in which the basis of
$\eta$ is chosen as biorthogonal to $\delta_{i^{\mathrm{S}}}$

’ are a pair of dual coordinate systems, and also this $\eta$ becomes
the $R$-affine coordinate.

It is now possible to examine our problem about non-commutative exponential and mixture fam-
ilies, and to get an affirmative answer to the starting questions at the beginning.

Theorem 6. A pair of dual affine coordinate systems exists both in the $\mathrm{e}$-family (14) and in
the $\mathrm{m}$-family (15).

Proof. First, we assign
$L(\rho)=\log\rho$ , $R(\rho)=\rho$ (37)

to the exponential family, and
$L(\rho)=\rho$ , $R(\rho)=\log\rho$ (38)

to the mixture family. The reason for this assignment may be seen from a more general setting of
$\alpha$-family, $L( \rho)=L^{\alpha}(\rho)\equiv\frac{2}{1-\alpha}(\rho^{\frac{1-\alpha}{2}}-1)$ and $R( \rho)=L^{-\alpha}(\rho)\equiv\frac{2}{1+\alpha}(\rho^{\frac{1+\alpha}{2}}-1)$ , a central object

in Amari’s context [4] (cf. ref.[6] for the non-commutative extension). Expression (37) is reduced
by taking the limit $\alphaarrow 1$ , while (38) by the limit $\alphaarrow-1$ , yielding the common canonical metric.

Case for the exponential family (e) $\log\rho=\theta^{i}A_{i}-\psi(\theta)$ in (14).

For the $c$-number part, $\psi(\theta)=\mathrm{l}\mathrm{o}\mathrm{g}\mathrm{T}\mathrm{r}e^{\theta^{i}}A_{i}$ yields

$\partial_{i}\psi(\theta)=\langle A_{i}\rangle$ , and $\partial_{i}\partial_{j}\psi(\theta)=\int_{0}^{1}\lambda\langle\rho^{-\lambda}Ai\rho^{\lambda}A_{j}\rangle-\langle A_{i}\rangle\langle A_{j}\rangle$

$=\ll A_{i}-\langle Ai\rangle,$ $Aj-\langle Aj\rangle\gg$ . (39)

For the non-commutative part, on the other hand, the differentiation can be performed in two
ways: one way is just by setting

$\delta_{i}(\theta^{j}A_{j})=A_{i}$ $(= \lim_{\epsilonarrow 0}\frac{1}{\epsilon}(\theta+\epsilon-\theta)A_{i})$ , (40)

and the other way is

$\delta_{i}(\theta^{j}A_{j})=_{\mathrm{P}^{\mathrm{r}\mathrm{o}}\mathrm{j}(}A_{i})|c(\rho)+[\theta jAj, \triangle i]=A_{i}^{0}+[\log\rho, \triangle_{i}]$ (41)

in accordance with the prescription (16). In (41), $A_{i}^{0}$ stands for proj $(Ai)|c(\rho)$ which means the
diagonal part of $A_{i}$ in the $\rho$-diagonal representation, satisfying $\langle A_{i}^{0}\rangle=\langle A_{i}\rangle$ . Hence expression
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(41) just yields the decomposition of $A_{i}$ into the diagonal and off-diagonal parts with respect to
this represent ation.

We obtain, by equating (40) and (41),

$[\log\rho, \triangle_{i}]=A_{i}-A^{0}i$
’

(42)

which is inserted into the expression of the Riemannian metric

$gij(\theta)=\ll\delta i\log\rho,$ $\delta j\log\rho\gg$

$=\mathrm{T}\mathrm{r}\rho(A_{i^{-}}^{0}\langle A_{i}\rangle)(A_{j}^{0_{-}}\langle A_{j}\rangle)+\ll[\log\rho, \triangle i],$ $[\log\rho, \triangle_{j}]\gg$

$=\mathrm{T}\mathrm{r}\rho(A_{i^{-}}^{0}\langle A_{i}\rangle)(A_{j}^{0}-\langle A_{j}\rangle)+\ll A_{i}-A0Aj-i’ A0\gg j$

