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Abstract
This paper provides a logic framework for investigations of game theoretical

problems. We adopt an infinitary extension of classical predicate logic as the base
logic of the framework. The reason for an infinitary extension is to express the
common knowledge concept explicitly. Depending upon the choice of $\mathrm{a}..\mathrm{x}\mathrm{i}_{01}\mathrm{n}\mathrm{S}$ on
the knowledge operators, there is a $\mathrm{h}\mathrm{i}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{r}\mathrm{c}1_{1}\mathrm{y}$ of logics. $\mathrm{T}11\mathrm{e}$ limit case is an infini-
tary predicate extension of modal propositional logic $I\iota’D\mathit{4}$ , and is of special interest
in applications. In Part I, we develop the basic framework, and show some applica-
tions: an epistemic axiomatization of Nash equilibrium and formal undecidability
on the playability of a game. To show the formal undecidability, we use a term
existence theorem, which will be proved in Part II.

1. Introduction

In the early stage of their literatures, game theory and mathematical logic had some
common contributors, e.g., Zermelo, von Neumann and $\mathrm{M}\mathrm{c}\mathrm{K}\mathrm{i}\mathrm{n}\mathrm{S}\mathrm{e}\mathrm{y}$ , and then these fields
had been developed with almost no interactions. Recently, the recognition of a possible
relationship in aims and objects between them has been reemerging. The relationship
may be summarized as the view that game theory is a theory of human behavior in
social situations, while mathematical logic is a theory of mathematical practices by
human beings. When we emphasize rational behavior in game theory, the relationship
is even closer. In this paper, we take this view and develop a logic framework for
investigations of game theory.
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The primary purpose of the new framework is to understand the players’ rational
decision makings and their interactions in a game situation. In a game situation, each
rational player thinks about his strategy choice, and there he may need to know and
think about the other players’ strategy choices, too, since their decisions affect those
players interactively. Of course, some logical and introspective abilities are required
for such thinking. Here epistemic aspects such as knowledge, logical and introspective
abilities are entangled in the players’ decision makings. We would like to develop our
framework to encompass these features or some important part of them.

With respect to the feature of logical reasoning, we can find some literature called
“epistemic logic” initiated by Hintikka [7]. Recently, epistemic logic is applied to the
considerations of some game theoretical problems (cf., Bacharach [3] for a recent bibli-
ography). Nevertheless, epistemic logic has been developed primarily in propositional
logic. In game theory, the use of the real number system is standard, for example,
the classical existence theorem of a Nash equilibrium in mixed strategies is proved in
the real number system (von Neumann [20] and Nash [17]). Hence we need to extend
epistemic logic to predicate logic so as to formulate some real number theory.

Another important feature is the common knowledge concept. For the decision
making of each player in a game situation, he may need to know the other players’
knowledge and thinking about the situation. These knowledge and thinking may have a
nested structure, e.g., he knows that the others know that he knows the game situation,
and so on. This nested structure may form an infinite hierarchy, which is the problem
of common knowledge. Common knowledge on the basic description of a game as well
as on the logical and introspective abilities of the players may be required.

In the literature of epistemic logic, “fixed point logic” is developed to incorporate
the common knowledge concept into finitary epistemic logic (cf., Halpern-Moses [6] and
Lismont-Mongin [14] $)$ . There common knowledge is treated as a part of logic. Since
common knowledge is an infinitary concept, we choose a framework in which infinitary
conjunctions and disjunctions are allowed to express common knowledge explicitly as a
logical formula, which enables us to treat common knowledge as an object of our logic
instead of a part of our logic.1 By choosing this research strategy, we can separate
the development of the logical framework from its application to a particular game
theoretical problem.

As a consequence of the above desiderata, the base logic, $GL_{0}$ , of our framework is
an infinitary extension of classical predicate logic. In this base logic, we formulate the
logical abilities of the players as well as the knowledge of a game situation. The base
logic may be regarded as the description of the logical ability of the outside investigator.
We give essentially the same logical ability to each player, which is described inside the

$\mathrm{l}\mathrm{I}\langle \mathrm{a}\mathrm{n}\mathrm{e}\mathrm{k}\mathrm{o}$ -Nagashima [9] argued in a proof theoretic manner that in a finitary logic without adding
some inference rule on the common knowledge operator, it would be impossible to define the common
knowledge concept. Segerberg [19] reached also a similar conclusion in a senlantical manner.
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base logic. This is logic $GL_{p}$ .
The next step is to give the introspective ability to each player. We assume that

each knows what he knows, described by $\mathrm{A}_{i}(A)\supset I\iota_{i}’Ii_{i}’(A)$ , and also that he knows his
logical and introspective abilities. By these assumptions, we obtain logic $GL_{1}$ . When
tllere is only one player, logic $GL_{1}$ coincides with the infinitary predicate extension of
modal propositional logic $I\iota’D\mathit{4}$ .

When there are at least two players, logic $GL_{1}$ is much weaker than the extension
of modal $I\mathrm{t}\mathrm{i}D\mathit{4}$ . Here the knowledge of players about the other players’ logical and
introspective abilities are necessary to introduce. We have a hierarchy of logics

$GL_{0},$ $GL_{1},$ $GL_{2},$
$\ldots$ , ; and the limit $GL_{\omega}$

by assuming that player $i_{1}$ knows that player $i_{2}$ knows... player $i_{m}$ knows the logical
and introspective abilities of the players to various degrees from $m=1$ to $\omega$ . When
there are at least two players, the limit $GL_{\omega}$ coincides with the extension of modal $I\iota’D\mathit{4}$ .
For this equivalence, we need the common knowledge of the logical and introspective
abilities of the players. Sections 2-4 are devoted for the development of these logics.

In Sections 5 and 6, we show possible applications of our framework to game the-
ory. The first is an epistemic axiomatization of the Nash equilibrium concept. The
axiomatization includes one epistemic aspect, which leads to the common knowledge
of Nash equilibrium, $C(N\mathit{0}sh_{\mathrm{g}}(aarrow))$ , instead of Nash equilibrium itself. This axioma-
tization is formulated in logic $GL_{\omega}$ within the ordered field language. The additional
common knowledge operator requires us to reconsider the playability of a game and the
existence problem of a $\mathrm{N}\mathrm{a}s\mathrm{h}$ equilibrium, which is the subject of Section 6.

The existence theorem of a Nash equilibrium by von Neumann [20] and Nash [17]
holds in the real closed field theory. It follows from this that the common knowledge
of the existence of a Nash equilibrium, $C$ ( $\exists x$ N$arrow$ has(g $xarrow$ )), is derived from the common
knowledge of the real closed field axioms. However, the axiomatization of Section 5
states that the existence quantifier must be outside the scope of the common knowledge,
$\exists^{arrow}XC(NaSh_{\mathrm{g}}(^{arrow}x))$ , to have the playability of a game $\mathrm{g}$ , which is deductively stronger
than $C(\exists^{arrow}XNa\mathit{8}h\mathrm{g}(^{arrow}x))$ . In Section 6, we prove that the playability is formally unde-
cidable for some three-person game $\mathrm{g}$ with a unique Nash equilibrium, that is, neither
$\exists xCarrow(NaSh_{\mathrm{g}}(^{arrow}x))$ nor $\neg\exists xarrow C(Nash_{\mathrm{g}}(^{arrow}x))$ is provable from the common knowledge of
the real closed field axioms in logic $GL_{\omega}$ . Although this undecidability result is depen-
dent upon the choice of a language and can be resolved by extending the language, it is
the point that the players cannot realize the necessity of such an extension, since they
know neither positive nor negative statement.

