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GLOBAL INTUITIONISTIC LOGIC AND ITS
SEMANTIC COMPLETENESS

TOKAI-GAKUEN WOMEN’S COLLEGE (R E#& TEiks)
HIROSHI AOYAMA (FIUJR) *

GI, Global Intuitionistic logic, is an intuitionistic modal predicate
logic which was first studied in the form of a sequent calculus in
Takeuti-Titani[2]. Later another version of GI was studied in Titani[3].
The goal of this paper is to prove the semantic completeness of Titani's
GI with respect to complete Heyting algebras with a unary operation

[ called a “globalization.”

We note here that Ono[l] contains completeness theorems for

several propositioinal sequent calculi similar to the propositional part
of Titani’s GI.

1 Syntax of GI
1.1 Language L of GI
1.1.1 Symbols of L
(1) Individual constants: co,c1,cs,...

(2) Free variables: ao,a1,az,...

(3) Bound variables: xo,x1,X2,...

(4) Predicate constants with n argument places (1=1,2,3,..) : R",R"1;,R",...
(5) Logical symbols: 71, A, v, —, V¥V, 3, []

(6) Punctuation symbols: (, ), ,(comma)

1.1.2 Well-formed formulas (wffs) of L

*The author is very grateful to Professor Satoko Titani for her valuable

comments on earlier drafts of this paper.



Individual constants and free variables are called “terms.”
(1) If t1,...tn are terms and R"is a predicate constant with n argument
places, then R"(ti,...tn) is a wff.
(2) If A and B are wffs, so are (AAB), (AVB), (A—B), T1A, and [ ]A.
(3) If A®) is a wif with a term t and x is a bound variable, then VxA(x)
and 3xA(x) are wifs, where A(x)is obtained from A(t) by replacing
each occurrence of t in A(t) with x.
(4) Wffs are obtained only by the above (1) —(3).
As usual, sentences are those wffs with no free variables. In what
follows, we will consider only sentences.
1.1.3 [-closed sentences of L,
(1) If A is a sentence, then [_A is a [ ]-closed sentence.
(2) If A and B are [ -closed sentences, so are (AAB), AV B), (A—B), 77A.
(3) If A(c) is a [ ]-closed sentence with an individual constant c,
then VAKX and TxA®) are [ ]-closed sentences, where VxA(x)
and IxA(x) are formed as in 1.1.2,(3).
(4) [-closed sentences are obtained only by the above (1)-(3)
1.1.4 Sequents of L
If Ay, As,..., Am, B1, Ba,..., Bn are sentences, then
Aj, As,..., Am = By, Bg,..., Ba (m,n=0)
is a sequent of L.
We use Greek capital letters I', A, IT,A,I'o,['1,... to denote finite

sequences of sentences separated by commas. We also use T, A,... to
denote finite sequences of [ l-closed sentences separated by commas.

1.2  Formal proofs in GI
The system GI contains axioms and a group of rules of inference,

which consists of (1) structural rules and (2) logical rules.



1.2.1 Axioms of GI: any sequents of the form: A = A, where A is
a sentence.

1.2.2 The structural rules of GI

'=A '=A AAT=A I'=AAA
Thinning: , Contraction: ,
AT=A '=AA AT=A '=AA
[LABII=A ['=AABA '=AA AI=A
Interchange: , Cut:
['BAII=A '=ABAA LII=AA

1.2.3 The logical rules of GI

AT =A AT=A '=>AA T=AB
AN :); s DA :
AABT=A BAAT=A | ['=A,ANB
AT=A BI'=A '=AA '=AA
v - 2DV ,
AVB,T=A | I'=>A,AvB  T['=A,BVA
'=AA BII=ZA ATSAB
- =0 T
A—-B, [ II=AA ['=A,A—B
F'=AA AT=A
A, T'=A '=A, A
A, T'=A
V= ., where c is an arbitrary individual constant.
VxA®),[=A
' =A,A@Q)
=>V: — . where c is an individual constant not occurring in
'=A, VxA(x) thelower sequent.
A@),'=A
3= . where c is an individual constant not occurring in
AxAx),['=A the lower sequent. '
'=AA .
==: where c is an arbitrary individual constant.

