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The aim of the present note is to give a survey of results and techniques of proving the
convergence of zeta functions.

\S 1. Direct approach
\S 2. Mean value theorem
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\S 4. The case of “connected” $\mathrm{i}\mathrm{s}o$tropy subgroups
\S 5. Estimate of Theta series \‘a la Weil
\S 6. Irreducible regular reduced prehomogeneous vector spaces

\S 1 Direct approach

1.1 Explicit calculation

The convergence of zeta functions is obvious if one can calculate the zeta functions under
consideration explicitly and obtain an expression in terms of known zeta functions such as
the Riemann zeta function. This is the case, for example, for the zeta functions associated
with the space $(GL(n), M(n))$ . In this case the zeta function is given by

$((s)\zeta(s-1)\cdots\zeta(_{S}-n+1)$ .

1.2 Use of reduction theory

Zeta functions associated with prehomogeneous space are of the form of Dirichlet series

$\sum_{m=1}^{\infty}\frac{N_{i}(L,m)}{m^{\mathrm{s}}}.$ ,
$- N_{i}(L;m)=v \in\Gamma\backslash L\cap P(v)\sum_{V}=\epsilon.m.\cdot\mu(v)$

,

where the notation is the same as in [S3], \S 1. Hence, if we can get an estimate like

$N_{i}(L;m)<c\cdot m^{\alpha}$ , $m=1,2,$ $\ldots$ ,
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then we know that the zeta function is absolutely convergent for ${\rm Re}(s)>\alpha+1$ .
In case the density $\mu(v)$ is simple, then, it is often possible to obtain a necessary estimate

of $N_{t}(L;m)$ , by using the reduction theory of algebraic groups ( $=$ the description of the
fundamental domain $G^{+}/\Gamma$ with the Siegel domain, for this see [BH] $)$ . An example of this
kind of argument is found in [Sh], Proposition 2.1, where Shintani obtained an estimate
necessary to the proof of the zeta functions associated with the space of binary cubic forms.

However, if the density $\mu(v)$ is not so simple, then it is rather difficult to carry out the
proof of convergence through this method. For example, the convergence of the Siegel
zeta functions of indefinite quadratic forms is not at all obvious, though Siegel wrote in
his paper [Si] just “Die Konvergents der Reihe entnimmt man der Reduktiontheorie”. A
detailed proof of the convergence of the Siegel zeta functions can be found in Tamagawa
[Ta.]. In \S 3 (resp. \S 4), we explain another method that can be applied to the Siegel zeta
functions if the number of variables of a quadratic form is $>4$ (resp. $>3$ ).

\S 2 Mean value theorem

The following integral formula is due to Siegel:

(2.1) $\int_{sL_{n}()}\mathrm{B}/SLn(\mathbb{Z})_{x}-\{1g\sum_{0}f(gx)d=c\int \mathrm{B}\in \mathrm{z}^{n}f(X)\hslash dx$
$(f\in L^{1}(\mathbb{R}^{n}))$ .

Using this formula, we give a proof of the convergence of the Epstein zeta function. Let $\mathrm{Y}$

be a positive definite symmetric matrix of size $n$ . Then the Epstein zeta function is defined
by

$\zeta(Y, s)=$
$\sum_{n,x\epsilon \mathbb{Z}-_{\mathrm{t}01}}Y[x]^{-s}$

,

where we employ the usual notaion $Y[x]=\iota_{xYx}$ . The zeta function is nothing but the
zeta function associated with the space (GO $(Y),$ $V(n)$ ). We define a modification $\zeta_{1}(Y, s)$

of the Epstein zeta function by setting

$\zeta_{1}(Y, s)=$ $\sum$ $|Y[x]|^{-s}$

$x\in \mathbb{Z}^{n}-\{0\}$

$Y[x]\geq 1$

The series $\zeta_{1}(Y, s)$ differs from the Epstein zeta function only by a finite number of terms.
We consider the integral

$I(s)= \int_{SL_{n}()/SL_{n}(}\mathrm{B}\mathrm{z})\zeta 1(Y[g], s)dg$.

