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General Introduction

In this talk, we gave a brief exposition of the theory developed in [Mzk]. This theory
is a theory of $r$ -pointed stable curves of genus $g$ over $p$-adic schemes (for $p$ odd), which, on
the one hand, generalizes the Serre-Tate theory of ordinary elliptic curves to the hyperbolic
case (i.e., $2g-2+r\geq 1$ ), and, on the other hand, generalizes the complex uniformization
theory of hyperbolic Riemann surfaces (reviewed briefly below) due to Ahlfors, Bers, et al.
to the $p$-adic case. In order to discuss this theory, it is thus first necessary to reformulate
the complex theory in such a way that the translation into the $p$-adic case becomes more
natural. The most fundamental tool for doing this, which is, in fact, of an algebraic, not
an arithmetic nature, is the systematic use of the notion of an indigenous bundle, due to
[Gunning]. The use of indigenous bundles enables one to get rid of the upper half plane,
and thus to bring uniformization theory into a somewhat more algebraic setting. In any
sort of nontrivial arithmetic theory of this nature, however, algebraic manipulations alone
can never be enough. Thus, the fundamental arithmetic observation is the following:

$K\tilde{a}hler$ metrics in the complex case correspond to Frobenius actions in
the $p$ -adic cas $e$ .

Since one typically gets a natural Frobenius action for free modulo $p$ , a Frobenius action
typically means a canonical lifting (over the $p$-adic integers) of the natural Frobenius action
modulo $p$ . In fact, in some sense, the complex analytic theory of uniformizations both of
individual hyperbolic curves and of the moduli space of such curves can essentially be
distilled down to two objects, both of which happen to be K\"ahler metrics:

(1) the hyperbolic metric on a hyperbolic Riemann surface (which encodes
the upper half plane uniformization); and

(2) the Weil-Petersson metric on the moduli space (which encodes the Bers
uniformization).

Moreover, these two metrics are related to each other in the sense that the latter is essen-
tially the push-forward of the former. In a similar way, the $p$-adic theory revolves around
two fundamental Frobenius liftings:
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(1) the canonical Frobenius lifting on a canonical hyperbolic curve; and

(2) the canonical Frobenius lifting on a certain stack which is \’etale over
the moduli stack.

Gunning’s Theory of Indigenous Bundles

Let $X$ be a compact hyperbolic Riemann surface. Let $Harrow X$ be its uniformization
by the upper half plane. Then by considering the covering transformations of $Harrow X$ , we
get a homomorphism (well-defined up to conjugation)

$\rho$ : $\pi_{1}(X)arrow Aut(H)=PSL_{2}(\mathrm{R})$

which we call the canonical representation of $X$ . If we regard $\rho$ as defining a morphism
into $PSL_{2}(\mathrm{C})$ , then we obtain (in the usual fashion), a local system of $\mathrm{P}^{1}$ -bundles on $X$ ,
which thus gives us a holomorphic $\mathrm{P}^{1}$ -bundle with connection $(P, \nabla_{P})$ on $X$ . By Serre’s
GAGA, $(P, \nabla_{P})$ is necessarily algebraic. It turns out that $P$ is always isomorphic to a
certain $\mathrm{P}^{1}$ -bundle of jets (which is also entirely algebraic). Thus, the upper half plane
uniformization may be thought of as just being a special choice of connection $\nabla_{P}$ . A pair
“like” $(P, \nabla_{P})$ (satisfying certain technical properties discussed in Chapter I, Section 2 of
[Mzk] $)$ is called an indigenous bundle. By working with the $\log$ structures of [Kato], one
can also define indigenous bundles in a natural way for smooth $X$ with punctures, as well
as for nodal $X$ .

As emphasized earlier, the point of dealing with indigenous bundles is that they allow
one to translate the upper half plane uniformization into the purely algebraic information
of a connection on $P$ . Of course, how one chooses this particular special connection on $P$

is very nontrivial arithmetic issue. We shall call the pair consisting $(P, \nabla_{P})$ consisting of
this particular connection the canonical indigenous bundle on $X$ .