T2A, IxAx)



AT=A T=AA
0= — e —
OAT=A r=A,00A

When a sequent I' = A is provable in GI, we write —1"=A.
1.3 Theorems (i.e., Provable sequents) in GI

1 =0HAvA

@ A=A

3 [IA—B) = (JA—[IB)

4) A=A

(5) [A~B) = (JAALIB)

6) (JA~[LIB) = [IAAB)

(M UAvIB = [IAVB)

8 A =[]A, for any [J-closed sentence A

(99 T7T1A = A, for any [ ]-closed sentence A

(10) —1A— B = A VB, for any [ ]-closed sentence A

(11) A v A, for any [ J-closed sentence A

(12) LJ(A—B) ALIB—C) = LI(A—C)

(12) (JA—[B) = [J(JA — B)

(13) OJJA-B) = LI(JA—[B)

(14) [IVx(A—Bx)) = 1A~ VxB(x))

(15) OVx(Ax)—B) = [LI(FxAx)—B)

(16) Vx[A(®x) = LIV xA(x).

2 Semantics of GI
We now introduce structures for the language L, which we will call
“complete Heyting algebras with a globalization (cHags, for short).”

2.1 cHag interpretations



Let D be a nonempty set and L(D) be the extended language obtained

from L by adding a new individual constant d for each member d of D.
By a cHag interpretation for L(D), we mean a triple <D, H, [ I>such
that :
(1) H is a complete Heyting algebra with a globalization [:
H=<H, A, v,—, 7,01/ V>,

where [ is a unary operation on H satisfying the following conditions:
for each a,b= H and for each indexed set {ai}i € H,

G1 [Ja<a

G2 (Ja—[b)<[][Ja—b)

G3 Al a <0 Nas

G4 If Ja<b, then [Ja<[Ib

G5 [av—illa=1.
2) [ Tl is a map from the constants of L(P) such that

(i) [ ¢l e b for each individual constant ¢ of L

(ii) [ d ]=de D foreachde b

i) LR*J is a function: B* — H for each predicate constant R

With n argumént places.

(3) The symbol [ Tis also used to denote the truth value of a sentence

of L(D):

(i) Let R" be a predicate constant with n argument-places and let

t1,..., ta be individual constants of L(D). Then
TR ty,...t) J=LR*I(Lt: 0. Lt 1) eH.
(ii) For sentences of L(D) containing logical symbols, their truth

values are determined by:

CLA~ABT£LAIALBI



CAVvBI=2TAIVIBI

LA-BI2TAI-[B]

LAl 2LAT

[ VxA® I £ Adebnll A(d) ]

[ 3xA® I £ Vaes[ A(d) T

[OAT=0CAD,
where ~,v,— 71 /\,\/, and [] in the right-hand side of £ are
the operations on H.

Note: When c is an individual constant of Land [ ¢ J]=d e b, we

have [ Ac) I=[1 A(@d) 1.
2.2  Validity
(1) A sentence A of L(D) is valid in a cHag interpretation <b,H [ 1>,
if [AJl=1 forevery [ ]l
(2) The truth value of a sequent of L(D) is defined as follows:
[ As,As,..An=B1,Bs,..Ba 1 2 [ AiAAz A AAR—B1 VB2 V... VB, ]l
LALAs,...,An= T2 [ (AIAALA . AAR) ]
[ =BiBs..Ball 2 [ B:iVvBsV.. VB, 1.
L = T =[ILAA7A] for any sentence A.

Let Ai,As,...,Am = B1,Bs,....Ba be a sequent of L(P). Then it is valid
in a cHag interpretation <D, H, [ 1 >, if [ A, As,...,An=B1,Bs,....Bn 1]
=1 for every [ 1.

Also, sequent Ai, As, ..., Am = By, Bs,..., By of L is valid, in symbol,
FA1LAs,....,Am = B1,Bs,...,By, if AL,As,....Am & Bi,Bs,...,Bs is valid in

every cHag interpretation.
Now the following two propositions are immediate:

Proposition 2.2.1. Let H=<H, »~, v,—, 7,1 0,1, /\\\V > be a cHag.