Put

$f_{s}(_{X})=\{$
$Y[x]^{-s}$ if $Y[x]\geq 1$ ,

$0$ if $Y[x]<1$ .
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Then, by (2.1), we have

$I(s)$ $=$
$\int_{s}L_{n}(\mathrm{R})/SL_{n}(\mathbb{Z})\in \mathbb{Z}0)\sum_{-\{\}}f_{\theta}(gXdgx$

$=$ $c \int_{\mathrm{B}^{n}}f_{s}(X)dx$

Since

$\int_{\mathbb{R}^{n}}f_{S}(X)dx$ $=$ $\int_{Y[]}x\geq 1XY[X]-sd$

$=$ $( \det Y)-1/2\int_{\mathrm{c}_{xx\geq 1}}(^{t}Xx)^{-}sdx$

$=$ $c’( \det Y)^{-1/2}\int_{1}^{\infty}r^{-(}-n+1)$ d$2S$ r.

The last integral is absolutely convergent if ${\rm Re}(s)>n/2$ . This implies that $I(s)$ is ab-
solutely convergent for ${\rm Re}(s)>n/2$ . By the Fubini theorem, $\zeta_{1}(Y[g];s)$ is absolutely
convergent for almost everywhere on $SL_{n}(\mathbb{R})/SL_{n}(\mathbb{Z})$ under the same condition. The con-
vergence of $\zeta(Y;s)$ for every $Y$ and $s$ with ${\rm Re}(s)>n/2$ follows immediately from this.

The above argument can be generalized further to, e.g., $(SO_{m}\cross GL_{n}, M_{m,n})$ if the real
form of $SO_{m}$ is compact (see [Te]). Much more generally, the Godement criterion on the
convergence of the Eisenstein series of reductive groups is based on a similar idea (see [B],
Chapter 11 \S 2). However, if $Y$ is indefinite, then the argument above does not apply to
the zeta function (the Siegel zeta function) attached to (GO$(Y),$ $V(n)$ ). The reason is that
the Siegel zeta functions are defined only when $Y$ is a rational symmetric matrix.

\S 3 Admissible representations in the sense of Igusa

Let $k$ be an algebraic number field. Let $G^{1}$ be a linear algebraic group defined over $k$ and
$\rho$ : $G^{1}arrow GL(V)$ a $k$-rational representation of $G^{1}$ on a finite dimensional vector space $V$

with $k$ -structure. Following Igusa [I], we call $\rho$ : $G^{1}arrow GL(V)$ an admissible representation
if the integral

$I( \Phi)=\int_{G(\mathrm{f}\mathrm{l})}1/G^{1}(k)\rho x\in V(\sum_{k)}\Phi((g)x)dg$

is absolutely convergent for any Schwartz-Bruhat function $\Phi$ on $V(\mathrm{R})$ .

Remark. Do not confuse the notion of (
$‘ \mathrm{a}\mathrm{d}\mathrm{m}\mathrm{i}\mathrm{s}\mathrm{s}\mathrm{i}\mathrm{b}\mathrm{l}\mathrm{e}$ representation” in this sense with

that in the theory of infinite-dimensional representations.

Let $(G, \rho, V)$ be an irreducible regular $\mathrm{p}.\mathrm{v}$ . defined over Q. Let $P(v)$ be a irreducible
relative invariant and $\chi$ the corresponding character. Denote by $G^{1}$ the kernel of $\chi$ . One
of the basic assumptions in [SS] is that

(3.1) the restriction of $\rho$ to $G^{1}i_{\mathit{8}}admiS\mathit{8}ible$
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(cf. [SS], (2.6)).

Remarks. (1) In [SS], the authors employed the classical language, not the adelic language.
However the adelic formulation above is equivalent to [SS], (2.6).

(2) In [SS], (2.6), it is assumed further that

$S(V(\mathrm{A}))\ni\Phi\mapsto I(\Phi)\in \mathbb{C}$

is a tempered distribution. This is a consequence of the admissibility as is noted at the
beginning of the proof of [W], Lemma 5.