In Part II, we will develop sequent calculi of our logics in the Genzten style, and prove
tlle cut-elimination theorem for them. The key theorem for the formal undecidability
result of Section 6 of Part I will be proved, using the cut-elimination theorem.
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2. Logics $GL_{0},$ $GL_{p}$ and $GL_{1}$

2.1. Base Logic $GL_{0}$

We adopt an infinitary language, based on the following list of symbols:

Free variables: $\mathrm{a}_{0},$ $\mathrm{a}_{1},$ $\ldots$ ; Bound variables: $\mathrm{x}_{0},$ $\mathrm{x}_{1},$ $\ldots$ ;

Functions: $f_{0},$ $f_{1},$
$\ldots$ ; Predicaies: $P_{0},$ $P_{1},$

$\ldots$ ;

It’nowledge operators: $Ii_{1}’,$
$\ldots,$

$Ii^{-}n$ ;

Logical connectives: $\neg$ (not), $\supset(implies),$ $\wedge(and),$ ${ }$ (or), $\forall$ (for all), $\exists$ (exists),
$\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}\wedge \mathrm{a}\mathrm{n}\mathrm{d}$ are allowed to be applied to infinitely many formulae;

Parentheses: $( , )$ .

The numbers of functions and predicates are arbitrary, except that there is at least
one predicate. A $0$-ary function is an individual constant, and a $0$-ary predicate is a
propositional variable. By the expression $Ii_{i}(\prime A)$ , we mean that player $i$ knows that $A$

is true.
The space of terms is defined by the standard finitary induction: (i) each free variable

is a term; and (ii) if $f_{k}$ is a $\ell$-ary function and if $t_{1},$
$\ldots,$

$t\ell$ are terms, then $f_{k}(t_{1}, \ldots, t_{\ell})$ is
a term.

Let $P_{0}$ be tlle set of all formulae generated by the standard finitary inductive defi-
nition with respect to $\neg,$ $\supset,$ $\forall,$

$\exists$ and $Ii_{1,\ldots,n}^{r}Ii^{r}$ from the atomic formulae. Suppose that
$\mathcal{P}_{t}$ is already defined $(t=0,1, \ldots)$ . We call a nonempty countable subset $\Phi$ of $P_{t}$ an
allowable set iff it contains a finite number of free variables. For an allowable set $\Phi$ , the
expressions $(\wedge\Phi)$ and $(\Phi)$ are considered here. From the union $P_{t}\cup\{(\wedge\Phi),$ $(\Phi)$ : $\Phi$

is an allowable set in $\prime p_{t}$ }, we obtain the space $\mathcal{P}_{t+1}$ of formulae by the standard finitary
inductive definition with respect to $\neg,$

$\supset,\forall,$ $\exists$ and $fi_{1}’,$
$\ldots,$

$I_{1}’n$ . We denote $\bigcup_{t<\omega}\mathcal{P}_{t}$ by $P_{\omega}$ .
An expression in $\prime \mathcal{P}_{(v}$ is called a formula. We abbreviate $\wedge\{A, B\}$ and $\{A, B\}$ as $A\wedge B$

and $AB$ .
The primary reason for the infinitary language is to express common kllowledge

explicitly as a formula. The common knowledge of a formula $A$ is defined as follows:
For any $m\geq 0$ , we denote the set { $Ii_{i_{1}}’Ii’i_{2}\cdots K_{i_{m}}$ : each $I\zeta_{i_{t}}$ is one of $I\mathrm{i}_{1}’,$

$\ldots,$
$Ii_{n}^{r}$ and

$i_{t}\neq i_{t+1}$ for all $t=1,$ $\ldots,$ $m-1$ } by $\mathrm{K}(m)^{2}$. When $m=0,$ $I\mathrm{i}_{i_{1}}’Ii^{\vee}i_{2}\cdots Ii_{i_{m}}$

’ is interpreted
as the null symbol. We define the common knowledge of $A$ by

$\wedge\{K(A) : I1^{r}\in t\bigcup_{<\omega}\mathrm{K}(t)\}$
,

which we denote by $C(A)$ . If $A$ is in $\mathcal{P}_{m}$ , then $C(A)$ is in $\mathcal{P}_{m+1}$ . Hence the space $\mathcal{P}_{\omega}$ is
closed with respect to the operation $C(\cdot)$ .

2The requirement $i_{t}\neq i_{t+1}$ for all $t=1,$ $\ldots,$ $m-1$ will be used in Part II.
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Base logic $GL_{0}$ is defined by the following seven axiom schemata and five inference
rules: For any formulae $A,$ $B,$ $C$ , allowable set $\Phi$ , and term $t$ ,

$(L1)$ : $A\supset(B\supset A)$ ;
$(L2)$ : $(A\supset(B\supset C))\supset((A\supset B)\supset(A\supset C))$ ;
$(L.3)$ : $(\neg A\supset\neg B)\supset((\neg A\supset B)\supset A)_{1}$

$(L4)$ : $\wedge\Phi\supset A$ , where $A\in\Phi$ ;
$(L5)$ : $A\supset\Phi$ , where $A\in\Phi$ ;
$(L6)$ : $\forall xA(x)\supset A(t)$ ;
$(L7)$ : $A(t)\supset\exists xA(x)$ ;

$\frac{A\supset BA}{B}(hIP)$

$\frac{\{A\supset B.B\in\Phi\}}{A\supset\wedge\Phi}$ ( $\wedge$ -Rule) $\frac{\{A\supset B.A\in\Phi\}}{\Phi\supset B}$ ( ${ }$ -Rule)

$\frac{A\supset B(a)}{A\supset\forall xB(X)}$ ( $\forall$-Rule) $\frac{A(a)\supset B}{\exists xA(X)\supset B}$ ( $\exists$ -Rule),

where the free variable $a$ must not occur in $A\supset\forall xB(x)$ and $\exists xA(x)\supset B$ of ( $\forall$-Rule)
and ( $\exists$ -Rule).

Let $\Phi$ be an empty or allowable set and $A$ a formula. A proof of $A$ from $\Phi$ is a
countable tree with the $\mathrm{f}\mathrm{o}\dot{1}\mathrm{l}\mathrm{o}\mathrm{w}\mathrm{i}\mathrm{n}\mathrm{g}$ properties: (i) every path from the root is finite; (ii)
a formula is associated with each node, and the formula associated with each leaf is an
instance of $(L1)-(L7)$ or a formula in $\Phi$ ; and (iii) adjoining nodes together with their
associated formulae form an instance of the above inferences. For any subset $\Gamma$ of $\mathcal{P}_{\mathrm{t}v}$ ,
a formula $A$ is provable from $\Gamma$ , denoted by $\Gamma\vdash_{0}A$ , iff there is an allowable subset $\Phi$ of
$\Gamma$ and a proof of $A$ from $\Phi$ .

Logic $GL_{0}$ is an infinitary extension of finitary classical predicate logic. Hence we
can freely use provable finitary formulae in classical logic. In fact, it is sound and
complete with respect to the standard interpretation with infinitary conjunctions and
disjunctions. That is, all valid formulae in this sense are provable, and vice versa. We
just mention the deduction theorem for the purpose of comparisons with modal logic.
The above formula (3) is needed to prove this lemma.

Lemma 2.1 (Deduction Theorem). Let $A$ be a closed formula. If $\Gamma\cup\{A\}\vdash_{0}B$ ,
then $\Gamma\vdash_{0}A\supset B$ .

Our base logic $GL_{0}$ can be regarded as a fragment of infinitary logic $L_{\omega_{1}\omega}$ (except the
addition of multiple knowledge operator symbols) (cf., $\mathrm{I}<\mathrm{a}\mathrm{r}\mathrm{p}[11]$ and Keisler [12]). As
a space of formulae, $\mathcal{P}_{\mathrm{t}v}$ , is much smaller than the space of formulae in $L_{\omega_{1^{(v}}}$ . Since our
primary purpose of the infinitary extension is to express common knowledge explicitly
as a formula, the present extension suffices for our purpose.
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2.2. Logic $GL_{p}$ : Players’ Logical Abilities

Logic $GL_{0}$ may be regarded as a description of the logical ability of the outside theorist,
whom we call the $inve\mathit{8}tigat_{\mathit{0}}r$. In this subsection, we will give each player essentially
the same logical ability as the investigator’s. That is, we define logic $GL_{p}$ and prove
that each player is given the same logical ability as the investigator’s.