Complex Uniformization Theory in Terms of K\"ahler Metrics

In this section we discuss how a K\"ahler metric on a complex manifold can be used to
define canonical affine, holomorphic coordinates on the manifold locally in a neighborhood
of a given point, and describe the two examples of this phenomenon that are important
here, i.e., the ones that encode the uniformization theory of hyperbolic curves and their
moduli. Everything that is discussed here is well-known, but our point of view is somewhat
different from that usually taken in the literature.

Let $M$ be a smooth complex $\mathrm{n}\mathrm{u}\mathrm{a}\mathrm{n}\mathrm{i}\mathrm{f}_{0}1\mathrm{d}$ of complex dimension $m$ . The complex analytic
structure on $M$ defines, in particular, a real analytic structure on $M$ . Let $\mu$ be a real
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analytic $(1, 1)$-forn on $M$ that defines a K\"ahler metric on $\Lambda f$ . Thus, in particular, $\mu$ is a
closed differential form. Let $M^{\mathrm{c}}$ be the conjugate complex manifold to $M$ : that is to say, we
take $M^{c}$ to be that complex manifold which has the same underlying real analytic manifold
structure as $M$ , but whose holomorphic functions are the anti-holomorphic functions of
$M$ . Let us fix a point $e\in M$ . Let $N$ be the germ of a complex manifold obtained by
localizing the complex manifold $\Lambda f^{c}\cross \mathrm{J}/I$ at $(e, e)\in M^{c}\cross\Lambda f$ (where this last expression
makes sense since $\Lambda f^{c}$ has the same underlying set as $hf$ ). Let $\Omega^{hol}$ (respectively, $\Omega^{ant}$ ) be
the holomorphic vector bundle on $N$ obtained by pulling back the bundle $\Omega_{M}$ (respectively,
$\Omega_{M^{c}})$ of holomorphic differentials on $M(1^{\cdot}\mathrm{e}\mathrm{s}_{\mathrm{P}^{\mathrm{e}}\mathrm{y},\phi^{C})}\mathrm{c}\mathrm{t}\mathrm{i}_{\mathrm{V}}\mathrm{e}1\Lambda$ to $\mathrm{A}f^{c}\cross M$ via the projection
$M^{c}\cross Marrow M$ (respectively, $\Lambda f^{c}\cross\lambda farrow hf^{c}$), and then restricting to $N$ . Thus, in
summary, we have a $2m$-dimensional germ of a complex manifold $N$ , together with two
$m$-dimensional holomorphic vector bundles (locally free sheaves) $\Omega^{hol}$ and $\Omega^{ant}$ on $N$ .

Note that locally at $e\in \mathbb{J}I$ , the fact that $\mu$ is real analytic means that we can write
$\mu$ as a convergent power series in holomorphic and anti-holomorphic local coordinates at
$e$ . In other words, if we restrict $\mu$ to $N$ , we may regard $\mu|_{N}$ as defining a holomorphic
section of $\Omega^{ant}\otimes_{\mathcal{O}_{N}}\Omega^{ho}l$ (where $O_{N}$ is the sheaf of holomorphic functions on $N$ ). Let $d^{l\iota ol}$

(respectively, $d^{ant}$ ) be the exterior derivative on $N$ with respect to the variables coming
from $\Lambda f$ (respectively, $\mathbb{J}f^{c}$ ). Note that since $\Omega^{hol}$ is constructed via pull-back from $\Lambda f$ , we
can apply $d^{hol}$ to sections of $\Omega^{ant}$ . We thus obtain a sort of de Rham complex with respect
to $d^{hol}$ :

$0$ $arrow$ $\Omega^{ant}$
$arrow d^{hol}$

$\Omega^{ant_{\otimes \mathit{0}_{N}}}\Omega^{hl}\mathit{0}$

$arrow d^{hol}$

$\Omega^{ant}\otimes o_{N}(\wedge^{2}\Omega^{ho}l)$
$arrow d^{hol}$ .. .