The assumption (3.1) implies the convegence of the zeta functions ([SS], Corollary to
Lemma 2.3 and Lemma 2.5).

Since no proof of Corollary to Lemma 2.3 is given in [SS], we give here a proof, in which
any undefined symbols have the same meanings as in [SS].

Proof of Corollary to Lemma 2.3 in [$SS\mathit{1}\cdot$ Since $f\mapsto I’(f, L)$ is a tempered distribution,
for a given positive constant $C$ , there exist positive integers $k,$ $l$ and a positive number $\epsilon$

such that
$|I’(f, L)|<C$ if $||f||_{k,l}<\epsilon$ ,

where
$||f||_{k},l= \sup_{v\epsilon V(\mathrm{R})}(1+||v||^{2})k\sum|D^{\alpha}(f)(v)|$ .

$|\alpha|\leq l$

For any positive number $t$ , we put $f^{t}(v)=f(tv)$ . Then, if $t\geq 1$ , we have $||f^{t}||_{k,l}\leq t^{l}||f||_{k},\iota$ .
Take an everywhere non-negative $f_{0}$ in $C_{0}^{\infty}(\{v\in V_{i}||P(v)|=1\})$ . Let $\psi$ : $\mathbb{R}arrow \mathbb{R}$ be a
$C^{\infty}$-function such that $\psi(x)=1$ if $\frac{1}{2}\leq x\leq 1$ and the support is contained in $\mathbb{R}_{+}^{\mathrm{x}}$ . Define
a function $f(v)$ by setting

$f(v)=f_{0}(|P(v)|^{1}/dv)\psi(|P(v)|)$ .

We choose $f_{0}$ so that $||f||_{k,l}<\epsilon$ . Then we have

$C$ $>$ $|I’(t^{-lt}f, L)|$

$=$
$t^{-\iota} \sum_{\sim x\in L:/}\mu(X)\int_{\rho}(G_{+}1)\cdot x(ft(y)\tilde{\omega}y)$

$=$
$t^{-l} \int_{\{v\epsilon V|}i|P(v)|=1\}L.\cdot/)f\mathrm{o}(y)\tilde{\omega}(y)\sum_{\sim x\in}\mu(x)\psi(tPd(X)$

$\geq$

$t^{-l} \int_{\{\cdot|}v\in V.|P(v)|=11(f\mathrm{o}(y)\tilde{\omega}y)\sum_{x\in L_{i/}\sim}\mu(x)$ .

$\frac{t}{2}\leq|P(x)|\leq t$

This implies the estimate

$|P(x \in L_{*/\sim}\sum_{|x)\leq\iota}\mu(X)=^{o(}t)l$

. 1
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A natural problem arising here is how to check the condition. The answer was given
by Weil [W], Lemma 5 and Igusa [I], \S 2 and was used by Shintani in [SS] to prove the
convergence of the zeta functions attached to the space of hermitian matrices.

We may assume that $G^{1}$ is reductive. Let $T$ be a maximal $\mathrm{Q}$-split torus of $G^{1}$ and $P$

a minimal $\mathrm{Q}$-parabolic subgroup containing $T$ . Let $\ominus$ be the identity component of $T(\mathbb{R})$ .
We consider $\ominus$ as a subgroup of $T(\mathrm{A})$ . We denote by $\theta$ a general element of $\ominus$ . Let $\ominus_{1}$ be
the subset of $\ominus$ defined by $|\alpha(\theta)|\leq 1$ for every positive root $\alpha$ (with respect to $P$). We put

$D_{\rho}( \theta)=\prod_{\lambda}\sup(1, |\lambda(\theta)|^{-1})$ ,

where $\lambda$ runs over the set of weights of $\rho$ each repeated with its multiplicity. Then the
representation $\rho$ of $G^{1}$ is admissible if and only if the integral

$\int_{0_{1}}D_{\rho}(\theta)\cdot D_{Ad}(\theta)-1d\theta$

is convergent, where $Ad$ denotes the adjoint representation of $G^{1}$ . The “if’ part was proved
by Weil and the “only if” part was proved by Igusa.