We assume that each player $i=1,$ $\ldots,$
$n$ knows the logical axioms $L1-L7$ . For

example, the knowledge of $L1$ is described as $I\iota_{i}’(A\supset(B\supset A))$ , which is denoted by
$L1_{i}$ . Similarly, we define $L2_{i}-L7_{i}$ . We also assume that each player has the inference
ability corresponding to $hfP$, ( $\wedge$-Rule), ( ${ }$-Rule), ( $\forall$-Rule), ( $\exists$-Rule):

$(MP_{i})$ : $Ii_{i}’(A\supset B)\wedge Ii_{i(A)}’\supset Ii_{i}’(B)$ ;
$( \bigwedge_{i})$ : $I\mathrm{i}_{i}’(\wedge \mathrm{t}A\supset B:B\in\Phi\})\supset Ii_{i}’(A\supset\wedge\Phi)$;
$(_{i})$ : $I\mathrm{i}_{i}’(\wedge\{A\supset B : A\in\Phi\})\supset Ii_{i}’(\Phi\supset B)$ ;
$(\forall_{i})$ : $I_{1_{i}^{\vee}}’(\forall X(A\supset B(x)))\supset Ii_{i}’(A\supset\forall xB(X))$ ;
$(\exists_{i})$ : $I\mathrm{i}_{i}’(\forall x(A(x)\supset B))\supset I\mathrm{i}_{i}’(\exists xA(x)\supset B)$ ,

where $A,$ $B$ are any formulae, $\Phi$ an allowable set, and $x$ a bound variable.
The above schemata are reformulations of inference rules $MP-$ ( $\exists$ -Rule). Here the

investigator has the description of the logical ability of each player $i$ , and can deduce
what player $i$ may deduce. This description is made in the object language, while the
investigator’s logical ability is described in the metalanguage.

For the connection between the investigator’s and the players’ knowledge, we make
the minimum requirement:

$(\perp_{i})$ : $\urcorner K_{i}(\neg A\wedge A)$ ,

where $A$ is any formula and $i=1,$ $\ldots,$
$n$ . This requires that no contradiction be derived

from player $i’ \mathrm{s}$ basic knowledge.
We add one more axiom, which we call the Barcan axiom:

$(\wedge- B_{i})$ : $\wedge Ii_{i(\Phi}’$ ) $\supset I\zeta_{i}(\wedge\Phi)$ ,

where $\Phi$ is an allowable set and $I\zeta_{i}(\Phi)$ denotes the set $\{Ii_{i(A}’) : A\in\Phi\}$ . When $\Phi$ is
finite, this is derived from other axioms, but is needed for infinite $\Phi$ . For the development
of our framework, $(\wedge- B_{i})$ will be used to derive the property:

$C(A)\supset I\iota’\dot{‘}(C(A))$ for $i=1,$ $\ldots,$
$n$ . (2.1)

This will be provable in $GL_{1}$ and play an important role in game theoretic applications.
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Logic $GL_{\mathrm{p}}$ is defined by the sets of all instances of $L1_{i}-L7_{i},$ $(MP_{i})-(\exists_{i}),$ $(\perp_{i})$ and
$(\wedge- B_{i})$ , denoted by $\triangle_{i\mathrm{p}}$ , for $i=1,$ $\ldots,$

$n$ . That is, for any set $\Gamma$ of formulae and any
formula $A$ , we define the $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{V}\mathrm{a}\mathrm{b}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}\vdash_{p}$ in $GL_{p}$ by

$\Gamma\vdash_{p}$ $A$ iff $\Gamma\cup(\bigcup_{i}\triangle_{ip})\vdash_{0}$ A. (2.2)

When $\Gamma\vdash_{\mathrm{p}}A$ , the investigator deduces $A$ from $\Gamma$ , using his knowledge of $i’ \mathrm{s}$ logical
ability described by $\triangle_{\mathrm{c}p}$ as well as using player $i’ \mathrm{s}$ knowledge. When $Ii_{i}’(\mathrm{r})\vdash_{p}I_{1_{i}}’(A)$ ,
the investigator deduces that player $i$ deduces $A$ from the basic knowledge of player $i$ .
The following proposition states that each player is given the same logical ability as the
investigator’s.

Proposition 2.2 (Faithful Representation). Let $\Gamma$ be a set of closed formulae.
Then $Ii_{i}^{r}(\Gamma)\vdash_{p}I\mathrm{i}_{i}^{\vee}(A)$ if and only if $\Gamma\vdash_{0}A$ .

Since $GL_{0}$ is sound and complete, the logical ability of each player is also complete
in the sense of the infinitary extension of classical logic.

$\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{v}\mathrm{a}\mathrm{b}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}\vdash_{\rho}$ has the following properties.

Proposition 2.3. Let $A$ be a formula, $\Phi$ an allowable set of formulae, and $x$ a
bound variable. Then

$(\wedge)$ : $\vdash_{p}Ii_{i}^{r}(\wedge\Phi)\supset\subset\wedge K_{i}(\Phi)$ ;

$()$ : $\vdash_{p}\mathrm{V}I\iota’i(\Phi)\supset Ii_{i}^{r}(\mathrm{V}\Phi)$ ;
$(\forall)$ : $\vdash_{p}Ii_{i}^{r}(\forall XA(X))\supset\forall xI\mathrm{I}_{i}^{r}(A(x))$ ;
$(\exists)$ : $\vdash_{p}\exists x\mathrm{A}_{i}’(A(x))\supset Ii_{i}^{r}(\exists XA(X))$ .

2.3. Logic $GL_{1}$ : Players’ Logical and Introspective Abilities

In logic $GL_{p}$ , as was shown in Proposition 2.2, each player has the same logical ability
as the investigator. Nevertheless, he may know neither his own logical ability nor what
he knows. We define another logic $GL_{1}$ by adding introspective abilities of players.
Introspective abilities consists of two parts: (i) if a player knows $A$ , then he knows that
he knows $A$ ; and (ii) he knows his logical and introspective abilities themselves. The
addition of these introspective abilities to our framework is desirable for several reasons.

Formally, the following, called the Positive Introspection axiom, describes (i):

$(PI_{i})$ : $Ii_{i}^{r}(A)\supset I\zeta_{i}I\zeta_{i}(A)$ ,

where $A$ is a formula. The second requirement (ii) is obtained by putting $Ii_{i}^{r}$ to each
formula in $\triangle_{ip}$ and of $(PI_{i})$ . That is, we denote the union of $\triangle_{i\rho}$ and the set of all
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instances of $(PI_{i})(i=1, \ldots, n)$ by $\triangle_{i0}$ , and denote $\triangle_{i0}\cup\{Ii_{i(A)}’ : A\in\triangle_{i0}\}$ by $\triangle_{i1}$ . We
define the $provability\vdash_{1}$ in $GL_{1}$ by

$\Gamma\vdash_{1}$ $A$ iff $\Gamma\cup(\bigcup_{i}\triangle_{i1})\vdash_{0}$ A. (2.3)

In this logic, (2.1) is provable, that is,

Lemma 2.4. $\vdash_{1}C(A)\supset Ii^{r_{i}}(C(A))$ for any $i=1,$ $\ldots,$
$n$ .

As was stated, Lemma 2.4 is not necessarily proved without the Barcan axiom $(\wedge-$

$B_{i})$ . This will be discussed briefly in Part II.
Logic $GL_{1}$ is of special interests, since it can be regarded as an infinitary predicate

extension of modal logic $I\mathrm{f}D\mathit{4}$ when there is only one player, i.e., $n=1$ . We define
$\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{V}\mathrm{a}\mathrm{b}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}\vdash_{I\iota’D}\mathit{4}\mathrm{f}\mathrm{r}\mathrm{o}\mathrm{m}\vdash_{0}$ by adding $(MP_{i}),$ $(\wedge- B_{i}),$ $(\perp_{i}),$ $(PI_{i})$ and

$, \frac{A}{\mathrm{A}_{i}(A)}$ (Necessitation)

for $i=1,$ $\ldots,$

$n^{3}$.
Proposition 2.5. Let $n=1$ . Let $\Phi$ be an allowable set of closed formulae, and $A$

a formula. Then $\Phi\vdash_{1}$ $A$ if and only $\mathrm{i}\mathrm{f}\vdash_{I\mathrm{t}^{r}D\mathit{4}}\wedge\Phi\supset A$ .