$=\ll A_{i}-\langle A_{i}\rangle,$ $A_{j}-\langle A_{j}\rangle\gg$ (because $A_{i}^{0}-\langle A_{i}\rangle\perp A_{i}-A_{i}^{0}$ in both $\langle\rangle$ and $\ll\gg$ )

$=\partial_{i}\partial_{j}\psi(\theta)$ from (39). (43)

Therefore, there should exist a pair of dual coordinate systems $(\theta, \eta)$ . That the coordinate $\theta$ is
affine can be assured from (40) i.e. $\delta j\delta_{i}\log\rho=-\partial i\partial j\psi(\theta)$ so that $\Gamma_{ij^{)}}^{(\mathrm{e}_{k}}=\langle\delta_{j}\delta_{i}\log\rho, \delta k\rho\rangle=$

$-g_{ij}(\theta)\mathrm{T}\mathrm{r}\delta_{k}\rho=0$ . Thus, the pair of dual coordinate systems $(\theta, \eta=\partial\psi)$ is $\mathrm{e}$-affine for $\theta$ and
$\mathrm{m}$-affine for $\eta$ , implying that $\overline{\rho}(\eta)\equiv\rho(\theta(\eta))$ may be represented as an $\mathrm{m}$-family. The problem of
precise identification of this $\overline{\rho}(\eta)$ with the form of $\mathrm{m}$-family (15) will be treated separately after
the reverse analysis $(\mathrm{m})arrow(\mathrm{e})$ .

Case for the mixture family (m) $\rho=\theta^{i}A_{i}+(1-\Sigma\theta^{i})A_{0}$ in (15).

Consider a scalar function $\psi(\theta)$ defined by

$\psi(\theta)=\mathrm{T}\mathrm{r}\rho(\theta)\log\rho(\theta)$ (minus of the von Neumann entropy).

Then, $\partial_{i}\psi(\theta)=^{\mathrm{n}((}\delta_{i}\rho\theta))\log\rho(\theta)+\mathrm{T}\mathrm{r}\rho(\theta)\delta i\log\rho(\theta)$

$=\mathrm{T}\mathrm{r}(\delta_{i\rho}(\theta))\log\rho(\theta)=\mathrm{T}\mathrm{r}(Ai-A_{0)(\theta)}\log\rho$ ,

because $\mathrm{T}\mathrm{r}\rho(\theta)\delta i\log\rho(\theta)=\mathrm{T}\mathrm{r}\rho(\theta)\partial i\log\rho(\theta)+\mathrm{T}\mathrm{r}\rho(\theta)[\log\rho(\theta), \triangle i]=\mathrm{T}\mathrm{r}\delta i\rho(\theta)=0$.

Consequently, $\partial_{i}\partial_{j}\psi(\theta)=\mathrm{T}\mathrm{r}(\delta i\rho(\theta))\delta_{j}\log\rho(\theta)(\delta_{\mathrm{j}}\delta i\rho(\theta)=\delta_{j}(Ai-A_{0})=0)$

$=\ll\delta_{i}\log\rho(\theta),$ $\delta j\log\rho(\theta)\gg$ (44)

which means $\partial_{i}\partial_{j}\psi(\theta)=g_{ij}(\theta)$ that $\psi(\theta)$ is the potential function, and also $\Gamma_{ij}^{(m_{k})}=\langle\delta_{j}\delta_{i}\rho, \delta_{k}\log\rho\rangle=$

$0$ . Therefore, again $(\theta, \eta=\partial\psi)$ is $\mathrm{m}$-affine for $\theta$ and $\mathrm{e}$-affine for $\eta$ so that $\overline{\rho}(\eta)\equiv\rho(\theta(\eta))$ may be
represented as an e-family.