Relative to this complex, the section $\mu|_{N}$ of $\Omega^{ant}\otimes\Omega^{hol}$ satisfies $d^{hol}\mu|_{N}=0$ (since $\mu$ is a
closed form). It thus follows from the Poincar\’e Lemma that there exists a (holomorphic)
section $\alpha$ of $\Omega^{ant}$ that vanishes at $(e, e)\in N$ and satisfies $d^{l\mathrm{t}ol}\alpha=\mu|_{N}$ . Let $M_{e}$ be the
germ of a complex manifold obtained by localizing $\mathrm{J}f$ at $e\in M$ . Let

$\iota:\mathrm{A}I_{e}rightarrow N$

be the inclusion induced by the map $Marrow \mathrm{A}f^{c}\cross\Lambda,f$ that takes $f\in M$ to $(e, f)\in M^{c}\cross M$ .
Then $\iota^{*}(\alpha)$ defines a holomorphic morphism $\beta$ : $\Lambda f_{e}arrow\Omega_{M^{c},e}=\Omega_{M,e}^{c}$ , where $\Omega_{M,e}$ is the
affine complex analytic space defined by the cotangent space of $\Lambda f$ at $e$ . Note, moreover,
that although $\alpha$ (as chosen above) is not unique, $\beta$ is nonetheless independent of the choice
of $\alpha$ . Moreover, $\beta$ is an immersion: Indeed, to see this is suffices to check that the map
induced by $\beta$ on tangent spaces is an isomorphism, but this follows from the fact that
$d^{hol}\alpha=\mu|_{N}$ , and the fact that the Hermitian form defined by $\mu$ is nondegenerate.

In summary, we see that from the K\"ahler metric $\mu$ , we obtain a canonical holomorphic
local affine uniformization

$\beta$ : $M_{\mathrm{e}}arrow\Omega_{M,e}^{c}$
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Pulling back the standard affine coordinates on $\Omega_{M,e}^{c}$ gives us a canonical collection of
holomorphic coordinates on A$f_{\mathrm{e}}$ .

Deflnition : We shall refer to these coordinates as the canonical holomorphic local
coordinates of the $K\tilde{a}hler$ manifold $(M, \mu)$ at $e$ . We shall refer to $\beta$ as as the canonical
local affine uniformization of the K\"ahler manifold $(M,\mu)$ at $e$ .

From our point of view, the two important examples of canonical holomorphic local
coordinates defined by a K\"ahler metric are the following:

Example 1: Let $M=\{z\in \mathrm{C}||z|<1\}$ , with the standard hyperbolic metric $\frac{dz\wedge d\overline{z}}{\sqrt{1+(z\overline{z})}}$ .
Then $z$ is a canonical coordinate at $0$ . Indeed, to see this it suffices to note that $d^{hol}(z\cdot d\overline{Z})=$

$dz$ A $d\overline{z}$, which is equal to the metric modulo the ideal generated by $\overline{z}$ in $O_{N}$ . Note that
by the K\"obe uniformization theorem of classical complex analysis, if $X$ is an arbitrary
hyperbolic Riemann surface of finite type (i.e., a compact Riemann surface minus a finite
number of points), then the universal covering space $\tilde{X}$ of $X$ is holomorphically isomorphic
to the open unit disk $M$ . Since the standard hyperbolic metric on $M\cong\tilde{X}$ is preserved by
the deck transformations, it thus descends to $X$ , hence defines a canonical metric $\mu_{X}$ on
X. Thus, the canonical local coordinate at a point $x$ of $X$ associated to the K\"ahler metric
$\mu_{X}$ is precisely the local coordinate at $x$ obtained by descending the coordinate “

$z$
” via

$M\cong\tilde{X}$ to $X$ . In other words, one can think of (at least the local coordinate obtained
from) the isomorphism $M\cong\tilde{\lambda^{r}}$ as being encoded in the canonical metric $\mu_{X}$ .
Example 2: Let $M$ be the moduli stack of compact Riemann surfaces of genus $g$ , where
$g\geq 2$ (so $M$ is a smooth complex analytic stack). Let $X$ be a Riemann surfaces of genus
$g$ . Let $Q_{X}=H^{0}(x_{\omega^{\bigotimes_{X}2})}$, be the space of holomorphic quadratic differentials on $X$ . Thus,
if we denote by $[X]\in \mathbb{J}/I$ the point of $\mathbb{J}I$ defined by $X$ , the vector space $Q_{X}$ is canonically
isomorphic to the holomorphic cotangent space to $\Lambda f$ at [X]. By using the canonical metric
$\mu_{X}$ on $X$ of the preceding example, we obtain the Weil-Petersson inner product:

$(\phi,$ $\psi\rangle^{\mathrm{d}\mathrm{e}\mathrm{f}}=\int_{X}\frac{\phi\cdot\overline{\psi}}{\mu_{X}}$

for $\phi,$ $\psi\in Q_{X}$ . (Here the bar over the $\psi$ denotes complex conjugation.) This inner product
on the vector space $Q_{X}$ clearly varies real analytically with respect to [X], hence defines
a real analytic Hermitian metric $\mu_{M}$ on $M$ . It is a result of Weil and Ahlfors that this
metric $\mu_{M}$ , which is called the Weil-Petersson metric on $M$ , is K\"ahler. Moreover, it is a
result of Royden ([Royd]) that the coordinates arising from the Bers embedding (see, e.g.,
[Gard] $)$ are canonical local coordinates with respect to $\mu_{M}$ . In other words, even though
the Bers embedding is quite difficult to construct, one can already construct it locally quite
easily by applying the above construction to the Weil-Petersson metric which is very easy
to define.
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Ordinary Frobenius Liftings

Let $p$ be an odd prime number. Let $k$ be an algebraically closed field of characteristic
$p$ . Let $A=W(k)$ be the ring of Witt vectors with coefficients in $k$ . Let $S$ be a smooth
formal scheme of relative dimension $d$ over $A$ . Let $\Phi_{A}$ : $Aarrow A$ denote the Frobenius
morphism on $A$ . Let $\Phi$ : $Sarrow S$ be a $\Phi_{A}$ -linear morphism. We shall call $\Phi$ a Frobenius
lifling if its reduction $\Phi \mathrm{p}_{p}$ : $S\mathrm{p}_{p}arrow S_{\mathrm{F}_{p}}$ modulo $p$ is equal to the absolute Frobenius
morphism (i.e., given by raising sections of the structure sheaf to the $p^{th}$ power). Suppose
that $\Phi$ is a Frobenius lifting. Then the pull-back morphism that it induces on differentials

$d\Phi$ : $\Phi^{*}\Omega_{S}/Aarrow\Omega_{S/A}$

is equal to zero modulo $p$ . Thus, we can consider the morphism

$\frac{1}{p}d\Phi$ : $\Phi^{*}\Omega_{S}/Aarrow\Omega_{\mathit{8}/A}$

obtained by dividing $d\Phi$ by $p$ . We shall call $\Phi$ an ordinary Frobenius lifting if $\frac{1}{p}d\Phi$ is an
isomorphism.

Let $z\in S(k)$ be a $k$-valued point of $S$ . Let $R_{z}$ be the completion of the local ring of $S$

at $z$ . Thus, $R_{z}$ is noncanonically isomorphic to the power series ring $A[[t_{1}, \ldots, td]]$ , where
the $t_{i}$ are indeterminates. Then it is shown in [Mzk], Chapter III, Section 1, that there
exists a free $\mathrm{Z}_{p}$-module $\Omega^{et}$ of rank $d$, along with the following:

(1) a canonical isomorphism $\Omega^{et}\otimes_{\mathrm{Z}_{p}}R_{z}\cong\Omega_{S/A}\otimes_{\mathcal{O}_{S}}R_{z}$ ;

(2) a canonical continuous homomorphism $Q:\Omega^{et}arrow R_{z}^{\cross}$ such that for any
$\omega\in\Omega^{et},$ $q_{\omega}=^{\mathrm{e}\mathrm{f}}\mathrm{d}O_{\approx}(\omega)$ satisfies the property: $\Phi^{-1}(q_{\omega})=q_{\iota v}^{p}$ , i.e., the units
$q_{\omega}$ diagonalize the Frobenius lifting $\Phi$ .