When $n\geq 2$ , this relationship breaks down. For example, $Ii_{2}’I\iota_{1}^{\nearrow}(A\supset(B\supset A))$ is
not provable in $GL_{1}$ . To have the equivalence between them, we need to assume that
every formula in $\bigcup_{i}\triangle_{i1}$ is common knowledge among the players. This means that there
is an infinite hierarchy from $\vdash_{1}$ to $\vdash_{ICD\mathit{4}}$ . This is the subject of Section 3.

3. Iterated Knowledge of Deductive Abilities

In $1_{0_{\circ}^{\sigma}}\mathrm{i}_{\mathrm{C}}GL_{1}$ with at least two players, each player does not know the other players’
logical and introspective abilities, though he has his own. Once a player knows their
abilities, it would be possible for him to infer what the others deductively know. This
knowledge of players’ logical and introspective abilities may have a nested structure,
for example, player $i_{1}$ knows that player $i_{2}$ knows... $i_{m}$ knows those abilities. Thus
there is an infinite hierarchy of logics with the various degrees of nestedness. When
there are at least two players, only the limit $GL_{\omega}$ coincides with the infinitary predicate
extension of modal propositional logic ICD4. This limit case is particularly important
for our applications to game theory in Sections 5 and 6.

3Axioms $( \bigwedge_{i}),$ $(.),$ $(\forall:)$ and $(\exists:)$ are derived in $\mathrm{t}1_{1}\mathrm{i}\mathrm{s}$ extension.
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3.1. Game Logics $GL_{m}(0\leq m\leq\omega)$

The idea that a player knows his and the others’ logical and introspective abilities is
described by assuming that every formula in $\bigcup_{i}\triangle_{i1}$ is known to the players in the nested
manner. Define $\triangle_{m}$ for any $m\leq\omega$ by

$\triangle_{m}=$ { $K(A):A \in\bigcup_{1}$.
$\triangle_{i1}$ and

$I \mathrm{i}^{r}\in\bigcup_{t<m}\mathrm{K}(t)$ }. (3.1)

Let $\Gamma$ be a set of formulae. Then we define the $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{v}\mathrm{a}\mathrm{b}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}\vdash_{m}$ in logic $GL_{m}$ by

$\Gamma\vdash_{m}$ $A$ iff $\Gamma\cup\triangle_{m}\vdash_{0}$ A. (3.2)

Of course, $m<k$ and $\Gamma\vdash_{m}$ $A$ imply $\Gamma\vdash_{k}A$ .
In logic $GL_{m}(m<\omega)$ , the players know the logical and introspective abilities of

the players up to the depth $m$ in the sense that player $i_{1}$ knows that player $i_{2}$ knows.s.
that player $i_{m}$ knows those abilities. In $GL_{\omega}$ , the players know the abilities up to any
$\mathrm{d}\mathrm{e}\mathrm{p}\dot{\mathrm{t}}\mathrm{h}$ . That is, the abilities of players are common knowledge among the players.

First, we give some lists of provable formulae in $GL_{m}$ .
Proposition 3.1. For any $m$ with $1\leq m\leq\omega$ and any $L\in\{I\mathrm{f}I\zeta_{i}$ : $K \in\bigcup_{t<m}\mathrm{K}(t)$ and
$i=1,$ $\ldots,$

$n\}$ ,
$(MP_{L})$ : $\vdash_{m}L(A\supset B)\wedge L(A)\supset L(B)$ ;
$( \bigwedge_{L})$ : $\vdash_{m}L(\wedge\{A\supset B:B\in\Phi\})\supset L(A\supset\wedge\Phi)$ ;
$(_{L})$ : $\vdash_{m}L(\wedge\{A\supset B : A\in\Phi\}\supset L(\Phi\supset B)$;
$(\forall_{L})$ : $\vdash_{m}L(\forall x(A\supset B(x)))\supset L(A\supset\forall xB(X))$ ;
$(\exists_{L})$ : $\vdash_{m}L(\forall x(A(x)\supset B))\supset L(\exists xA(x)\supset B)$ ;
$(1_{L})$ : $\vdash_{m^{\neg}}L$ ( $\neg A$ A $A$ );
$(B_{L})$ : $\vdash_{m}\wedge L(\Phi)\supset L(\wedge\Phi)$ ;
$(PI_{L})$ : $\vdash_{m}L(A)\supset LK_{i}(A)$ ,

where $A,$ $B$ are formulae, $\Phi$ an allowable set, $L(\Phi)$ the set $\{L(C) : C\in\Phi\}$ , and $x$ a
bound variable.

Note that in $GL_{\omega}$ , these hold for the common knowledge operator $C(\cdot)$ in the re-
placement of $L$ .

Observe that the claims of this proposition are parallel to the axioms, $I1/IP:-(PI_{\mathrm{i}})$

with the replacement of $Ii_{i}^{r}$ by $L$ . The formulae corresponding to $L1_{i}-L7_{i}$ , e.g., $L1_{L}$ :
$L(A\supset(B\supset A))$ , belong to $\triangle_{m}$ by (3.1). Hence, by substituting $L$ for $I_{1_{i}}’$ in the
assertions of Proposition 2.3, we have the following.

Proposition 3.2. For any $m$ with $1\leq m\leq\omega$ and any $L\in\{I\zeta I\zeta_{i}$ : $I \mathrm{i}^{\vee}\in\bigcup_{t<m}\mathrm{K}(i)$

and $i=1,$ $\ldots,$
$n$ },
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$( \bigwedge_{L})$ : $\vdash_{m}L(\wedge\Phi)\supset\subset\wedge L(\Phi)$ ;
$(_{L})$ : $\vdash_{m}L(\Phi)\supset L(\Phi)$ ;
$(\forall_{L})$ : $\vdash_{m}L(\forall xA(x))\supset\forall xL(A(X))$ ;
$(\exists_{L})$ : $\vdash_{m}\exists xL(A(X))\supset L(\exists xA(X))$,

where $A,$ $B$ are formulae, $\Phi$ an allowable set, and $x$ a bound variable.

Thus the same asymmetry as Proposition 2.3 appears in $GL_{m}$ . This asymmetry
remains for the common knowledge formula, that is,

$( \bigwedge_{C})$ : $\vdash_{\omega}C(\wedge\Phi)\supset\subset\wedge C(\Phi)$ ;
$(_{C})$ : $\vdash_{\omega}C(\Phi)\supset C(\Phi)$ ;
$(\forall c)$ : $\vdash_{\omega}C(\forall xA(x))\supset\forall xC(A(X))$ ;
$(\exists c)$ : $\vdash_{\omega}\exists xC(A(x))\supset C(\exists xA(x))$ ,

where $C(\Phi)$ is the set $\{C(B) : B\in\Phi\}$ . Especially, $(\exists c)$ plays an important role in
Section 6.

The following properties hold on common knowledge.

Proposition 3.3. Let $\Gamma$ be a set of formulae, and $A$ a formula. Then
$1)(\mathrm{N}\mathrm{e}\mathrm{C}\mathrm{e}\mathrm{S}\mathrm{S}\mathrm{i}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}):C(\Gamma)\vdash_{\omega}$ $A$ imply $C(\Gamma)\vdash I\omega i^{r}i(A)$ ;

2): $\Gamma\vdash A$ implies $C(\Gamma)\vdash_{\omega}C(A)$ ;

3): $C(\Gamma)\vdash_{\omega}$ $A$ if and only if $C(\Gamma)\vdash_{\omega}C(A)$ .

3.2. Relationship to Modal Logic

As was already mentioned, when $n\geq 2$ , we need to go to the limit $GL_{\omega}$ to make a direct
comparison to modal logic $I\mathrm{f}D\mathit{4}$ .

Proposition 3.4. Let $n\geq 2$ . Let $\Phi$ be an allowable set of closed formulae, and $A$

a formula. Then $\Phi\vdash_{\omega}$ $A$ if and only if $\vdash_{J\mathrm{i}’D\mathit{4}}\wedge\Phi\supset A$ .

Thus when we assume the common knowledge of the logical and introspective abil-
ities of the players, our logic, $GL_{\omega}$ , it becomes equivalent to the infinitary predicate
extension of $I\mathrm{f}D\mathit{4}$ .