Theorem 7 Bijective property of the dual transformation between (14) and (15). Let
$\mathrm{H}(\eta)=\mathrm{H}(\eta_{1}, \cdots\eta_{n})$ denote the image of the parameter space $\ominus(\theta^{1}, \cdots\theta^{n})$ mapped by the dual
transformation $\thetaarrow\eta;\eta_{i}=\partial_{i}\psi(\theta)$ and $\partial_{i}\partial_{j}\psi(\theta)=g_{ij}(\theta)$ with $G(\theta)=(g_{ij}(\theta))>0$ . Then, the
$\mathrm{m}\mathrm{a}\mathrm{p}\mathrm{p}\mathrm{i}\mathrm{n}\mathrm{g}\ominusarrow \mathrm{H}$ is $\mathrm{o}\mathrm{n}\mathrm{e}- \mathrm{t}_{\mathrm{o}^{-}\mathrm{o}\mathrm{n}\mathrm{e}}$ , and the image $\mathrm{H}$ can be identified with the parameter space of
the inverse dual transformation $\etaarrow\theta$ ; $\theta^{i}=\partial^{i}\phi(\eta)$ and $\partial^{i}\partial^{j}\phi(\eta)=g^{ij}(\eta),$ $(g^{ij})=G^{-1}$ , with the
Legendre identity $\psi(\theta)+\phi(\eta)-\theta^{i}\eta_{i}=0$ so that the mapping is a bijection between $\ominus=\mathrm{R}^{n}$ in (e)
$\mathrm{a}\mathrm{n}\mathrm{d}\ominus=(0,1)^{n}$ , $\Sigma_{i=1}^{n}\eta<1$ , in (m).

Proof. Consider first the $\mathrm{e}$-family (14) whose parameter space $\ominus$ is $\mathrm{R}^{n}$ . By Theorem 6, we
know that every density matrix $\rho(\theta)$ can be represented in the form $\eta_{i}A^{i}+B$ with a fixed set
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$\{A^{i}(i=1, \cdots n), B\in B^{S}(H^{N}\}$ and with $n$ parameters $\{\eta_{i}\}$ which are bounded because $||\rho(\theta)||<1$ .
The $\eta$ is determined by the condition $\eta_{i}=\sup_{\theta\in}(\eta i\theta^{i}-\psi(\theta))$ with $\sup$ being replaced by $\max$

because of the convexity of the potential function $\psi(\theta),$ $\partial_{i}\partial_{j}\psi=g_{ij},$ $G=\{g_{ij}\}>0$ . This
assures that the $\mathrm{m}\mathrm{a}\mathrm{p}\mathrm{p}\mathrm{i}\mathrm{n}\mathrm{g}\ominusarrow \mathrm{H}$ is injective. For each fixed $\theta$ , the set $\{\eta;\phi(\eta)\leq\theta^{i}\eta_{i}-\psi(\theta)\}$

is a bounded convex set in $\mathrm{R}^{n}$ decomposable into convex polyhedrons, and we show that it can
be a single unit: There exists an affine transformation $\{\eta_{i}\}arrow\{\overline{\eta}_{i}\}$ such that every $\overline{\eta}_{i}$ satisfies
$0<\overline{\eta}_{i}<1$ and

$\eta_{i}A^{i}=\overline{\eta}i\overline{A}i\eta+\mathrm{o}A0$ . (45)

Our choice is $\overline{\eta}_{i}=\frac{1}{\alpha}(\eta_{i}-\eta_{0})$ and $\overline{A}^{i}=\alpha A^{i},$ $A^{0}=\Sigma_{i=1}^{n}A^{i}$ , where $\eta_{0}=\min_{i,\theta\in i}\partial\psi(\theta)$ and
$\alpha=\max_{i,\theta\in(}\partial i\psi(\theta)-\eta_{0})>0$ . The corresponding Legendre identity becomes