Thus, one can think of the $q_{\omega}$ (or more properly, their logarithms) as canonical local
coordinates at $z$ associated to $\Phi$ .

It is the fact that both K\"ahler metrics and ordinary Frobenius liflings define canonical
local coordinates that is the essence of the claimed analogy between these two types of
objects.

Statement of the Main Results of [Mzk]

We are now ready to discuss what is done in [Mzk] in a bit more detail. The first step
is to note that one can define indigenous bundles in the $p$-adic context (as a $\mathrm{P}^{1}$ -bundle
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with connection satisfying certain properties), and that in this context they enjoy many of
the same properties as their complex analytic forebears. We then study the $p$-curvature of
indigenous bundles in characteristic $p$ , and show that a generic $r$-pointed stable curve of
genus $g$ has a finite, nonzero number of distinguished indigenous bundles $(P, \nabla_{P})$ , which
are characterized by the following two properties:

(1) the $p$-curvature of $(P, \nabla_{P})$ is nilpotent;

(2) the space of indigenous bundles with nilpotent $p$-curvature is \’etale over
the moduli stack of curves at $(P, \nabla_{P})$ .

We call such $(P, \nabla_{P})$ nilpotent and ordinary, and we call curves ordinary if they admit at
least one such nilpotent, ordinary indigenous bundle. If a curve is ordinary, then choos-
ing any one of the finite number of nilpotent, ordinary indigenous bundles on the curve
completely determines the “uniformization theory of the curve” –to be described in the
following paragraphs. Because of this, we refer to this choice as the choice of a p-adic
quasiconformal equivalence class to which the curve belongs.

After studying various basic properties of ordinary curves and ordinary indigenous
bundles in characteristic $p$ , we then consider the $p$-adic theory. Let $\overline{\mathcal{M}}_{g,r}$ be the moduli
stack of $r$ -pointed stable curves of genus $g$ over $\mathrm{Z}_{p}$ . Then we show that there exists a
canonical $p$-adic (nonempty) formal stack $\pi_{\mathit{9}^{\Gamma}}^{O\Gamma d}$

, together with an \’etale morphism

$\pi_{g,r}^{ord}arrow\overline{\mathcal{M}}_{g,r}$

such that modulo $p,$
$\pi_{g}^{ord},\Gamma$ is the moduli stack of ordinary $r$ -pointed curves of genus $g$ ,

together with a choice of $p$-adic quasiconformal equivalence class. Moreover, the generic
degree of $\pi_{g,r}^{ord}rg$over $\overline{\mathcal{M}}$

, is $>1$ ( $\mathrm{s}$ long as $2g-\underline{9}+r\geq 1$ , and $p$ is sufficiently large). It
is over $\pi_{g,r}^{ord}$ that most of our theory will take place. Our first main result is the following:

Theorem 0.1: Let $C^{log}arrow(\pi_{g,r}^{ord})^{lg}\mathit{0}$ (where the “$log$” refers to $c$anonic$\mathrm{a}llog$ scheme
structures) be the tautological ordin$\mathrm{a}\mathrm{J}yr$ -pointed $st\mathrm{a}b\iota e$ curve of genus $g$ . Then there
exists a canonic$\mathrm{a}\mathit{1}$ Frobenius lifting $\Phi_{N}^{log}$ on $(\pi_{g,r}^{O}rd)^{lo}g$ , together with a canonical indigenous
$b$un $dle(P, \nabla_{P})$ on $C^{log}$ . Moreo$ver,$ $\Phi_{N}^{log}$ ancl $(P, \nabla_{P})$ are uniqu$ely$ characterized by the fact
$(P, \nabla_{P})$ is ‘Frobenius invaria$nt$ ” (in some suitable sense) witl] respect to $\Phi_{N}^{log}$ .