Remark. The admissibility is a quite strong condition. A much weaker condition is
sufficient to ensure the convergence of zeta functions. In fact, as the above proof of Corollary
to Lemma 2.3 in [SS] shows, the convergence of

$I’( \Phi)=\int_{G(R}1)/G^{1}(k)V-S)(k)\rho x(\sum_{\in}\Phi((g)X)dg$
$(\Phi\in S(V(\mathrm{A}))$

implies the convergence of zeta functions (see [SS], p.169, Additional remark 2). Perhaps
it is better to say that the sum defining zeta functions should be taken over the maximal
subset $V’$ of $V(k)$ such that the integral

$I(V’, \Phi)=\int_{G^{1}(\mathrm{n})}/G^{1}(k)_{x}V^{t}(\sum_{\in}\Phi\rho(g)_{X)}dg$

is absolutely convergent for any $\Phi\in S(V(\mathrm{A}))$ .

\S 4 The case of “connected” isotropy subgroups

Let $(G, \rho, V)$ be a prehomogeneous vector space defined over $\mathrm{a}.\mathrm{n}$ algebraic number field $k$ .
Let $\Omega$ be a right invariant gauge form on $G$ and define a character $\Delta$ by $\triangle(g)=\Omega(gx)/\Omega(x)$ .
Let $P_{1},$ $\cdots,$

$P_{n}$ be the basic relative invariants over $k$ and $\chi_{1},$ $\cdots,$ $\chi_{n}$ the corresponding
characters. Denote by $G^{1}$ the identity component of $\bigcap_{i=1}^{n}\mathrm{K}\mathrm{e}\mathrm{r}(x_{i})$ . Let $\delta_{1},$

$\cdots,$
$\delta_{n}$ be the

rational numbers such that $(\chi_{1}(g)^{\delta_{1}}\cdots\chi n(g)^{\delta_{n)}}e=(\det\rho(g)/\triangle(g))^{\mathrm{e}}$ for some non-zero
integer $e$ .
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Theorem 4.1 $([\mathrm{S}2])$ Assume that

(4.1) $P_{1},$ $\cdots,$
$P_{n}$ are absolutely irreducible,

(4.2) for an $x\in V-S,$ $G_{x}^{1}:=\{g\in G^{1}|\rho(g)x=x\}$ is connected semisimple or trivial.

Then the zeta functions associated with $(G, \rho, V)$ are absolutely $con\dot{v}ergent$ if ${\rm Re}(s_{i})>\delta_{i}$

$(i=1, \cdots, n)$ .

Remarks. (1) Note that the condition (4.2) is much weaker than the condition that
$G_{x}=\{g\in G|\rho(g)x=x\}$ is connected. For example the prehomogeneous vector space
$(GL_{n}, 2\Lambda_{1,ym}S(n))$ satisfies the condition (4.2), while $G_{x}=O(n)$ is not connected. There-

fore the title of this section might be mileading.
(2) The abscissa $(\delta_{1}, \ldots, \delta_{n})$ of absolute convergence is best possible in the known cases.

We can prove the convergence of zeta functions without the assumption (4.1); however the

result on the abscissa of absolute convergence is less precise.
(3) If a prehomogeneous vector space $(G, \rho, V)$ satisfies the assumptions in the theorem

above, then so does its castling transform.

The theorem was proved in [S2] in the case $k=$ Q. The generalization to the case of

arbitrary algebraic number fields requires only obvious modifications of the proof.
Recently K.Ying $([\mathrm{Y}\mathrm{i}1])$ rediscovered the theorem for irreducible regular prehomogeneous

vector spaces and gave a proof different from the one in [S2]. He formulated the theorem for

irreducible regular prehomogeneous vector spaces over an arbitrary algebraic number field.

