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I. INTRODUCTION.

A long-time behavior of the canonical correlation function as an infinite volume
limit interests us. In this paper, we would like to apply Arai’s results [5] concerning
long-time behavior of two-point functions to a class of canonical correlation functions
of position operators as infinite volume limit. In [5], Arai argued long-time behavior
of two-point functions of position operators for some models of a quantum harmonic
oscillator interacting with bosons.

We consider a quantum harmonic oscillator in thermal equilibrium with any
system in certain classes of bosons with infinitely many degrees of freedom in a finite
volume V > 0. Our models include photons in a laser interacting with oscillation
caused by a heat bath, which can be observed when the laser passes in the heat
bath, and are photons in a laser interacting with oscillation caused by phonons on
the surface of a material, which can be observed when we irradiate the weak laser
on the surface.

When a two-point function (or canonical correlation function) R’ (t;,t;) of
the position or momentum operator of the harmonic oscillator is given by an
observation, we take an infinite volume limit, V — oo, for Rv(tl,tz), and get
R (t1,t2) = Vli-rgo Rv(tl, t») under suitable conditions. And we argue long-time be-
havior of R (t1,1,).

Let Oy, be the position operator ¢ & (a + a*)/v/2w, momentum operator
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¥ i/e (at — a) /v/2, or their smeared operators Of", where a and a* are the an-

nihﬂation and creation operators of the quantum harmonic oscillator, respectively,
and w > 0 denotes the original frequency of the quantum harmonic oscillator. In
this paper, we let that w is equal to 1, i.e., w = 1, for the sake of simplicity.
Rv(tl,t2) is the observed two-point function of Oy, given by the Bogoliubov scalar
product. In our system to be considered, for R’ (t1,t2) there exists a Hamiltonian

V,b which governs our system and is described by the annihilation operator a, the

a,

creation operator at of the quantum harmonic oscillator; and annihilation operators

by, creation operators b} of bosons, i.e., Hvb e g (a, atib,bf k€ N), such that

a,

_ﬁHV

e~ 7"ab is a trace class operator (where 3 denotes the inverse temperature and we

set the Planck constant % = 1), furthermore, R (t1,1,) is defined by

RY (4, 1) & 1 _ /ﬂ Ditr (e_(ﬁ_A)H:beiH:btl Obse—iH:btle—/\H:beiH:btz Obse—iH:bt2> ’
Btr (e_ﬁHa,b) 0

Of course, the operator form of H, : » 1s unknown, so there is a pbésibﬂity that H, :’ b

is non-quadratic.

For applying Arai’s result [5, Theorem 1.3] to our case, we first solve the following
inverse problem: In terms of Rv(tl,tz) only, determine positive frequencies zq and
zi (k € IN) of the quantum harmonic oscillator and scalar bosons, respectively; and
coupling constants y, € C (k € IN); appearing in the Hamiltonian of the rotating

wave approximation (RWA),

H}ZWA(:E’ y) d“_e‘f $0a+a + Z xkbz-bk + Z (yka+bk +%b:a) ’
k=1 k=1

def def
T = (IE(),il?],l'z,"'), Yy = (ylay%'“)a

(where € means the complex conjugate of ¢ € C), and determine constants ¢;,c; € C
in terms of R” (t1,1;) only such that the Hamiltonian Hy,, (z,y) recovers the original

R’ (t1,t5) in the following sense:

{energy levels of Hyy, (, y)} = {positive poles of /oo dte™R” (t)} ,
0

R’ (t1,13) = a representation using WY (t1,12),

(1.1)



where

% def .V _: \4 oV . 1%
W (tl,t2) s (QO . elHRWA(I'y)thbse ’HRWA(zvy)tle’HRWA(Ivy)izObse ZHRWA(x’y)tZQO)a,b’

which is the vacuum expectation of
v oV v v )
e Hrwa(2¥) O e~ iHrwa (W)t eiHrwa(20)02 Oy e~ Hrwa(@¥)t2 " and (.,.),, is a natural in-

ner product of the Fock space F, ;. Moreover () is the Fock vacuum and the ground
state of Hy, (2,7).