Proposition 3.4 as well as Proposition 2.5 hold in the finitary fragment of our frame-
work. Hence these are not dependent upon the infinitary extension.
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4. Conservativeness of $GL_{m}(1\leq m\leq\omega)$

A formula $A$ is said to be nonepistemic iff it does not contain any $Ii_{1}’,$
$\ldots,$

$Ii_{n}’$ . Let $\epsilon A$

be the formula obtained from $A$ by eliminating all $K_{1},$
$\ldots,$

$I\zeta_{n}$ , which is, more precisely,
defined by induction on the structure of a formula. We denote $\{\epsilon A : A\in\Phi\}$ by
$\epsilon\Phi$ . Observing that any formula in $\epsilon\triangle_{m}$ is provable in $GL_{0}$ , for example, $\epsilon(K_{i}(A\supset$

$B)\wedge Ii^{r_{\mathrm{i}()}}A\supset I\iota_{i}’(B))$ is $(\epsilon A\supset\epsilon B)\wedge\epsilon A\supset\epsilon B$, we have the following proposition.

Proposition 4.1 (Conservative Extension). Let $\Gamma$ be a subset of $P_{\omega}$ and $A$ a
formula in $\mathcal{P}_{\omega}$ . Then $\Gamma\vdash_{m}$ $A$ implies $\epsilon\Gamma\vdash_{0}\epsilon A$ .

The next proposition follows immediately from Proposition 4.1. The consistency of
$GL_{0}$ will follow from the cut-elimination theorem for $GL_{0}$ in Part II.

Proposition 4.2 (Relative Consistency). Let $\Gamma$ be a subset of $\mathcal{P}_{\omega}$ . If $\epsilon\Gamma$ is
consistent with respect $\mathrm{t}\mathrm{o}\vdash_{0}$ , then $\Gamma$ is consistent with respect $\mathrm{t}\mathrm{o}\vdash_{m}$ .

The following fact will be important in Section 6: Let $\Gamma$ be a set of nonepistemic
formulae and $A$ a nonepistemic formula. Then

$C(\Gamma)\vdash_{\omega^{\neg}}\exists x_{1}\ldots\exists X_{\ell}C(A(x_{1}, \ldots, X\ell))$

if and only if (4.1)
$C(\Gamma)\vdash_{\omega}C(\urcorner\exists x_{1}\ldots\exists X\ell A(X_{1}, \ldots, x\ell))$ .

In contrast with $(\exists c)$ of Section 3, there is no distinction between these two llegative
existential statements.

5. Applications to Game Theory I: Epistemic Axiomatization of $\mathrm{N}\mathrm{a}\mathrm{s}\mathrm{l}_{1}$

Equilibrium

This and following sections provide applications of our framework to game theory. Since
classical game theory is described in the real number system, we need to specify a
language and axioms for a real number theory. We use the standard language and axioms
for the ordered field theory in this section, and will use the real closed field theory in
Section 6. These are sufficient for the consideration of classical game theory. This section
gives an epistemic axiomatization of Nash equilibrium, based on Kaneko-Nagashima $[8]^{4}$.

4 We can find some axiomatizations of Nash equilibrium in the recent game theoretical literature.
Related papers are: Bacharach [2] made some axiomatic requirements for individual decision making
in a game situation, and proved that such requirements are inconsistent even for a game with a unique
Nash equilibrium. Aumann [1] gave an epistemic consideration of Nash equilibrium in a game with
perfect information. Balkenborg-Winter [4] showed that common knowledge is not necessary in the case
of a game with perfect information. This should be compared with our epistemic axiomatization. For
other related game theoretical problems, see Kaneko-Nagashima [8].
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The result of the axiomatization deviates slightly from Nash equilibrium in classical
game theory in that it is the common knowledge of Nash equilibrium. This can be
regarded rather as faithful to the intended interpretation of Nash equilibrium in game
theory. But this additional common knowledge operator requires us to reconsider a
deeper problem of the playability of a game, which will be the subject of Section 6.

In these two sections, we use game logic $GL_{\omega}$ . The consideration of the present
section cannot be done in logic $GL_{m}$ for finite $m$ . In fact, the ordered field axioms are
not used in this section, but the ordered field language suffices for the present purpose.
For the existence problem of a $\mathrm{N}\mathrm{a}s\mathrm{h}$ equilibrium, which is the subject of Section 6, we
use those axioms.

5.1. Language and Basic Game Theoretic Concepts

Here we specify the list of basic symbols:

Constants: $0,1$ ; Binary functions: $+,$ $-$ , , /;
Binary predicates: $\geq,$ $=$ ; and $\ell-a\Gamma y$ predicates: $D_{1},$

$\ldots,$
$D_{n}$ ,

in addition to the other basic symbols specified in Section 2. The l-ary predicates
$D_{1},$

$\ldots,$
$D_{n}$ are prepared for the epistemic consideration of Nash equilibrium. The other

symbols are prepared for the description of the ordered field theory. We denote the
set of all ordered field axioms and equality axioms by $\Phi_{\mathrm{o}\mathrm{f}}$ (cf., Mendelson [15], [16]).
We use the same symbol $=\mathrm{f}\mathrm{o}\mathrm{r}$ formal and informal equalities, which should not cause
confusions.

First, we describe a noncooperative game in informal mathematics. Consider an
$n$ -person finite game $\mathrm{g}$ . For simplicity, we assume that each player has the same finite
number, $\ell$ , of pure strategies. The payoff to player $i$ from a pure strategy combination
$(s_{1}, \ldots, s_{n})$ is given as a rational number $\mathrm{g}_{i}(s_{1}, \ldots, \mathit{8}_{\mathcal{R}})$ . The game of Table 1 is called
the “Prisoner’s dilemma”, where each player has two pure strategies $f\mathrm{V}$ (not confess)
and $C$ (confess). Each vector in the table is a pair of payoffs to the players, e.g.,
$(\mathrm{g}_{1}(N, C),\mathrm{g}2(\mathit{1}\mathrm{V}, C))=(1,6)$ . We allow also mixed strategies, where a mixed strategy
for player $i$ is a probability distribution over his pure strategies.

$N$ $C$ $B$ $M$

$N$ $(5,5)$ $(1,6)$ $B$ $(2,1)$ $(0,0)$

$C$ $(6,1)$ $(2,2)$ $M$ $(0,0)$ $(1,2)$

Table 1 Table 2
Now we formulate those game theoretical concepts in our formal language. First,

we define numerals as follows: $[0]$ is $0,$ $[m]$ is $[m-1]+1$ for an positive integer $m$ , and
$[m]$ is $0-[-m]$ for a negative integer $m$ . For a rational number $q=m/k(m/k$ are
irreducible and $k>1$ ), we define $[q]$ to be $[m]/[k]$ . Thus numerals are closed terms.
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Using numerals, the above game $\mathrm{g}$ is described in our language as follows: the payoff
to player $i$ from a strategy combination $(s_{1}, \ldots, s_{n})$ is given as $[\mathrm{g}i(s1, \ldots, sn)]$ . A mixed
strategy for player $i$ is a vector of free $\mathrm{v}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{s}a_{i}arrow=(a_{i1}, \ldots, a_{i}\ell)$ satisfying the following
formula:

$( \sum_{t=1}^{\ell}a_{i}t=1)\wedge(\wedge\{a_{it}\geq 0 : t=1, \ldots, \ell\})$ , (5.1)

which we denote by $St(^{arrow}a_{i})$ . Next, the payoff to player $i$ from a mixed strategy combina-
$tionarrow a=(a_{1}\ldots,a_{n})arrow,arrow$ is given as the expected payoff with respect to the probability
distribution over the pure strategy combinations $(s_{1}, \ldots, s_{n})$ induced $\mathrm{b}.\mathrm{v}arrow a$ :

$\sum_{t_{1}}$
... $\sum_{t_{n}}a1t_{1}.\ldots\cdot atnn.[\mathrm{g}i(st1’\ldots, s_{t_{n}})]$, (5.2)

which we denote by $g_{i}(a)arrow$ . Note that this $g_{i}(a)arrow$ is a term. In the following, we denote
$(\overline{a}_{1}, \ldots,a_{i-}1,ai+1, \ldots,an)arrowarrowarrow \mathrm{b}\mathrm{y}aarrow-i$ , and $(arrow a_{i};a-i)$$arrow \mathrm{m}\mathrm{e}\mathrm{a}\mathrm{n}\mathrm{s}arrow a$ itself.