$\psi(\theta)+\phi(\eta)-\theta i\eta_{i}=\overline{\psi}(\overline{\theta}\mathrm{I}+\overline{\phi}(\overline{\eta})-\overline{\theta}i\overline{\eta}i=0$

with $\overline{\theta}=\alpha\theta,\overline{\psi}(\overline{\theta})=\psi(\theta)-\eta 0\Sigma^{n}i=1\theta^{i},\overline{\phi}(\overline{\eta})=\phi(\eta)$, where the convex property of $\overline{\psi}(\overline{\theta})$ and $\overline{\phi}(\overline{\eta})$

is the same as before. Furthermore, we can assume that $\Sigma_{i=1}^{n}\overline{\eta}i(\theta)<1$ by a renormalization
$\overline{\eta}_{i}(\theta)arrow\frac{1}{\beta}\overline{\eta}_{i}(\theta)$ with $\beta=\max_{\theta\in}\Sigma_{i=}n1\overline{\eta}_{i(\theta)}$ and $\overline{A}^{i}arrow\beta\overline{A}^{i}$ .

Therefore, without loss of generality, we may assume that

$\rho(\theta)=\eta_{i}(\theta)A^{i}+B$ , $0<\eta_{i}<1i=1,$ $\cdots n$ , and $\Sigma_{i=1}^{n}\eta i(\theta)<1$ . (46)

We enlarge the manifold $S$ by introducing $n+1$ th component $\eta_{0}>0$ of $\eta$ by which $B$ is multiplied
to constitute a homogenous coordinate system $\{\eta_{i}\}_{i0}^{n}=$

’ i.e. $\rho=\eta_{i}A^{i}$ , and then the normalization
is conditioned by $\Sigma_{i=0}^{n}\eta i=1$ so that

$\rho(\theta)=\eta iAi$ , $\Sigma_{i=0}^{n}\eta i(\theta)=1$ . (47)

We now have
$\rho(\theta)=\eta_{i}(\theta)A^{i}+(1-\sum_{i=1}\eta i(n\theta))A^{0}$ , $\mathrm{T}\mathrm{r}\rho(\theta)=1$ . (48)

If we take the closure $\overline{\mathrm{H}(\eta)}$ where the range of $\eta’ \mathrm{s}$ becomes $0\leq\eta_{i}\leq 1$ , the resulting $\rho=\Sigma_{i=0}^{n}\eta_{i}A^{i}$

may get a pure state, but still $\rho\geq 0$ and $\mathrm{T}\mathrm{r}\rho=1$ holds. This should provide each $A^{i}$ with
positiveness and normalization such that

$A^{i}\geq 0$ and $\mathrm{T}\mathrm{r}A^{i}=1$ $i=0,1,$ $\cdots n$ , (49)

and also
$\sum_{i=0}^{n}\eta i(\theta)=1$ . (50)

This shows that the mapping $\ominusarrow \mathrm{H}$ is surgective onto the space of the $\eta$-coordinate system.

A similar reasoning can be made, when we start from the $\mathrm{m}$-family (15). In order to show that
the image $\mathrm{H}(\eta)$ now is identical with $\mathrm{R}^{n}$ , it suffices to see that here $\log\rho(\theta)$ is unbounded when
each $\theta^{i}$ tends to the end point $0$ or 1.

4. PROJECTION THEOREM AND PARAMETER ESTIMATION
INEQUALITY

The problem of parameter estimation in classical statistics is stated as follows [4].
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Let $X^{i}$ denote a (contravariant) vector of random variables whose expectation over a family of
distributions parametrized by $\{\theta^{i}\}\in\ominus$ is restricted by the unbiasedness condition

$E[X^{i}]=\theta^{i}$ , hence $E[\partial_{i}\log\beta X^{j}]=\delta^{j}i$ . (51)

This vector random variable $X^{i}$ is called an unbiased estimator. Then, the covariance matrix
$V$ of the unbiased estimator $V=(V^{ij})$ , $V^{ij}\equiv E[(X^{i}-\theta i)(X^{j}-\theta^{j})]$ , is lower bounded by the
inverse Fisher metric tensor $g^{ij}$ at each fixed $\theta$-value so that the following inequality holds:

$V\geq G_{Fi_{S}h}^{-1}\mathrm{e}r$

’ or $V^{ij}(\theta)\geq g^{ij}(\theta)$ ( $(V^{ij}-g^{i}j)\xi i\xi_{j}\geq 0$ for any real $\xi_{i}’s$ ). (52)

The choice of unbiased estimators is desired such that their fluctuations around $\theta$ be as small as
possible; the smallest possible is the one whose covariance $V^{ij}$ is just equal to $g^{ij}$ , and is called
efficient estimator. A search for this estimator is an important subject in each statistical model.
One of merits of the exponential and mixture families (1) (2) and (3) (4), respectively, is that the
efficient estimator can be explicitly constructed by virtue of their duality [13] (see below).

A new problem arises in quantum parameter estimation theory that the information metric defined
on non-commutative tangent spaces is not unique so that the estimation inequality (52) must be
set up depending on each metric tensor $[15][10][11]$ . We establish the inequality with respect to
the canonical metric on the best possible standpoint by using the projection theorem of $\mathrm{C}\mathrm{s}\mathrm{i}_{\mathrm{S}}\mathrm{z}\mathrm{a}\mathrm{r}\mathrm{s}$

)

$\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}[14]$ .

Theorem 8. Let $C$ denote a closed convex set of the Hilbert space $\mathcal{H}$ defined by the canonical
inner $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{d}\mathrm{u}\mathrm{c}\mathrm{t}\ll.$, $\gg \mathrm{i}\mathrm{n}\mathrm{t}\mathrm{r}\mathrm{o}\mathrm{d}\mathrm{u}\mathrm{C}\mathrm{e}\mathrm{d}$ in $B^{s}(H)$ (here $H=H^{N}$ but with possible generalizations
to infinite $N$ cases) and assume $C\subset\overline{S}=$ ( $\mathrm{a}\mathrm{l}1$ density operators $\subset J(H)\cap B^{+}(H)$ ). The relative
entropy involving two density operators $\rho$ and $\sigma$ is defined by

$D(\rho, \sigma)=\mathrm{T}\mathrm{r}\rho(\log\rho-\log\sigma)$ (support of $\rho$ , $s(\rho)\subset s(\sigma)$ ) (53)

$=+\infty$ $(s(\rho), s(\sigma)$ otherwise).

For any $\sigma$ in $\overline{S}$ but not in $C$ , there exists a projection of $\sigma$ onto $C$ denoted by $\sigma_{1}$ such that

$D( \sigma_{\perp}, \sigma)=\min_{\rho\in C}D(\rho, \sigma)$ , $\sigma_{1}\in C$ . (54)

The projection $\sigma_{1}$ is unique, and satisfies

$D(\rho, \sigma)\geq D(\rho, \sigma\perp)+D(\sigma_{1}, \sigma)$ $\rho\in C$ , (55)

where the equality (Pythagorean relation) holds for all $\rho\in C$ , iff $C$ is affine i.e. a flat manifold.

Proof. Csiszar’s version for the classical statistics is applicable in the present non-commutative
case, since the parallelogram identity about the relative entropy holds here, and we present an
outline of the proof. Let $\{\rho_{n}\}\subset C$ be a sequence such that $D(\rho_{n}, \sigma)<\infty$ (valid, if $\sigma$ is strictly
positive) and

$\lim_{narrow\infty}D(\rho_{n}, \sigma)=\inf_{\rho\in C}D(\rho, \sigma)\equiv D_{0}$ .

Apply the parallelogram identity to this sequence, i.e.

$D( \rho_{m}, \sigma)+D(\rho n’\sigma)-2D(\frac{\rho_{m}+\rho_{n}}{2},$ $\sigma)=D(\rho_{m},$ $\frac{\rho_{m}+\rho_{n}}{2})+D(\rho_{n},$ $\frac{\rho_{m}+\rho_{n}}{2})$ , (56)
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and show that
$\lim_{m,narrow\infty}D(\rho m,n’\frac{\rho_{m}+\rho_{n}}{2})=0$ .