Indeed there are some negative criticisms against RWA [14, §V.D] and there
exists the independent-oscillator model which is more useful in physics than RWA
[14,26], but we venture to use RWA in so far as our purpose of investigating the
long-time behavior. Why do we represent R’ (ty,t5) by using RWA? Because it is
nothing but easy to argue an infinite volume limit for the Hamiltonian of RWA in
mathematics, and RWA is established in mathematics by [4,5,23]. So there is a
possibility that we can investigate the long-time behavior of infinite volume limit
of Rv(tl,tg) through infinite volume limit of Wv(tl,tg) in representation (1.1) of
R’ (t1,t2) using w" (t1,t2). Actually, what is better, the long-time behavior of the
infinite volume limit W (ty, ;) of W' (¢1,1;) of the position operator is investigated
exactly by Arai in [5].

An answer for this inverse problem for RWA is given by Theorem 2.1 in this
paper. By representation (1.1), we can consider an infinite volume R§(t,,1;) of
Rv(tl, ty) for the position operator ¢, through the right side of (1.1). Then, we have
a representation of R’ (t1,12) by using W(t1,t2). And, applying Arai’s results in [5]
to the representation, we consider the long-time behavior of R (t) = R3(0,t) for

the position operator ¢ in Theorem 2.3 of this paper.

II. STATEMENT OF MAIN RESULTS.

In this section, in order to introduce canonical correlation functions defined by

the Bogoliubov scalar product, and explain our main results, we first set up a general
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framework. For a while, we fix a finite volume V > 0.

We give a complex Hilbert space 2(IN) by I*(IN) &
{(cl,cz, )l €CEke N, YR, al? < oo} For each f € C®[?(NN), we denote
by (fo, f1, fay -+ +), e, f = (fo, f1, f2y -+ ), where fo € C and (fi, fo,---) € B(N).
An inner product ( , )p of C @ 2(N) is given by (f,9)r % ¥2 Fegr (f.g €

C @ I>(N)), where T denotes the complex conjugate of ¢ € C. We denote the
symmetric Fock space over C @ [*(IN) by Fs(C @ [*(N)), which is defined by
Fs(C & B(N)) ¥ @, 5,.(C & 2(N))", where S,(C & I(N))" is the n-fold
symmetric tensor product of C @ I2(IN) for each n € N and So(C & I2(N))° ¥ €
(see [32, p.53, Example 2]), and S,, denotes an orthogonal projection onto

S5.(C & I*’(N))" for each n € N* 4 {0,1,---} (see again [32, p.53, Example 2]).

The operators a and a*t physically denote the annihilation and creation operators
of the quantum harmonic oscillator, respectively, and likewise, operators b; and b}
(k € N) are the annihilation and creation operators of the bosons with infinitely
many degrees of freedom.

We consider a quantum harmonic oscillator in thermal equilibrium with a system
of bosons with infinitely many degrees of freedom in the finite volume. So, we give
a state space for our system by a symmetric Fock space, Fs(C @ [*(IN)), which is
denoted by simply F,; for convenience, i.e., Fup def Fs(C®I*(N)). And we denote
the inner product of Fop by ( , )ap-

For our system, there exists a Hamiltonian H:,b = Hv(a,a+;bk,b,“:,k € N)
whose form is unknown. So H, : » may be non-quadratic, but must be realized as a
self-adjoint operator acting in the Fock space F,;,. Since we are now considering
the thermal equilibrium quantum system, H, : » 1s a self-adjoint operator acting in
Fap, and

(H) e_TH:b is a trace class operator on F,; for every 7 € (0, 3],
where [ is the inverse temperature. This condition implies that the spectra of

v’b are purely discrete and the eigenvectors {p, |n € N*} of H:, » form a complete

H

a
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orthonormal system of F,;, where N* & {0,1,---}. We count the eigenvalues A,
(n € N¥) ofH:,b in such a way that H:’bgon =Apnand 0 < Ag< A <o <A, <
Anpr <00 /o0,

For the Hamiltonian H, : »» We can construct a Liouville space X.(H : »), Which is
a set of adequate quantum operators acting in F,; [22-24]. We denote the linear
hull of {¢,|n € N*} by Dgy, ie., Dgp “ Lh.[{¢n|n € N*}]. From here on, we
denote the linear hull of a set S by L.h.[S]. Obviously D, is dense in F, . Further,
we denote by B(D, 4, F, ;) the space of bounded linear operators from D, to F, .
Every element A in B(D, 4, F, ) has a unique extension to an element in B(F,;),
the space of bounded linear operators on F,;. We denote the extension of A by
A~ and A*[D,; by A", which means that the domain of operator A* is restricted
to Dgp.