Now we have the basic description of a game $\mathrm{g}$ with mixed strategies. Finally, we
formulate the Nash equilibrium concept introduced by Nash [17] as a generalization of
the maximin strategy of von Neumann [20], which has been playing the central role in
the literature of game theory. A lVash equilibrium is defined to be a mixed strategy
$\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{b}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}arrow a=(a_{1}, \ldots,a_{n})arrowarrow$ satisfying the following formula:

$\wedge\{St(a_{i})arrow\wedge(\forall^{arrow}X_{i}(St(X_{i}arrow)\supset g_{i}(aarrow)\geq g_{i}(_{X_{i}}^{arrow};a-i)):i=1, \ldots, n\}$ , (5.3)

where $\forall x_{i}Aarrow(^{arrow}x_{i})$ means $\forall x_{i1}\ldots\forall x_{i}\ell A(xi1, \ldots, X_{i\ell})$ and, later, $\exists x_{i}Aarrow(x_{i}arrow)$ is used to de-
note $\exists x_{i1}\ldots\exists x_{i}\ell A(Xi1, \ldots, xi\ell)$ . We denote the formula of (5.3) by $Nash_{\mathrm{g}}(\overline{a})$ or
$J\mathrm{V}ash_{\mathrm{g}}(^{arrow}a_{1}, \ldots,a_{n})arrow$ . Note that this is a formula relative to a specific game $\mathrm{g}$ .

The prisoner’s dilemma has a unique Nash equilibrium $(C, C)$ even in mixed strate-
gies (the formal counterpart is $((0,1),$ $(0,1))$ ). The game of Table 2, called “the Battle
of Sexes”, has three equilibria, $(B, B),$ $(M, M)$ and $((2/3,1/3),$ $(1/3,2/3))$ (the formal
counterparts are $((1,0),$ $(1,0)),$ $((0,1),$ $(0,1))$ and $(([2/3], [1/3]), ([1/3], [2/3]))$ .

5.2. Infinite Regress of the Knowledge of Final Decision Axioms and its
Solution

In a game $\mathrm{g}$ , each player deliberates his and the others’ strategy choices and may reach
a final decision. The expression $D_{i}(a_{i})arrow$ describes a strategy $\mathrm{d}\mathrm{e}\mathrm{c}\mathrm{i}\mathrm{S}\mathrm{i}_{0}\mathrm{n}arrow a_{i}$ finally reached
by a player. We would like to characterize this “final decision” $D_{i}(a_{i}arrow)$ operationally by
the following four axioms: for $i,$ $j=1,$ $\ldots,$

$n$ ( $i,$ $j$ may be the same),

$D1$ : $\forall x_{i}(arrow Di(x_{i})arrow\supset St(^{arrow}X_{i}))$ ;
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$D2$ : $\forall x_{1\cdots n}arrow\forall^{arrow}X[\bigwedge_{j}^{n}=1jD(xarrow)j\supset\forall^{arrow}y_{i}(s_{t}(arrow y_{i})\supset gi(^{arrow}x)\geq g_{i}(y_{i;}arrowarrow x_{-}i))]$;

$D3$ : $\exists x_{i}D_{i}arrow(^{arrow}x_{i})\supset\exists xjDarrow(^{arrow}jXj)$ ;

$D4$ : $\forall xi[arrow Di(xarrow)i\supset Ii_{j}^{r}(D_{i}(^{arrow}x_{i}))]$ .

These mean: $\mathrm{i}\mathrm{f}x_{i}arrow$ is a final decision for player $i$ , then $D1$ : it is a strategy; $D2$ : given
the others’ final $\mathrm{d}\mathrm{e}\mathrm{c}\mathrm{i}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}xarrowarrow-i,x_{i}$ maximizes his payoff; $D3$ : any other player $j$ reaches
also a final decision; and $D4$ : all players know that player $i$ reaches his final decision
$arrow x_{i}$ . Although each axiom has several formulae, we mean the conjunction of them by
each. We denote $D1\wedge D2\wedge D3$ A $D4$ by $D(1-4)$ .

Axioms $D1$ and $D2$ is apparently related to Nash equilibrium, indeed,

$D1,$ $D2 \vdash_{\omega}\bigwedge_{i=1}^{n}D(ai)arrow\supset Nash(^{arrow}\mathrm{g}a)$. (5.4)

Axiom $D3$ plays a role for independence of individual choice. Axiom $D4$ is an epistemic
condition and has not been explicitly discussed in game theory. In fact, the explicit
consideration of $D4$ leads to an infinite regress of the knowledge of these axioms.

Although those axioms are intended to determine $D_{i}(^{arrow}a_{i})$ , we find, by looking at
Axiom $D4$ carefully, that the above axioms are insufficient in the following sense. Axiom
$D4$ requires that each player know his and the other player’s final decisions, but this
requirement could not be fulfilled unless the meaning of “final decisions” is given to the
players. In fact, the meaning should be given by the above four axioms. Therefore we
assume that each player knows these $\mathrm{a}_{\lrcorner}\mathrm{x}\mathrm{i}\mathrm{o}\mathrm{m}\mathrm{S}$, i.e., $I\mathrm{f}_{i}(D(1-4))$ for $i=1,$ $\ldots,$

$n$ . Then it
holds that

$D(1-4),\wedge I\zeta_{\ell}(D(1-4)\ell=1n)\vdash_{\omega}D_{i}(^{arrow}a_{i})\supset I\zeta_{j}Ii_{t}^{r}(Di(^{arrow}a_{i}))$.

Again, we have a problem: player $t$ in the mind of player $j$ knows $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}arrow a_{i}$ is a final
decision for player $i$ , but he is not given the meaning of “final decisions”. Thus we
need to assume $Ii_{j}’Ii’t(D(1-4))$ , but meet the same problem as above, that is, it holds
in general that for any $K\in \mathrm{K}(m)$ and $m<\omega$ ,

$\{L(D(1-4)) : L\in t<\cup \mathrm{K}(t)\}\vdash D\omega i(^{arrow}a_{i})\supset K(D_{i}(arrow)ai)m$
. (5.5)

Thus when we assume $L(D(1^{-}4))$ for all $L$ of depth up to $m-1$ , it is required that the
meaning of $D_{i}(a_{i})arrow$ is known to the players in the sense of $I\iota’$ of the depth $m$ . Hence
we need to add $L(D(1^{-}4))$ for $L$ of depth $m$ : we have the same problem as before.
To avoid this problem, we assume $\{K(D(1^{-}4)) : Ii^{r}\in\bigcup_{m<\omega}\mathrm{K}(m)\}$ . Thus we meet an
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infinite regress, which forms the common knowledge of $D(1-4)$ , i.e., $C(D(1- 4))^{5}$. We
will solve this infinite regress.

Now we have the following proposition.

Proposition 5.1.1): $C(D(1-4)) \vdash_{\omega}\bigwedge_{i=1}^{n}Di(a_{i})arrow\supset C(Nash\mathrm{g}(^{arrow}a))$;
2): $C(D(1-4))\vdash_{\omega}D_{i}(^{arrow}ai)\supset\exists^{arrow}x{}_{-i}C(Nash\mathrm{g}(arrowarrow ai;X-i))$ .

In fact, the formula, $\exists xarrow {}_{-i}C(NaSh(^{arrow}\mathrm{g}a_{i};X-i) arrow)$ , can be regarded as the solution of
$C(D(1^{-}4))$ for a solvable game. A game $\mathrm{g}$ is called a solvable (in the sense of Nash [17])
iff the following holds:

$\forall\overline{x}_{1}\ldots\forall^{arrow}X_{n}[\wedge(\exists y-iNaSh(^{arrow}iarrow \mathrm{g}x_{i};y-i))\supset Nash_{\mathrm{g}}(_{X}^{arrow})]$ . (5.6)

This is satisfied by the game of Table 1 but not by that of Table 2. We denote this
formula by SOLV. Of course, when the game $\mathrm{g}$ has a unique Nash equilibrium, this is
satisfied.