Then the following hold: for each a,b = H and each indexed set {a;}ic H,
(1) Ifa<b,then[Ja<[lb
2 Oa=0la
@3 Canllb=0LlCanllb)
@ [lanb)y=0Llanllb
G) Cavib=0Uav[llb)
® [lav[lb <[lavb)
(7) a—[Ib =[1Ja—[lb)
® [l@—b) < Ja—[)
9 Wla=0"lla
10) Al Jai = CIAas
11 Villa = OVillas
(12) [10=0 and [J1=1.
Proposition 2.2.2. For each cHag interpretation and for each [ -
closed sentence A of L(P),
O OLa I=Cad
@ LA Ivalla =1
3) If L A JI<TBT, then [T A J<[JI B1l, where B is a sentence
of L(D).
Theorem 2.2.3.(The Soundness Theorem for GI) Let '=A bea
sequent- of L such that - '=A. Then F '=A.
Proof: Induction on the length of the proof = I'=A.
Theorem 2.2.4.(The Completeness Theorem for GI) Let =1 be a
sequent of L such that = =I' . Then}|- =T.
Proof: We prove that  T1 = A1 implies /5 T1= A1 Then this shows



as a special case that / =[JA implies # =[JA, where A is the
disjunction of all the sentences in I". Since (- =[JA iff - =A) and
(F =LA iff E =A), we can obtain : /£ =A implies £ =A, ie.,
¥ =T implies £ =T,
We now show in three steps that /P = Q implies /P = Q, where

P and Q are respectively the conjunction of all the sentences in T'; and
the disjunction of all the sentences in Ai. Let P be the set of all
individual constants of L. and L(P) be the same as L. We sometimes
regard L(D) as the set of sentences of L(D).
Step 1: The construction of a Ha ( Heyting algebra )
Definition 1: Let A BEL(®). Set

(1) A<B & [-A,P,71Q=B

(2) A=B & (A<B and BLA)

@) LAT= {BeL®):A=B}

@ H= {[AJ:AcL®)}

G) AT <[BI&A<B.
Then the relation = is an equivalence relation on L(P) and the relation
< on H is well-defined. The following three lemmas are immediate:
Lemma 2: For each A,B=L(®D),

1 Ae[ AT

@ A=Biff [Al=[BJ

@ AZBiff [AINIBI =0

@ I[BI<TA~>ATl=[P 1

® LArAT=[Ql<LBI

©@LrI+LQl.



Lemma 3: Let [ A ], [ Blle H. Then the g.lbof [ Al and [ B, i.e.
[ AT BT exists and equals [ AAB Jl. The Lu.b. of [ A Jland[[ B T,
ie. [ATVIBI exists and equals [[ AvB]l. The pseudo-complement
of [ A Jlrelative to [ B 1, i.e. [ AJl— [ B Jlexists and equals LA—BI].
Also0=[ Q ] =[|:A/\_|A:|]band 1=[ p I1= A—A ] for any sentence
Aof L(®).Thus < H, A, v, —,7,0,1>isa Ha, where T[AJI2[A]l
—0, which means 1L AJl=T A—AATAT =LA ]l
Lemma 4: For each VxA®X), 3xAK®) L),
LVxA® I=NAcep [ AQ T and [ 3xA® 1= Veen [ AQ I.
Definition 5: Set (JTAT 2 [ [JA T foreach [ATeH.
From this definition we can obtain
Lemma 6: For every A, B, A@©), A (_-closed) in L(P), the following hold:
O OCAD=0TAT
(2 [J1=1 and [J0=0
@ LAIALA D=0 and T A IvI—a =1
@ Gl:OLAT<[TAT
G2y: OLAT-OCBI<(TCAI-LBI)
G3y: AcedILAQ T < ONeep T AQ T,
ie, [V 1A® 1 < [ VxA® ]l
Gay:If OLAT <[ B, then CJLAT <CILB 1.
Goy: COLAT vOL AT =1.
Thus < H, ~, v, —, 71, [], 0, 1 > is a Ha with a globalization in the
sense that G3 of a cHag holds in the form of G3y .
Step 2: The construction of a new Ha

Definition 7: Let (JH £ {L A 1 : A is a []-closed sentence of L(P) }.