In this paper, we consider the restricted position and momentum operators as
q def (a+at) /V2[D, and p &, (a* — a) /v/2[D,, respectively.

We first define a class T(H : ») of quantum operators, which is a set of quantum
operators A satisfying the following conditions:

(T.1) the domain of each operator is equal to D, 5, and the domain of the adjoint
operator of each operator includes D, (i.e., D(4) = D, and D(A*) D D, ;, where

D(B) denotes the domain of each operator B);

v |4
(T.2) for all 7 in (0, 8] operators e"™Hap A and Ae~"Hab are in B(D.s, Fop),
v 14
furthermore, (e~ etA)~ and (Ae"Het)~ are Hilbert-Schmidt operators on F,;

with the Hilbert-Schmidt norm || |2.

We must now turn our attention to the unboundedness of operators because
it is known that limits on the precision of the measurement of observables for
bounded operators (e.g., fermion) and unbounded operators (e.g., boson) are differ-
ent [7,12,35]. For unbounded operators, the problem of their domains is delicate, so

we provide condition (T.1). Condition (T.2) addresses convergency with respect
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to the Bogoliubov scalar product [23,24], [8, p. 96]. We note here that T(H : p) 1s
a linear space. We can then introduce the Bogoliubov (Kubo-Mori) scalar product

< ; >,v as
’ Ha,b

1 8 v v v
A B>gy / ditr((ePMHap g*)~ (e ar B)7), A, B € T(H
< A >H:b ﬂZ(,@) 0 r((e ) (6 ) )7 ’ € ( a,b)7

v
where Z(3) & tr(e_ﬁHa,b). It can be easily proven that < ; >,v is an inner
a,b

product of T(H, ’ see, [23]). The inner product introduces a norm: || Al v o
a,b Ha b

< AA Y2 We can therefore obtain a partial *-algebra X, H',) defined by a
H b (l,b

Hilbert space which is the completion of T(H:,b) with respect to the norm || ||

HY,
The definition of the partial *-algebra with a unit appears in [1-3,11,27]. We also
note here that an element in XC(H:’ ») is not always an operator acting in Fp.
It is noteworthy that Naudts et al. attempted to argue in general about linear
response theory on the Hilbert space which is constructed by a completion of a von
Neumann algebra with KMS-state [30]. Similarly, we deal with Mori’s theory in
statistical physics on X (H. :b), which was constructed by the completion concerning
the Bogoliubov scalar product.

Because we consider a system governed by the Hamiltonian H : » constructed by
a, a*, by, and bf (k € IN*), on condition that e'TH:b is a trace class operator for
all 7 € (0, 3], the condition that O € T(H:b) is natural assumption. Thus, in
this paper we assume that the position operator Oy, belongs to a dense subspace

T(H

a

V’b) in the Liouville space.

(O) Forevery V>0,0, € T(H:b)

REMARK 2.1. There are several examples satisfying condition (O). For instance,

A7

there is an example that ¢ € T(H,,), even if H ’. is non-quadratic Hamiltonian.
q a,b ab q

In order to introduce the Heisenberg operator Oy,(t) of the observable, we define

here the Liouville operator E:,; determined by the Hamiltonian H : b



(2.1)

(2.2)

(2.3)

74

We can déﬁne, for adequate operators A, the Liouville operator E:’b by
Lo,A € [H,,Al = H,A— AH,, [23, Lemma 3.8]. The domain D(L,,) of
the Liouville operator [,:’b then contains a dense subspace D, of all elements
A€ T(H;b) satisfying that H:,,JA and AH:,b [D,; are in T(H:,b); furthermore,
Az, A+w,H:be,H:bA+m,AH:b:c, and A+H:b:c are in D, for all z in Dgyy. Ac-
tually, the subspace D, is a core for E:,b [23, Lemmas 3.7 and 3.8]. More ex-

act and easier definition of ﬁ:b is as follows: We first define linear operators

Qi Dop — Dyp, m,n € N* defined by

D(®,,,) ¥ D,

Bz & B2Z(B)PWYE (0n, @),y om,  © € Dup; myn € N7,
where
An — Am .
Wm n déf 6_’3)"" — 6—’6’\" if /\m # /\n’
B1efAm if A = A,