This is due to the lower semi-continuity of $D(\rho, \sigma)$ (for any $\epsilon>0$ , an integer $N$ can be chosen
in such a way that all $m,$ $n>N,$ $D(\rho_{m,n}, \sigma)-D_{0}<\epsilon$ and $D(m_{2}\mapsto+\underline{\rho_{n}}, \sigma)-D_{0}<\epsilon$ (due to the
convexity of $C$ ) so that the left-hand side and hence the right-hand side of (56) converges to $0$ ).
Thus, for sufficiently large $m$ and $n$ , the right-hand side of (56) can be replaced by the canonical
metric $\frac{1}{4}\ll\rho_{m}-\rho_{n}$ , $\rho_{m}-\rho_{n}\gg$ , implying that a Cauchy subsequence can be chosen from $\{\rho_{n}\}$

to show the $\lim_{narrow\infty}\rho_{n}$ to be identified with $\sigma_{\perp}$ in (54). That this $\sigma_{\perp}$ is unique can be assured
also from the identity (56) with one of $\rho_{n}$ being replaced by the limit $\sigma_{1}$ and with inequality
$D( \frac{\rho+\sigma\perp}{2},$ $\sigma)\geq D(\sigma_{\perp}, \sigma)\mathrm{i}.\mathrm{e}.$ ,

$D(\rho, \sigma)\geq D(\sigma_{\perp}, \sigma)+D(\rho,$ $\frac{\rho+\sigma_{1}}{2})+D(\sigma_{\perp},$ $\frac{\rho+\sigma_{1}}{2})$ ,

$>D(\sigma_{1}, \sigma)$ for $\rho\neq\sigma_{1}$ . (57)

With this projection $\sigma_{\perp}$ , we wish to prove the inequality (55). In order to do this, let us consider
a convex combination of $\rho$ and $\sigma_{\perp}$ in $C$

$\rho_{t}\equiv t\rho+(1-t)\sigma_{\perp}\in C$ , $0\leq t\leq 1$ ,

and
$D(\rho_{t}, \sigma)=\mathrm{T}\mathrm{r}\rho_{t}(\log\rho t-\log\sigma)$ ,

which yields
$\frac{d}{dt}D(\rho \mathrm{p}, \sigma)|_{t=}0=\mathrm{T}\mathrm{r}\rho(\log\sigma\perp-\log\sigma)-D(\sigma_{\perp}, \sigma)$

$=D(\rho, \sigma)-D(\rho, \sigma\perp)-D(\sigma 1, \sigma)$ .

Suppose that (55) does not hold for the given $\rho(\neq\sigma_{1})$ in $C$ i.e.

$\frac{d}{dt}D(\rho_{t}, \sigma)|_{t}=0<0$ .

Then, for some $t,$ $0<t<1,$ $D(\rho_{t}, \sigma)<D(\rho_{t=}0, \sigma)=D(\sigma_{1}, \sigma)$ , which contradicts with the fact
that $\sigma_{\perp}$ is the projection of $\sigma$ onto $C$ . This proves the validity of (55). The last statement
that the equality in (55) is the only case of flat $C$ is in accordance with Amari’s formulation of the
projection theorem [4] (also cf. ref.[14]).

We are in a position to formulate a quantum version of the parameter estimation inequality on
the basis of the above theorem. A quantum mechanical unbiased estimator is a (contravariant)
vector operator $X^{i}\in B^{s}(H)$ which satisfies

$\langle X^{i}\rangle(=\mathrm{T}\mathrm{r}\rho(\theta)Xi)=\theta^{i}$ so that $\langle\delta_{i\rho}, x^{j}\rangle=\ll\delta_{i}\log\rho,$ $X^{j}\gg=\delta_{i}^{j}$ (Kronecker 6). (58)

We also define its covariant version $X_{i}\equiv g_{ik}(\theta^{k}-x^{k})+\eta_{i}(\theta),$ $\langle X_{i}\rangle=\eta_{i}(\theta)$