Moreover he classified the irreducible regular prehomogeneous vector spaces satisfying the

assumptions in the theorem. (The first condition in Theorem 4.1 is obvious for the irre-
ducible case.) In [Yi2], he generalized the theorem to irreducible regular prehomogeneous
vector spaces satisfying the following weaker assumption

(4.3) for an $x\in V-S,$ $G_{x}^{1}:=\{g\in G^{1}|\rho(g)x=x\}$ is connected reductive.

In this case the sum defining zeta functions should be taken over the set

$\{x\in(V-S)(k)|X_{k}(G_{x}^{1})=\{1\}\}$ ,

not on the whole $(V-S)(k)$ .

\S 5 Estimate of Theta series \‘a la Weil

Following Weil’s method of estimating theta series in [W], Yukie [Yul] developed another
method of proving the convergence of zeta functions.
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For simplicity, let us assume that the prehomogeneous vector space under consideration
is irreducible, defined over $\mathrm{Q}$ and of the form $(T_{0}\cross G_{1}, V)$ , where $G_{1}$ is semisimple, $T_{0}$ is
isomorphic to $GL_{1}$ and acts on $V$ as scalar multiplication. Let $T_{1}$ be a maximal Q-split
torus of $G_{1}$ and $P_{1}$ a minimal parabolic subgroup of $G_{1}$ containing $T_{1}$ .

We choose a basis $\{v_{1}, \ldots, v_{N}\}$ of $V$ consisting of weight vectors of $T_{1}$ . Namely we assume
that there exists a character $\lambda_{i}$ of $T_{1}$ satisfying $t_{1}\cdot v_{t}=\lambda_{i}(t_{1})v_{i}$ for every $t_{1}\in T_{1}$ . We denote
by $X(T_{1})$ the group of rational characters of $T_{1}$ and put $\mathrm{t}_{1}^{*}=X(T_{1})\otimes_{\mathbb{Z}}$ R. We may identify

$\mathrm{t}_{1}^{*}$ the dual space of the Lie algebra of $T_{1}$ . We consider $\lambda\dot{.}$ as an element of $\mathrm{t}_{1}^{*}$ .
For an $v=\Sigma_{i=1}^{N}X_{i}v_{i}\in V(\mathrm{Q})$ , we put $I_{v}=\{i|1\leq i\leq N, x_{i}\neq 0\}$ . Let $C_{v}$ be the convex

hull of $\{\lambda_{i}|i\in I_{v}\}$ in $\mathrm{t}_{1}^{*}$ . A $\mathrm{Q}$-rational point $v\in V(\mathrm{Q})$ is called $\mathrm{Q}$-stable if $C_{g_{1}\cdot v}$ contains
a neighbourhood of the origin for any $g_{1}\in G_{1}(\mathrm{Q})$ . Denote by $V(\mathrm{Q})^{st}$ the set of $\mathrm{Q}$-stable
points.

Theorem 5.1 ([Yul], Proposition 3.1.4) The adelic zeta function

$\int_{\tau_{0}(R})/\tau_{0(}\mathrm{Q})|t|s|d^{\mathrm{x}}t|\int G_{1(\hslash})/G1(\mathbb{Q})V(\mathrm{Q})$
.

$v \sum_{\epsilon \mathrm{c}}\Phi(tg1)v\in|dg_{1}|$

is absolutely convergent if the real part of $si_{\mathit{8}}$ sufficiently large.

Corollary 5.2 ([Yul], p.67) If $\dim G=\dim V$ , then $V(\mathrm{Q})^{st}=(V-S)(\mathrm{Q})$ and the adelic
zeta function

$\int_{\tau_{0}(R)/}T0(\mathrm{Q})|^{s}|t|d^{\mathrm{x}}t|\int G1(\hslash)/c1(\Phi)(-)(\mathbb{Q})\Phi v\in\sum_{Vs}(tg1^{\cdot}v)|dg_{1}|$

is absolutely convergent if the real part of $s$ is sufficiently large.

The adelic integral in the theorem is transformed into the sum of several zeta integrals
of the form discussed in [S3] (by using the reduction theory) and the convergence of the
adelic zeta integral is equivalent to the convergence of zeta functions discussed in [S3].