It must be noted that
Wm,n>0u m,nEN*,

Whn=Wpm, mnéeN*
Then {®., 1 }mn=01,. is a complete orthonormal basis of XC(H:,,,), and

L:’bq)m,n = ()‘m - )‘n)q)m,n’ m,n € N*,

q)a,n = q)n,m’ m,n € N,

So, since it is clear that C;b 1s symmetric in XC(H;,,), LI;/,b can be extended to a

self-adjoint operator acting in XC(H;b),' which is denoted by the same symbol. And
it is easy to show that the linear hull L.h. [{®,, 5 }mn=04,..] is included in D, ;. It is
clear that L.h. [{van}m,nzo,l,---] C Dap C D(E:,b), so D, is a core fbr E:,b.

For every A € XC(H:,,), we set

A%
A(t) & eant A,

\4

R () ¥ R"(0,1) =< 044(0); Oys(2) >pv
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REMARK 2.2. The time evolution A(t) coincides with the Heisenberg picture

v v
¢'Han! Ae=Has! for every operator A in D, and t € R [23, Proposition 3.13].

We can prove that

closure

(2.4) (L) = Dom = A [myn € N*J

In order to obtain suitable data of R” () for reconstruction, we note the following

fact: There exist non-negative constants A,,, (m,n € N*) such that

(2.5) R'(t)= 3 AppetOmnin),
m,n=0
(2.6) 0< > Apy < oo
m,n=0

We define here a function [R"](z) (z € C with Imz > 0) by the Fourier-Laplace

transform as
[R"] (z) / T dte R (1),
0

We denote the set of all positive poles of [R'](z) by P2, and the set of all
negative poles of [R"](z) by PE.

We here assume that

(A.0) PR ={e,|p=0,1,---} with inf,g;,... (p41 — &) > 0.

Moreover, P2 = {n,|p=0,1,---} with infy—o1,... (9, — Np41) > 0.

When if condition (A.0) does not hold, we consider smeared observables given
in Definition 2.1 below.

By (2.5) and (A.0), it is clear that, for any ¢, and 7, there exist m*(p),n*(p) €
N*; and m~(p),n~(p) € IN* such that

(2.7) €p = — (’\m+(p) - ’\n’“(p)) g

(2.8) Mp = — (Am-(,,) - An~(p)) ;



(2.9)

(2.10)
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and for the zero 0 there exist m%(p), n°(p) € IN* such that

0=~ (Anogp) = Antir)) -

For every z € C with z # 0 and z ¢ P¥, there exists a point ¢ € {0} UPRUPR
such that [z—c| < |z—¢| for all ¢ € {0}UPRUPZ by assumption (A.0). So, we have
I/oo dte™*'¢**| < |z — ¢|™! if Imz > 0. Thus, by applying Lebesgue’s dominated

0

convergence theorem to (2.5) and (2.6), we note that

1

zZ—¢&p

[RV] (2) =1 i Z Am+ (p),n* (p)

p=0 m+(p),n+(p);
Amt(p) ™ Ant ()= ~%p

o0
. 1
+i) > A= (p),n= () Z— 1
p=0 m=(p),n=(p); P
Am=(p) " An=(») ="

= 1
+i) 2. Awpmw) |
p=0 m0(p),n0(p);
mo(p)_ no(p)z
d 1
And, for z ¢ {0} U Pf U PR, |3; (z — c’) | <]z — ¢|%. Thus, by applying Weier-

strass’ M-test to (2.10), it is evident that [R](z) can be extended into a meromorphic
function on the complex plain with singularities only at points in {0} U Pf UPE by
(A.0) and (2.10).

When condition (A.0) does not hold, we consider the following smeared observ-

able. We can expand O, as
Obs = Z < Qm,n; Obs >Hvb q)m,n
in X.(H, ).