Then <[H, AH VvH H —H [TH oH 1H > or simply [(JH, is a
sublattice of H and a Ba ( Boolean'algebra) since [ JH is a distributive
lattice with 0 and 1 and foreach [ A 1 e[(JH, LT A JA[ A J =0
and [ A J]v[[ A Jl=1. It also holds that

NHeep [ A I=Ateep L A© =1L VxA ) I and
VU cp T A I=VH8ep [ A =0 Fxa® 1.
Definition 8: Let B be a Ba and let (Q) be a set of infinite joins and
meets in B as follows:
as=V%en as: (seS’ ) and
be=/A\fien by (seS"),
where two sets S' and S” are at most countable.
Lemma 9 (Rasiowa & Sikorski’s Theorem): Let B and (Q) be as
in Definition 8. Then there exists a maximal filter [ of B such that
VseS' (asel/ @ TteTs’ ass /) and
VseS" (VteTs” by el/) Dbel’).
Such a filter is called a “Q-filter.” From now on, we will use I/ to
denote the Q-filter in [ JH, where (Q) is the set of all infinite meets of
the form /\"Heep [[ A (c) ]l and all infinite joins of the form \/“H¢ep
LA@l
Definition 10: Foreach [AJ,[BJ EH, set
M L[AT=ICBIiff (CATISIBI) e,
where LA B IBI £ [(TAT—-IBI)
@ [Al~[CBDiff (TADl=IBI and CTBI=LAI.

Then the following lemma is immediate:
Lemma 11: Foreach TAJ,IB1, I Cc1 H,
1) [ATI~IBlif (LATISIBIALBIEBLAIEV

10



@ [ADl=TAd
3 TATI=IBI and [ BJ = [ CJ implies rTal=lcl]
(4) ~ is an equivalence relation on H.
Definition 12: For each [ A lleH, let
AT 2 {[BIeH:[AT~LB I} and
H* 2 H/~ £ {|[All :TAeH}.
Then for each |[ATl,|[Bl| eH* set
ATl < I[BIl& [AD=0IBI.
Note that |[[AJl = |[BIl iff TAJ ~[I B I and that < is well-defined
and is a partial order on H* . We now list two easy lemmas.
Lemma 13: Let |[ATl,|[BI| eH*. Then the g.Lb. of [[ATl| and |[BI},
ie. [TATIA®|IBT)| exists and equals |[LA TAT BTl The Lu.b. of [LATI
and |[[BIl, iel[ATIVHIIBI| exists and equals |[TATV [ BII . The
pseudo-complement of |[AJll relative to |[[BIl, i.e. |[[ATl —H" |[B]
exists and equals [TAT— [ BII. Also 08" = | 0" | and 1H = | 18],
Thus < H* AH', vH SH', —H" oH" 1H"> s 3 Ha, where —H" |[A]l
2|[A]I—"" 04", which means 71" |LATI = |[ATI -1 | 0¥ | = I[AT
—~of|= | LATI. |
Lemma 14: Let A bea [ -closed sentence of L(P). Then
@ L[alel iff LA el
@ I[aJl=1% iff [aJel/
@ IfTall=0" iff [ A Dl
4 [ATel/ or 7L A llel/ , but not both.
Lemma 15: For each AHecep [ AQ T and VHcen [ A@ IleH,

@) | AHeepLAQT | = AHeen [[AQT
@ | Viep[AQT | = V¥ een |[AQTI.

11
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Proof: Since VxA® = A@©, we have = =[]( VxA® — A@©). Then
LVxA® IS T AQ Tel/, ie. ILVxA®)T| < |TA@T| for each ceP.
Now suppose |[BIll £ I[AQ]I,ie. [BI 5[ A Jel’ for eache
eD. Then AHeep (I BIE T A@I) €V, since I is a Q-filter. Now
since \Heep ([BIETAQ )= een( [BI1ETAQT), wecan
obtain \eep ( [ B BT A@) 1) el/, from which we can also obtain
CIA\Heen([L B [ A I )el/ by G3y4. Since FHOVx(B—AR)) =
[I(B>VxA®), we obtain [1([ B J—/\"cebl[ A(c) J)el/. This means
I[BII £ ILVxA®II . The proof of (2) is similar.
Definition 16: Set (J"|[ATl £ |OLATI.
Now we can obtain the following three lemmas:

Lemma 17: For each [[A]l, I[BII, ITA@TeH",

Gly : (IVILATI < ICAT

G2y : LITITADI —¥ OIBII < O (O™ITADN - |[BII)