\S 6 Irreducible regular reduced prehomogeneous vec-
tor spaces

In this section, we explain how the convergence criterions in \S 2-4 are applied to the
irreducible regular reduced prehomogeneous vector spaces classified by [SK].

6.1 Weil-Igusa criterion

First we note that, if the split $k$-form of a representation $(G^{1}, \rho, V)$ is admissible, then
any $k$-form of $(G^{1}, \rho, V)$ is admissible. However the converse is not true in general. For
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example, as is proved in [SS], the prehomogeneous vector space of hermitian matrices
$(GL_{n}(K), Hermn(Ic)),$ $K=$ a quadratic number field, is admissible over $\mathrm{Q}$ ; nevertheless
its split $\mathrm{Q}$-form $(GL_{n}\cross GL_{n}, M(n))$ is not admissible. Igusa [I] classified the admissible
representations of split type. It seems that the classification of admissible representations
of non-split type is still open. We also note that the castling transform does not preserve
the admissibility.

The following is the list of irreducible regular reduced prehomogeneous vector spaces for
which the split $\mathrm{Q}$-form of $(G^{1}, \rho, V)$ is admissible. Whole theory of [SS] can be applied to
any $\mathrm{Q}$-form of these prehomogeneous vector spaces.

Admissible PV

(3) $(GL_{2m}, \Lambda_{2}, Alt_{2})m$

(14) $(GL_{1}\cross Sp_{3}, \Lambda_{1}\otimes\Lambda_{3}, V(1)\otimes V(14))$

(15) $(SO_{m}\cross GL_{1}, \Lambda_{1}\otimes\Lambda_{1}, V(m)\otimes V(1))(m\geq 5)$

(16) $(GL_{1}\cross s_{p}in_{7}, \Lambda_{1}\otimes \mathrm{s}\mathrm{p}\mathrm{i}\mathrm{n}, V(1)\otimes V(8))$

(19) $(GL_{1}\cross s_{p}in_{9}, \Lambda_{1}\otimes \mathrm{s}\mathrm{p}\mathrm{i}\mathrm{n}, V(1)\otimes V(16))$

(22) $(GL_{1}\cross Spin_{11,1}\Lambda\otimes \mathrm{s}\mathrm{p}\mathrm{i}\mathrm{n}, V(1)\otimes V(32))$

(23) $(GL_{1}\cross Spin_{12,1}\Lambda\otimes \mathrm{s}\mathrm{p}\mathrm{i}\mathrm{n}, V(1)\otimes V(32))$

(25) $(GL_{1}\cross G_{2}, \Lambda_{1}\otimes\Lambda_{2}, V(1)\otimes V(7))$

(27) $(GL_{1}\cross E_{6}, \Lambda_{1}\otimes\Lambda_{1}, V(1)\otimes V(27))$

(29) $(GL_{1}\cross E_{7}, \Lambda_{1}\otimes\Lambda_{1}, V(1)\otimes V(56))$

6.2 Sato-Ying criterion

In Theorem 4.1, the first condition is always satisfied by irreducible prehomogeneous
vector spaces. The second condition can be checked over the algebraic closure. All the
admissible prehomogeneous vector spaces listed above satisfy the assumptions in the the-
orem.

Now we give the list of non-admissible irreducible regular prehomogeneous vector spaces
satisfying the assumptions of Theorem 4.1, which is due to K.Ying [Yil].

Non-admissible PV with isotropy subgroup satisfying (4.2)

(1) $(G\cross GL_{m}, \rho\otimes\Lambda_{1}, V(m)\otimes V(m))$

(2) ( $GL_{n},$ $2\Lambda 1,$ Sym)n $(n\geq 3)$
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(5) ( $GL_{6}$ , A3, $V(20)$ )

(6) ( $GL_{7}$ , A3, $V(35)$ )

(7) ( $GL_{8}$ , A3, $V(56)$ )