By the expression $C(D(1-4))[A_{1}, \ldots, A_{n}]$ , we mean the formula obtained from $C(D(1-$
$4))$ by substituting each $A_{i}(\cdot)$ for every occurrence of $D_{i}(\cdot)$ in $C(D(1^{-}4))$ . If $\Gamma\vdash_{\omega}C(D(1-$

$4))[A_{1}, \ldots, A_{n}]$ , then $A_{1},$
$\ldots,$

$A_{n}$ satisfy $C(D(1^{-}4))$ under the assumptions $\Gamma$ . The follow-
ing lemma states that under the common knowledge of SOLV, the axiom $C(D(1^{-}4))$ is
satisfied by the formulae of Proposition 5.1.2).

Lemma 5.2. Let $Sol_{i}(^{arrow}a_{i})$ be $\exists y{}_{-i}Carrow(Nash_{\mathrm{g}}(a_{i}arrowarrow);y-i)$ for $i=1,$ $\ldots,$
$n$ . Then

$C(SOLV)\vdash_{\omega}C(D(1-4))[sol_{1}, \ldots,sol_{n}]$ .
The concept intended by $C(D(1^{-}4))$ is the weakest one among those satisfying

$C(D(1-4))$ , since, otherwise, it would contain some properties additional to that given
by $C(D(1^{-}4))$ . To require this idea, we impose the following axiom schema:

$C(D(1-4))[A_{1}, \ldots, A_{n}]\supset\forall x_{i}(arrow A_{i}(^{arrow}xi)\supset D_{i}(x_{i}arrow))$ ,

where $A_{1},$
$\ldots,$

$A_{n}$ are any formulae. We denote this by $WFD$. Since we proved in Lemma
5.2 that the premise of this axiom is provable with Soll, $\ldots,sol_{n}$ under the assumption
of $C(SOLV)$ , we have the $C(SOLV),$ $WFD\vdash_{\omega}Sol_{i}(^{arrow}a_{i})\supset D_{i}(arrow a_{i})$ . This together with
Proposition 5.1.2) implies the following theorem.

Theorem 5. $\mathrm{A}$ . $C(D(1-4)),$ $c(SoLV),$ $\iota VFD\vdash_{\omega}D_{i}(^{arrow}ai)\supset\subset$

$\exists y_{-}iC(Nash\mathrm{g}(^{arrowarrow}ai|y_{-}i))$ for $i=1,$ $\ldots,$
$n$ .

5We explained the necessity of each step from depth $m$ to $m+1$ in a heuristic manner. In the finitary
fragment of $GL_{\omega}$ , we can prove that the step of depth $m$ cannot be derived from the previous one, using
the depth lemma in $\mathrm{I}\{\mathrm{a}\mathrm{n}\mathrm{e}\mathrm{k}_{0}$-Nagashima [9]. This lemma is not yet extended into the infinitary $GL_{\omega}$ .
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This theorem states that the final $\mathrm{d}\mathrm{e}\mathrm{c}\mathrm{i}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}arrow a_{i}$ is determined to be a Nash strategy
with the common knowledge property. It is important to notice that the existential
quantifier is outside the common knowledge operator. If it was $C(\exists y_{-i}Nash\mathrm{g}(^{arrow}ai;arrow y_{-}i))$ ,

which is implied by $\exists y_{-}iC(Nash(\mathrm{g}a_{i};arrow arrow y-i))$ by $(\exists c)$ , the existence of the other players’

Nash strategies are simply required to be known. The formula $\exists y_{-i}C(\mathit{1}\mathrm{v}ash(\mathrm{g}ai;arrowarrow y_{-}i))$

requires player $i$ to know specific Nash strategies for the other players. This difference
is important for the subject of Section 6.

6. Applications to $\mathrm{G}\mathrm{a}\mathrm{n}’1\mathrm{e}$ Theory II: Undecidability Theorems on the
Playability of a Game

The existence of a final decision, $\exists x_{i}D_{i(^{arrow})}arrow xi$ , is needed for each player to be able to
make a final decision. By Theorem 5. $\mathrm{A}$ , this existence is equivalent to the existence of
a Nash strategy with the common knowledge property, i.e., $\exists^{arrow}XC(NaSh_{\mathrm{g}}(^{arrow}x))$. As was
already stated, the existence quantifiers are outside the scope of the common knowledge
operator $C(\cdot)$ . In classical game theory, the existence of a Nash equilibrium is proved
by using Brouwer’s fixed point theorem (cf., von Neumann-Morgenstern [21] and Nash
[17] $)$ . When the real number axioms are common knowledge, this existence proof implies
$C(\exists^{arrow}xNaSh\mathrm{g}(\overline{X}))$ , where the existential quantifiers are in the scope of the common
knowledge operator. There is a gap between the above two existential statements.
In this section, we adopt the real closed field axioms as a particular choice of real
number axioms, and show that although $C(\exists^{arrow}xNaSh_{\mathrm{g}}(^{arrow}x))$ is provable from the common
knowledge of the real closed field $\mathrm{a}\backslash ’\dot{\lrcorner}\mathrm{o}\mathrm{m}\mathrm{s},$ $\exists^{arrow}xC(Nash_{\mathrm{g}}(^{arrow}x))$ is formally undecidable, i.e.,

neither this existence statement nor its negation, $\neg\exists xarrow C(Nash_{\mathrm{g}}(^{arrow}x))$ , is provable from
the common knowledge of the real closed field axioms.

6.1. Real Closed Field Axioms and the Existence of a Nash Equilibrium

The real closed field theory is defined by adding the following axioms to the ordered
field axioms $\Phi_{\mathrm{o}\mathrm{f}}$ :

$\forall x\exists y(X\geq 0\supset(y^{2}=x))$ ;
and (6.1)

for any odd natural number $m$ ,
$\forall ym-1\cdots\forall y0\exists x(x+m-1x-1+m+y1^{X}+y0=0y_{m}\ldots)$ .

We denote the union of $\Phi_{\mathrm{o}\mathrm{f}}$ and the set of the formulae of (6.1) by $\Phi_{\mathrm{r}\mathrm{c}\mathrm{f}}$ . The theory
$(P_{\mathrm{O}}\mathrm{r}, \Phi_{\Gamma}\mathrm{c}\mathrm{f})$ is called the real closed field theory, where $P_{\mathrm{o}\mathrm{f}}$ is the finitary fragment of $P_{\omega}$

without including $D_{1},$
$\ldots,$

$D_{n}$ . Here we refer to Tarski’s completeness theorem on the real
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closed field theory (cf., Rabin [18]): for any closed formula $A$ in $P_{\mathrm{o}\mathrm{f}}$ , either $\Phi_{\mathrm{r}\mathrm{c}\mathrm{f}}\vdash_{0}$ $A$ or
$\Phi \mathrm{r}\mathrm{c}\mathrm{f}\vdash 0\neg A$ .

The standard existence proof of a Nash equilibrium for any finite game $\mathrm{g}$ with mixed
strategies relies upon Brouwer’s fixed point theorem (Nash [17]). This implies that in
the standard (real number) model of $(P_{\circ \mathrm{f}}, \Phi_{\mathrm{r}\mathrm{C}}\mathrm{f})$ , the existence of a Nash equilibrium,
$\exists xNarrow ash_{\mathrm{g}}(xarrow)$ , is valid. Since $(\mathcal{P}_{\circ \mathrm{r}}, \Phi_{\Gamma \mathrm{c}\mathrm{f}})$ is complete, we have $\Phi_{\mathrm{r}\mathrm{c}\mathrm{f}}\vdash_{0}\exists x\mathit{1}Varrow has\mathrm{g}(\overline{x})$ ,
which together with Proposition 3.5.1) implies the following.