DEFINITION 2.1. By an observation, select ¢, and 75, with (A.0) for every

V > 0. Then, for O, we define smeared observable O™ by
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Op" = 03" (e, mpip € N7)

[ee]
def
=2 2 < Ot )nt)5 Obs > | Bt (o)t )

p=0 m+(p),nt(p);
At (p) ™ Ant (=P

ns 3 < Pm-()n=(0); Obs >pv. | Pm=(r)on=(o)-
p=0 m=(p),n~(p); ’

Am=(p) " An=(p) =P
We call O;™ smeared position operator, which denotes ¢°™, if O; = q. And we call

O™ smeared momentum operator, which denotes p*™, if Oy, = p.

Of course, any smeared observable O;7* satisfies condition (A.0).
The following fact is derived from (2.10) by Weierstrass’ M-test, which tells us
that proper summations of A,,, are determined in terms of R’ (t) only: For each

p€ N~

.1
(2.11) lim = (z —&,) [R] (2) = Y Awraere)
m+(p),nt(p);
Amt ()~ Ant(p)= 5P

(212) lim =z =) [R] ()= Y An-aon

m~(p)n~(p);
Am=(p) " An=(»)= P
. v
(2.13) lim -z [R ](2) = Z AmO(p)’RO(p).

m0(p),n®(p);
m0(p)~An0(p)=0

DEFINITION 2.2. For each n € N*, we say that d"R’ ()/dt" is computable if

> (ﬁm F(e e [R] <z>) <o, and 3 (hm <z =) [RV](z)) (= )" < oo

p=0 et p=0 e

REMARK 2.3.

(1)IfqeD ((Ez’b) n/2>) for some n € N, then d"R" (t)/dt" is computable.



78

(2) If d"R” (t)/dt" is computable, then we have for n € N

\'4

"R’ (t)
dt™
= (=) é { (zl_iglp % (z—¢p) [R] (z)> epeiter + ( Jim % (z—1,) [R"] (z)> nge—itnp} :

which is the meaning of “computable.”
(3) If &2R" (t)/dt? is computable, then we have Oy € D(C:b) since we assumed
(A.0).

(4) There is an example of non quasi-free Hamiltonian satisfying ¢ € D(E:’b).

Here we remember (2.6), (2.11)-(2.13), and note if d*>R(¢)/dt* is computable,

€LY )40 Am+(p),n+(p) converges by (2.11). So, we can define a con-
mt(p) "t (p)T TP

stant wy by

(2.14) oy ;67’ (}HE,, % (z—¢) [R'] (z))

> (i e-e) [#])

We furthermore define a function D" (z) by

Ry ¥ —i lim z[R"|(2).

2—0; Imz>0

REMARK 2.4. We here note that the constants wy, Rg, and the function Dv(z)

also determined by [Rv] (z) only.



(2.16)
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Now, we can state one of our main theorems:

THEOREM 2.1. Under (H) and (O), suppose that we get a two-point function
Rv(tl,tz), defined by the Bogoliubov scalar product, with (A.0) from an experimen-
tal observation satisfying the conditions that dzRv(t)/dt2 is computable. Then the
function Dv(z) can be extended to a meromorphic function on the complex plane,
and the set {wy |k € N} of all zero points of D' (z)— D" (0) except z = 0 is counted

in such a way that
wy € (€k—1,€k), ke N.
And the total Hamiltonian of RWA is given by
H:WA e woata + i webf by, + i Pk (a+b;c + bZa) ,
k=1 k=1

where py % (wowk/(DV)'(wk)>l/2, ke N, (D"Y(z)=dD"(z)/dz. Hy,, is re-
alized as a positive (i.e., HR‘./WA > 0) self-adjoint operator acting in the Fock space

Fap such that

v

O(HRWA) = {50710+"'+5NnN|no,"',nN € N*, NGN*},

where {e, | p € N*} is equal to the set of all positive poles of [RV} (z), which is the
set of all zero points of D" (z). Furthermore, Oy(t) is reconstructed as Opwa(t) o

eiH:WAtObse‘in‘i/WAt such that
R"(t1,12) = 2(R"(0) = Ry ) ReW" (t1,%2) + Ry,

for every t,,t, € R.