(10) $(SL_{5}\cross GL_{3}, \Lambda_{1}\otimes\Lambda_{1}, V(10)\otimes V(3))$

(13) $(Sp_{n}\cross GL_{2m}, \Lambda_{1}\otimes\Lambda_{1}, V(2n)\otimes V(2m))$

(15) $(SO_{m}\cross GL_{n}, \Lambda_{1}\otimes\Lambda_{1}, V(m)\otimes V(n))$ ( $m>n$ , and $n,$ $m-n\neq 2$ )

(18) $(GL_{3}\cross s_{p}in_{7}, \Lambda_{1}\otimes \mathrm{s}\mathrm{p}\mathrm{i}\mathrm{n}, V(3)\otimes V(8))$

(20) ( $GL_{2}\cross Spin_{10},$ $\Lambda_{1}\otimes \mathrm{h}\mathrm{a}\mathrm{l}\mathrm{f}$-spin, $V(2)\otimes V(16)$ )

(21) ( $GL_{3}\cross Spin_{1}0,$ $\Lambda_{1}\otimes \mathrm{h}\mathrm{a}\mathrm{l}\mathrm{f}$-spin, $V(3)\otimes V(16)$ )

(24) $(GL_{1}\cross Spin_{14}, \Lambda_{1}\otimes \mathrm{s}\mathrm{p}\mathrm{i}\mathrm{n}, V(1)\otimes V(64))$

The generalization of the theorem by Ying [Yi2] applies to the prehomogeneous vector
spaces in the following list.

Non-admissible PV with isotropy subgroup satisfying (4.3)

(2) $(GL_{2},2\Lambda 1, Sym_{2})$

(15) $(SO_{m}\cross GL_{n}, \Lambda_{1}\otimes\Lambda_{1}, V(m)\otimes V(n))(m>n, n=2_{orm-}n=2)$

(17) $(GL_{2}\cross Spin_{7}, \Lambda_{1}\otimes \mathrm{s}\mathrm{p}\mathrm{i}\mathrm{n}, V(2)\otimes V(8))$

(26) $(GL_{2}\cross G_{2}, \Lambda_{1}\otimes\Lambda_{2}, V(2)\otimes V(7))$

In [Yil], Ying observed the following interesting fact:

Fact for an irreducible regular prehomogeneous vector space $(G, \rho, V)$ , the group $G_{x}^{1}(x\in$

$V-S)$ is connected if and onfy if the largest root of the $b$ -function is equal to $-1$ .

Recall that the $b$-function controls the location of poles of zeta functions, and the latter
condition is equivalent to that the first (possible) pole of the zeta functions predicted by
the $b$-function is $s=\dim V/\deg P$ . This is consistent with the result on the abscissa of the
convergence obtained in Theorem 4.1.
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6.3 Yukie’s criterion

By Corollary 5.2, we can check the convergence of the zeta functions associated to the
following prehomogeneous vector spaces.

PV with finite isotropy

(4) $(GL_{2},3\Lambda_{1}, V(4))$

(8) $(SL_{3}\cross GL_{2},2\Lambda_{1}\otimes\Lambda_{1}, V(6)\otimes V(2))$

(11) $(SL_{5}\cross GL_{4}, \Lambda_{2}\otimes\Lambda_{1}, V(10)\otimes V(4))$

In [Yu2], Yukie proved that $V_{k}^{st}=(V-S)_{k}$ for the prehomogeneous vector space

(12) $(SL_{3}\cross SL_{3}\cross GL_{2}, \Lambda_{1}\otimes\Lambda_{1}\otimes\Lambda_{1})$

Hence Theorem 5.1 implies the convergence of the zeta functions associated with this space.
By an argument similar to that leading to Theorem 5.1, he further proved the convergence
of the zeta functions associated with the prehomogeneous vector space

(9) $(SL_{6}\mathrm{x}GL_{2}, \Lambda_{2}\otimes\Lambda_{1})$ .

Yukie dealt only with the split forms of (9) and (12); however a careful analysis of his
method might lead to the convergence of zeta functions for arbitrary k-forms.
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6.4 Conclusion

The results above can be summarized in the following table. The case (28) is the only
space for which the convergence of the zeta functions has not yet been settled.
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