G3y 1 \een (IMILAQTI < AR een ITAOTI,

ie. [[V:UA®Il < [LOVxA®TI

G4y : If (V|LATI £ 1[BTI, then [(I*ILATI < OB

G5y : (IILATI v T [AD] = 17,
Thus <H*, AH" VvH SH' —H' [H oH' 1H" > jg 3 Ha with a
globalization in the sense that G3 of a cHag holds in the form of G3y+ .
Lemma 18: The function g: H —> H* defined by [ A ] — |[A]ll
is a natural homomorphism from H onto H* and preserves not only [ ]
but also infinite meets and joins of the form /\eep [ A© Il and \V/Heep
L A@ 1, ie.

g(OCLAT) =g AT
g(\leep [ AQ 1) = AFeeb g(L AQT) and



g(Vicep [AQT) =V eeng(TAQ D).
Lemma 19: Foreach |[All eH*,
LAl = VE{ | [BIl el : OFIIBII < AT}
Step 3: The construction of a cHag

We now construct a cHag from H".
Lemma 20 ( Rasiowa & Sikorski’s Embedding Lemma ): Let H*

be a Ha. Then there exist a cHa H** and an isomorphism from H* into
H** , preserving all infinite meets and joins.

By this lemma, we can obtain a cHa H* from the Ha H" in Step 2
and an isomorphism h: H* — H™ such that for each indexed set
{aic H',

h(AF; ai)= AE" h(a) and h(VF; a)=VH ih(ai).
We denote this cHa <H®™, AH™ vH™ SH” —H" oH™ 1H™ AH™\/H™S
by “H*
Definition 21: Define a globalization [JH™ as follows: for each ac H"",
(Ha=\VE{h(|OCAT|)eH":h(ICOLAT ) < a},
where < is the partial order on H™.
Lemma 22: ForeachacH*, [(JH a= 18" if a = L
oH" if a# 1
Proof: h0F)=0"" and h(11)=11". By Lemma 14, each | CJLA 1| eH"
is either 0¥ or 1H". So foreach h(| CJTL ATl | )eH™,
W OCAT )= 17 it [OCLATD| = 17,
of" if |OLATDI # 1%,
Then [H"a = VE™{h(| OTAT ) eH": (| OLAT ) < a}
e -
oH" if a# 17,

Lemma 23: For each a,beH** and each indexed set {aiic H™,

13



Glg+: (i a < a
G2ypee : (™2 o [JH™p < [ ([JH" g -H" )
G3y+: AHT [JH g < [JH"AHY, g
Gdy: If[JH"a < b, then [(H"a < [H"™p
G5y per : [T g I [ = 11
Thus < ™ AH® VH™ SH* ™ [JH™ gH [H™ AH™ \/Hs
a cHag and denoted by « H™ .” |
Proof: Using Lemma 22, the proof is straightforward.
Lemma 24: The isomorphism h: H* —> H** preserves [, i.e.
h(CILATI = h(ICAT .
Proof: h((IILATNH =h(VT{OF([BIIEH" : OIIBII < ICATIY ,
by Lemma 19
=V {h((CF|[BIheH" : (CFI[BINH< h(TATI,
since h preserves infinite joins
=" h(|LATl) by the definition of (1" in H*.
Therefore the map heg:H——>H™ is a homomorphism and preserves
not only infinite meets and joins but also [ ]. The definition of a map
[ I in H** goes as follows:
Definition 25:
(1) For the constants of L(D), set
LcI* £ ceb for each individual constant ¢ of B, and
LR I : P>—H" is defined by : for each ci,,..., ¢i, €D,
TR I (Lo, I .., Loy, 1) £ hog( L R(ciyy.., ¢) 1) e H™ .
(2) For the sentences of L(D), set [ A" = hog([AT) eH" .

Lemma 26: For the map [[ II"*, we have
1) CAABI*=[AT* AE"[BI"

14
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@ [AvBI*=TAT" v [BI”

® [A-BI*=[C[AT*—""[BI”

@ LAl = 2" LA

) [VxA® 1" = Acenl A I

©®) [ 3xA® I = VT cenl A I

m [OAT =0 [AT"
Proof: For (5) we have [ VxA(x) 1" = hog( [ VxAx) 1) =hog( /\Heep
TA@T)=AE"cen hog( LA@T) = AH"cenl A(c) I** . The rest are
similar.

Therefore <D, H*,[[ II*>is a cHag interpretation in which Te I

= hogT P M=1""and [ Q I* =hog( Q I) = 0" . Thus £ P= Q.

This completes the proof of the completeness theorem.
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