From now on, we consider the case that the observable is given by the position

operator, i.e., Ops = q. We define a set I',, of lattice points by

r

v

k:?fﬂ,nzo,ﬂ,ﬂ,---}.

aef [
“{ele=F




(2.17)

(2.18)
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Here we assume the following technical conditions for existence of an infinite
volume limit:

(A1) wg — Wiy >0as V — co.

(A.2) There exist a non-negative, continuously differentiable function w,(k),
and real-valued continuous function p,(k) in L?(R), which satisfy the following

conditions;
wy(k') <w,(k) for 0 <k <k, and  wy(—k) =w,(k) for k€ R,

there are one-to-one maps, 6; and 6 N = {1,2,---} — Z = {0, +1,+2,---} such

that
27é1(n 2mdy(n
Wn:wﬁ( ‘;( )>a Pn:f’g< é( ))/\/_‘7’
and
_ o p,(k)?
m= _Oolgkf@Owﬁ(k) > 0, . —_—wﬁ(k) dk < 0.

We define for every V > 0 and t € R a function R (t) by

R()E i <lim l(z —&,) [RV] (2)) e=iter,

p:O Z2—€p ¢

where {¢,|p = 0,1,---} is the set of all positive poles of [RV] (z), which was ap-

peared in condition (A.0). And we set
[B)] (2) ¥ /°° dte“R/ (), zeC*t={CeC|Im(>0)}.
0
Then, we have

LEMMA 2.2. If R3(0) E‘}im R'(0) and RE = Vlim R(‘)/ exist, then

[RE‘”I] (2) = VIEI;O [R” (z) also exists.
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Here, for using Theorem 2.1 and Lemma 2.3, we assume that
(A.3) For every V > 0, d®R"(t)/dt? is computable. And RF(0) = Vlim R’(0)

and B3, = lim R(‘,/ exist.
! V—oo

We define a function D?,, (z) by

B ()2 R (0) — RF, 1
DRWA( ) ( ) ) X z[Rg?l] (z)

It is clear that there exists the inverse function pg(z) such that ¢g(z) is differ-

entiable and monotone increasing in (m, co) with

limep(e) =0, ¢h(e) = (W, (=), =>m.

z|lm

For using Arai’s results in [5], we assume a little more assumptions:

(A.4) sup D8, (z —i€)

e0,z>m

< 00, inf
e>0,z>m

< 0.

/°° ps(k)?
—oo (x —1€) —w,(k)

(A.5) There exists a constant 6(8) € (0,27) such that the func-
tion @j(z)p,(pp(z))® has an analytic continuation Iéo)(z) onto the domain

Dgz,e = {z € C|Rez > m, —0(f) < argz < 0} with the following properties:
(2.19) limI§(a — i) = I§(2), @ 2m,  |I(z)| < constle|

for all sufficiently large |z| (z € D'rﬁn,ﬁ) with a constant qo(8) > 0,

Iéo)(m + z)

: = A
(2.20) Z_,O;lilenDﬁ , ZPo(Bsm) T Ar' (B),
with constant A9 (B) # 0 and po(B;m) > 0,
(2.21) inf | Dy (z — i€) — 2ix I (z — i€)| > 0

0<e<eg;z>m

for all sufficiently small ¢q > 0.

So by using Arai’s result [5, Theorem 1.3], we obtain the following theorem:
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THEOREM 2.3. Let Oy = q. There exists RE"(tl,tz) = ‘}im R" (t1,t2).
Let BO(B) = (DEys(m) — 2im60,po(m) AD) Dy (m), and RE (1) = RF (0, 1).

(a) If RFy # 0, then Jim RZ(t) = Rgy.
(b) If B3, =0, then

Rzo(t) = Rf??l(t) + R?;,)l("t)a

RE(t) ~  wiy (BF(0) - RY,)

t—00

AR (B)e=imPoBmI D2 (po(B;m) 4 1)
BY(8)

o e=itmy=(Po(Bm)+1)

REMARK 2.5. Concerning part (a), if the condition that B3, # 0 occurs, maybe
it will be the case when there are infinitely many elements in the thermal states for

every V > 0 such that the elements are not orthogonal to ¢ just like the superfluidity

at T = 0. Here the thermal states is a physical notion given by L.h. [{®, . }n=01,.]
(i.e., ,C;b(thethermalstates) = {0}) in thermo field dynamics (e.g. [22]).
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