( $=g_{ik}\partial^{k}\psi\{\theta(\eta)\}=\partial_{i}\psi(\theta)=\eta_{i}$, if $(\theta,$ $\eta)$ is a pair of dual coordinate systems). (59)

Theorem 9. For any unbiased estimator $X^{i}$ which satisfies (58), the following two sets of
inequalities hold:

contravariant version $\ll X^{i}-\theta^{ijj},$$X-\theta\gg\geq g^{ij}(\theta)$ (60)
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covariant version $\ll X_{i}-\eta_{i}(\theta),$ $X_{j}-\eta j(\theta)\gg\geq g_{ij}(\theta)$ , (61)

where $g^{ij}(\theta)=(gij(\theta))_{i}^{-}j^{1}$ and the inequalities imply that the tensor $V-G$ is a positive definite
tensor i.e.

$(V-G)^{ij}\xi i\xi_{j}\geq 0$ for any real $\xi_{i^{\prime_{s}}}$ .

Proof. In Theorem 8, we first choose an exponential family represented in the equivalent
mixture family as the convex set $C$

$C=\{\rho(\theta)=\eta_{i}(\theta)A^{i}+(1-\Sigma\eta_{i}(\theta))A0\}$ . (62)

Then it is a flat manifold in terms of the dual coordinate system $\{\eta_{i}\}$ . Let $\sigma$ be an arbitrary
density operator in $S$ specified in terms of a real, free covariant vector $\xi_{i}$ such that

$\sigma=e^{\log\rho()+}\theta x-\psi(\theta)$ , $X=\xi_{i}(X^{ii}-\theta)$ , and $\psi(\theta)$ is the normalization factor.

This function $\psi(\theta)$ is determined by

$\psi(\theta)=\log\rho(\theta)-\log\sigma+X$ , hence taking $\langle$ $\rangle_{\rho}$ of both hand side,

$=D(\rho(\theta), \sigma)+\xi_{i}\langle x^{i}-\theta i\rangle_{\rho}=D(\rho(\theta), \sigma)$

by virtue of the unbiasedness condition (58). Therefore, the projection $\sigma_{\perp}$ of $\sigma$ onto $C$ is
indicated by

$\min_{\rho\in C}D(\rho, \sigma)=\min_{\theta\in}\psi(\theta)=D(\sigma_{\perp}, \sigma)$ ,

in which $\sigma_{\perp}$ can be represented as

$\sigma_{\perp}=\rho(\theta)+\eta_{i}\delta^{i}\rho(\theta)$ with $\eta_{i}$ to be determined by the minimality condition.

In terms of the biorthogonal bases $(\delta_{i}, \delta^{j})$ , the condition is given by

$\log\sigma-\log\sigma_{1}\perp C$ , i.e. $\langle\delta_{i}\rho, \log\sigma-\log\sigma 1\rangle(=\ll\delta_{i}\log\rho, \log\sigma-\log\sigma\perp\gg)=0$ or,

$\langle\delta_{i}\rho, X\rangle=\langle\delta_{i\rho,L\rangle}$ where $L=\eta_{i}\delta^{i}\log\rho(\theta)$ ,

which yields

$\eta_{i}=\xi_{i}$ , and $D( \sigma_{\perp}, \rho)=\mathrm{T}\mathrm{r}\sigma_{\perp}(\log\sigma\perp-\log\rho)=\frac{1}{2}\mathrm{T}\mathrm{r}(\delta^{i}\rho\delta^{j}\log\rho)\xi_{i}\xi_{j}=D(\rho, \sigma_{\perp})$ in $o(\xi^{2})$ . (63)

Now, the inequality (55) (here the Pythagorean equality because of the flat $C$ ) can be used in the
form $D(\rho, \sigma)\geq D(\rho, \sigma_{\perp})$ , and up to $O(\xi^{2})$ expressed as

$\ll X^{ii}-\theta$ , $X^{j}-\theta^{j}\gg\xi_{i}\xi_{j}\geq\ll\delta^{i}\log\rho,$ $\delta j\log\rho\gg\xi_{i}\xi_{j}$

which is the desired inequality (60), and is transformable into its covariant version (61).