Moreover, there is an $op$en $p$-adic formal $su$ bstack $C^{ord}\subseteq C$ of “ordinary poin$ts$ ” of
$\cdot$

the curve. The open formal $su$bstack $C^{ord}\subseteq C$ is dense in $e$very fiber of $C$ over $\mathrm{W}_{g,r}^{O}rd$ . Also,
there is a uniq $ue$ canonical Frobenius liftin$g$

$\Phi_{C}^{log}$ : $(c^{log})ordarrow(C^{log})^{o}rd$
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which is $\Phi_{N^{-}}^{log}lin$ ear and compatible with the Hodge section of the canonical indigenous
$b$undle $(P, \nabla_{P})$ . Finally, $\Phi_{C}^{log}$ and $\Phi_{N}^{log}$ have various functoriality properties, such as func-
toriality with respect to “$log$ admissi $ble$ coverings of $C^{log}$ ” and with respect to restriction
to the boundary $of\overline{\mathcal{M}}_{g,r}$ .

This Theorem is an amalgamation of Theorem 2.8 of Chapter III and Theorem 2.6 of
Chapter V of [Mzk]. In some sense all other results in this paper are formal consequences
of the above Theorem. For instance,

Corollary 0.2: $Tl\mathit{1}e$ Frobenius lifting $\Phi_{N}^{log}$ allows one to define $c$anon$ic\mathrm{a}l$ affine $loc\mathrm{a}l$

coordinates on $\mathcal{M}_{g,r}$ at an ordinary point $\alpha val\mathrm{u}ed$ in $k$ , a perfect field of characteristic
$p$ . These coordinates $\mathrm{a}\mathit{1}^{\cdot}e$ well-defined as soon as on$e$ chooses a $qu$asiconformal equiva-
lence $cl\mathrm{a}SS$ to which $\alpha$ belongs. Also, $at$ a point $\alpha\in\overline{\mathcal{M}}_{g,r}(k)$ correspondi$ng$ to a totally
degenerate curve, $\Phi_{N}^{log}$ defines canonical multiplicative local coordinates.

This Corollary follows from Chapter III, Theorem 3.8 and Definition 3.13 of [Mzk].

Let $\alpha\in\pi_{g}^{ord},r(A)$ , where $A=ll^{\gamma}(k)$ , the ring of Witt vectors with coefficients in a

perfect field of characteristic $p$ . If $\alpha$ corresponds to a morphism $SpeC(A)arrow \mathrm{W}_{g,r}^{ord}$ which
is Frobenius equivariant (with respect to the natural Frobenius on $A$ and the Frobenius

lifting $\Phi_{N}^{log}$ on $\pi_{g}^{ord},$ )
$\Gamma$ ’ then we call the curve corresponding to $\alpha$ canonical. Let $fi’$ be the

quotient field of $A$ . Let $GL_{2}^{\pm}(\mathrm{Z}_{p})$ be the quotient of $GL_{2}(\mathrm{Z}_{p})$ by $\{\pm 1\}$ .

Theorem 0.3: Once one fixes a $k$ -valued point $\alpha_{0}$ of $\mathrm{W}_{\mathit{9}^{r}}^{o\Gamma d},$

’ there is a $uni$que canonical
$\alpha\in\pi_{g}^{ord},r(A)$ that lifts $\alpha_{0}$ . Moreo$\mathrm{r}^{\gamma}e\mathrm{r}$ , if a curve $X^{log}arrow Spec(A)$ is canonic$\mathrm{a}l$ , it a $d\mathrm{m}$its

(1) A canonic$\mathrm{a}l$ dual crystalline (in $tl_{l}e$ sense of [Falt], $\S^{\underline{9}}$) Galois represen-
tation $\rho$ : $\pi_{1}(X_{I\backslash }’)arrow GL_{2}^{\pm}(\mathrm{Z})p$ ;

(2) A canonical $logp$-divisible group $G^{log}$ (up to $\{\pm 1\}$ ) on $X^{log}$ whose Tate
module defines the representation $\rho$ ;

(3) A canoni $c\mathrm{a}l$ Frobenius lifting $\Phi_{\lambda}^{log}$, : $(X^{log})^{o}\Gamma darrow(X^{log})^{or}d$ over the
ordinary locus (which sa tisfies certain properties).

Moreover, if a lift$\mathrm{i}ngXlogarrow Spec(A)$ of $\alpha_{0}h$as any one of these objects (1) through (3),
then it is $c$anonical.