In the above proof, we have assumed the set $C$ to be an exponential family. This assumption
can be removed for those families which are restricted only by $g_{ij}(\theta)>0$ , where $C$ is chosen as the
tangent space of $\rho(\theta)$ at a fixed $\theta$ and $\sigma$ is near to this $\rho$ in $O(\xi^{2})$ .

Our final result is concerning the efficient estimator of the exponential and mixture families. To
be comprehensive, we first give an inverse map of two derivations in Proposition 1, namely
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Proposition 3. The inversion of the map $\delta_{i}\log Xarrow\delta_{i}X$ given by (22) is expressed as

$\delta_{i}\log X=\int_{0}^{\infty}dt\frac{1}{t+X}\delta iX\frac{1}{t+X}\equiv\Phi(\delta_{i}X)$ . (64)

This was devised by Petz [10], and can be verified also by means of our decomposition formula
(16).

Theorem 10. Let an exponential family $\rho(\theta)=\exp(\theta^{i}A_{i}-\psi(\theta))$ be represented in the corre-
sponding mixture family

$\rho(\theta)=\eta_{i}(\theta)(A^{i0}-A)+A^{0}$ , where $\eta_{i}(\theta)=\partial_{i}\psi(\theta)=\langle A_{i}\rangle$ . (65)

Then, the vector operator $A_{i}$ yields the unique efficient estimator $X_{i}$ i.n the covariant version such
that

$\ll A_{i}-\eta_{i}(\theta),$ $A_{j}-\eta_{j}(\theta)\gg=gij(\theta)$ . (66)

Similarly, the inverse map $\Phi$ of the vector operator $A^{i}-A^{0}$ yields the fluctuating part of the
efficient estimator $X^{i}$ in the contravariant version such that

$\ll\partial^{i}\phi+\Phi(A^{i}-A^{0})-\theta i,$ $\partial j\phi+\Phi(Aj-A^{0})-\theta j\gg=g(ij\theta)$ , (67)

where
$\partial^{i}\phi=\mathrm{T}\mathrm{r}(A^{i}-A0)\log\rho$ is the systematic part of $X^{i}$ .

Proof. Expression (66) isjust the result of analysis from $\mathrm{e}\mathrm{q}.(39)$ to (43) in the proof of Theorem
6, Case for the exponential family. The same analysis can be made and added to Case
for the mixture family in terms of the $\eta$-coordinate system. This yields the explicit form for
$g^{ij}(\eta)$ with

$\delta^{ii}\log\rho(\eta)=\Phi(\delta\rho(\eta))$ , (68)

where
$\delta^{i}\rho(\eta)=A^{i}-A^{0}$ . (69)

Thus, by inserting this into $g^{ij}(\eta)=\ll\delta^{i}\log\rho,$ $\delta^{j}\log\rho\gg$ and noting that $\langle\Phi(A^{i}-A0)\rangle=0$ , we
obtain expression (67).

Consequently, the starting question what is the efficient estimator for the parameter $\theta$ in the
exponential family (65) is now answered:

$X_{\mathrm{e}f}^{i}$

ficient
$=\partial^{i}\phi+\Phi(A^{i}-A^{0})$ , $\langle X_{\mathrm{e}ffi_{C}it}^{i}\rangle en=\partial^{i}\phi=\theta^{i}$ , (70)

where $A^{i}i=1,$ $\cdots n$ and $A^{0}$ are given in the mixture representation of the family (65).

Remark. In Theorem 9, the covariant version and the contravariant version of an estimator
can be defined under the most general condition of a nondegenerate metric, which includes the
case where a pair of dual coordinates exists, as specified in (59). Such a general condition does
not warrant the existence of each efficient estimator. Theorem 10 implies the speciality of the
(e) and (m) families for which the efficient estimator can be identified in both versions.
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