This Theorem results from Chapter III, Theorem 3.2, Corollary 3.4; Chapter IV, Theorem
1.1, Theorem 1.6, Definition 2.2, Proposition 2.3, Theorem 4.17 of [Mzk].

The case of curves with ordinary reduction modulo $p$ which are not canonical is more
complicated. Let us consider the universal case. Thus, let $S^{log}=(\pi_{g}^{or_{\Gamma}},)log;d$ let $f^{log}$ :
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$X^{log}arrow S^{log}$ be the universal $r$-pointed stable curve of genus $g$ . Let $T^{log}arrow S^{log}$ be
the finite covering ( $\log$ \’etale in characteristic zero) which is the Frobenius lifting $\Phi_{N}^{log}$ of
Theorem 0.1. Let $P^{log}arrow S^{log}$ be the inverse limit of the coverings of $S^{log}$ which are
iterates of the Frobenius lifting $\Phi_{N}^{log}$ . Let $x_{\tau-x^{log}}^{log}-\cross_{S^{log}}T^{l}og;X_{P}^{l}og=X^{log}\cross_{S^{log}}$ Plog.
We would like to consider the arithmetic fundamental groups

$\Pi_{1}=\mathrm{d}\mathrm{e}\mathrm{f}rlo\pi_{1}((\lambda g)T\mathrm{Q}_{\mathrm{p}})$ ; $\Pi\infty=^{\mathrm{e}}\pi 1\mathrm{d}\mathrm{f}((X_{P}^{lo}g)_{\mathrm{Q}_{\mathrm{p}}})$

Unlike the case of canonical curves, we do not get a canonical Galois representation of $\Pi_{1}$

into $GL_{2}^{\pm}(\mathrm{Z}_{p})$ . Instead, we have the following

Theorem 0.4: There is a canonical Galois representation

$\rho_{\infty}$ : $\Pi_{\infty}arrow GL_{2}^{\pm}(\mathrm{Z}_{p})$

Now suppose that $p\geq 5$ . Then the obstruction to extending $\rho_{\infty}$ to $\Pi_{1}$ is nontrivial and is
measured precisely by the extent to which the canonical affine coordinates (of Corollary
0.2) are nonzero. Also, there is a ring $D_{S}^{Gal}$ with a continuous action of $\pi_{1}(\tau_{\mathrm{Q}_{\mathrm{p}}}^{l}og)$ such that
we have a canonical dual crystalline representation

$p_{1}$ : $\Pi_{1}arrow GL_{2}^{\pm}(D^{Ga}S)l$

(i.e., this is a twisted homomorphism, with respect to the action of $\Pi_{1}$ (acting through
$\pi_{1}(T_{\mathrm{Q}_{p}}^{l}og))$ on $D_{S}^{c_{a}\iota}$ ). Finally, the ring $D_{S}^{Ga\iota}$ has an augmentation $D_{S}^{Ga\iota}arrow \mathrm{Z}_{p}$ which is
$\mathrm{I}\mathrm{I}_{\infty}$ -equivariant (for the trivial action on $\mathrm{Z}_{p}$) and which is such that after restricting to
$\mathrm{I}\mathrm{I}_{\infty}$ , and base changing by means of this augmentation, $\rho_{1}$ reduces to $\rho_{\infty}$ .

This follows from Chapter V, Theorems 1.4 and 1.7 of [Mzk].

All along, we note that when one specializes the theory to the case of elliptic curves,
one recovers the familiar classical theory of Serre-Tate. For instance, the definitions of
“ordinary curves” and “canonical liftings” specialize to the objects with the same names
in Serre-Tate theory. The $p$-adic canonical coordinates on the moduli stack $\mathcal{M}_{g,r}$ (Corollary
0.2) specialize to the Serre-Tate parameter. The Galois obstruction to extending $p_{\infty}$ to
a representation of $\Pi_{1}$ specializes to the obstruction to splitting the well-known exact
sequence of Galois modules that the $p$-adic Tate module of an ordinary elliptic curve fits
into.
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