Proposition 6.1. Let $\mathrm{g}$ be any $n$-person finite game. Then $C(\Phi_{\mathrm{r}\mathrm{c}\mathrm{f}})$

$\vdash_{\omega}C(\exists^{arrow}xNaSh_{\mathrm{g}}(^{arrow}x))$ .
Thus, in logic $GL_{\omega}$ , the existence of a Nash equilibrium is common knowledge if

the real closed field axioms are common knowledge. Nevertheless, this is different from
$C(\Phi_{\mathrm{r}\mathrm{c}\mathrm{f}})\vdash_{\omega}\exists xCarrow(Nash_{\mathrm{g}}(^{arrow}x))$, which is required for a player in order to play the game

$\mathrm{g}$ by Theorem 5. $\mathrm{A}$ .
The following is the key result for such an evaluation, which is called the term

existence theorem: for a set $\Gamma$ of nonepistemic closed formulae and a nonepistemic
formula $A$ with no free variables in $\exists x_{1}\ldots\exists x\ell C(A(x_{1}, \ldots, x\ell))$ ,

$C(\Gamma)\vdash_{\omega}\exists x_{1}\ldots\exists X\ell C(A(X1, \ldots, X\ell))$

if and only if (6.2)
$C(\Gamma)\vdash_{\omega}C(A(t1, \ldots, tn))$ for some closed terms $t_{1},$

$\ldots,$
$t_{\mathit{1}}$ .

This term existence theorem will be proved in Part II, using the cut-elimination theorem
for $GL_{\omega}$ . This theorem tells us that we should distinguish between the mere knowledge
of the existence, i.e., only the existence proof is common knowledge, and the specific
objects having the property $A$ are common knowledge.

As the direct application of (6.2) to our problem, we have

$C(\Phi_{\mathrm{r}\mathrm{C}\mathrm{f}})\vdash_{\omega}\exists xarrow C(NaSh\mathrm{g}(Xarrow))$

if and only if (6.3)
$C(\Phi_{\mathrm{r}\mathrm{C}\mathrm{f}})\vdash_{\omega}C(Nash\mathrm{g}(^{arrow}t))$ for some closed term $\mathrm{v}\mathrm{e}\mathrm{C}\mathrm{t}_{0}\mathrm{r}tarrow$ .

Thus, for the specific existence, we need probability $\mathrm{v}\mathrm{e}\mathrm{c}\mathrm{t}_{0}\mathrm{r}\mathrm{S}arrow t_{i}=(t_{i1},$

$\ldots,$
$t_{i\ell)}$ , each

component of which is represented as a closed term. In the present language together
with the ordered field axioms $\Phi_{\mathrm{o}\mathrm{f}}$, for any closed term $t$ there is a rational number $r$

such that $\Phi_{\mathrm{o}\mathrm{f}}\vdash t=[r]$ . Informally speaking, (6.3) implies that there should exist a Nash
equilibrium in rational numbers. However, this does not always hold for games with
more than two players.

6.2. Undecidability Theorems on the Playability of a Game

Consider the following three-person game:
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$\beta_{1}$ $\beta_{2}$ $\beta_{1}$ $\beta_{2}$

$\alpha_{1}$ (0,0,1) (1,0,0) $\alpha_{1}$ (2,0,9) (0,1,1)
$\alpha_{2}$ (1,1,0) (2,0,8) $\alpha_{2}$ (0,1,1) (1,0,0)

$\gamma_{1}$ $\gamma_{2}$

Table 3 Table 4
In this game, each player has two pure strategies, and the tables mean that when the
players choose pure strategies, say, $\alpha_{1},\beta_{2},$

$\gamma_{2}$ , the right upper vector (0,1,1) of Table 4
gives payoffs to the players. This game has no Nash equilibrium in pure strategies, but
has a unique Nash equilibrium $((p, 1-p),$ $(q, 1-q),$ $(r, 1-r))$ in mixed strategies, where

$p=(30-2\sqrt{51})/29,$ $q=(2\sqrt{51}-6)/21$ and $r=(9-\sqrt{51})/12$ .

The probability weights in equilibrium are irrational numbers. Therefore those proba-
bilities are not represented as closed terms in our language. Therefore it follows from
(6.3) that it is not the case that $C(\Phi_{\mathrm{r}\mathrm{C}\mathrm{f}})\vdash_{\omega}\exists xarrow C(Nash_{\mathrm{g}}(^{arrow}x))$ .

In fact, the negation of this existential assertion $C(\Phi_{\mathrm{r}\mathrm{c}\mathrm{f}})\vdash_{\omega}\neg\exists^{arrow}XC(NaSh_{\mathrm{g}}(^{arrow}x))$ is
equivalent to $C(\Phi_{\mathrm{r}\mathrm{c}\mathrm{f}})\vdash_{\omega}C(\neg\exists^{arrow}Xl\mathrm{V}ash\mathrm{g}(\overline{x}))$ , as was stated in (4.1). Hence Proposition
6.1 implies that it is not the case that $C(\Phi_{\mathrm{r}\mathrm{c}\mathrm{f}})\vdash_{\omega^{\neg}}\exists xCarrow(NaSh\mathrm{g}(Xarrow))$.

In sum, we have the following theorem.

Theorem 6. $\mathrm{A}$ (Formal Undecidability I). Let $\mathrm{g}$ be the three-person game given by
Tables 3 and 4. Then

neither $C(\Phi_{\mathrm{r}\mathrm{C}\mathrm{f}})\vdash_{\omega}\exists xarrow C(Nash_{\mathrm{g}}(^{arrow}x))$

nor $C(\Phi_{\mathrm{r}\mathrm{C}\mathrm{f}})\vdash_{\omega^{\neg}}\exists xCarrow(NaSh\mathrm{g}(Xarrow))$.

As was stated in (6.3), the condition for a player to find a Nash strategy is that
there is a Nash equilibrium in closed terms. He can verify whether each closed term
vector satisfies the Nash condition. Therefore if there is a Nash equilibrium in closed
terms, he would eventually find a Nash equilibrium. However, when there is no Nash
equilibrium in closed terms such as in the game of Tables 3 and 4, he continues the
verification of whether each candidate satisfies the Nash condition. Each player does
not have the knowledge of the space of closed terms, more generally, he does not have
knowledge about the language as a whole he is using. Therefore he should continue to
search a Nash equilibrium, and cannot know whether there is a Nash equilibrium or
not.

For the above three-person game, our undecidability result would become a decid-
ability result if we introduce a function symbol and some axiom to allow the radical
expression $f$. The the above undecidability result depends upon the choice of a
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language. The point of the theorem is, however, that the players cannot notice the ne-
cessity of an extension of the language, since neither the positive nor negative statement
is known to them.

The property that a Nash equilibrium involves irrational numbers is general for
games with more than two players, except some degenerate cases. In fact, it is proved
in Bubelis [5] that any algebraic real number in $[0,1]$ occurs in a Nash equilibrium for
some three-person game with finite numbers of pure strategies.6 Thus the problem
of obtaining the decidability result in the general case is not so simple as in the case
mentioned in the above paragraph for the particular game. This will be discussed in
Kaneko [10].

In Section 5, our concern was the determination of final decision predicate $D_{i}(a_{i})arrow$ .
Under axioms $C(D(1-4)),$ $c(soLV)$ and レワア D, final decision $D_{i}(^{arrow}a_{i})$ coincides with
$\exists\overline{x}-iC(Nash\mathrm{g}(\overline{a}i;xarrow-i))$ . Noting that when $C(\Phi_{\mathrm{r}\mathrm{c}\mathrm{f}})$ is assumed, $C(SOLV)$ is not nec-
essary, the playability of a game $\mathrm{g}$ is directly stated as

whether or not $C(D(1^{-}4)),$ $WFD,$ $C(\Phi \mathrm{r}\mathrm{C}\mathrm{f})\vdash_{\omega}\exists x_{i}arrow D_{i(x_{i})}arrow$ . (6.4)

In fact, we obtain a formal undecidability on $\exists x_{i}arrow D_{:(xi}arrow$ ).

Theorem 6. $\mathrm{B}$ (Formal Undecidability II). Let $\mathrm{g}$ be tlle three-person game given
by Tables 3 and 4. Then

neither $C(D(1^{-}4)),$ $?VFD,$ $c(\Phi \mathrm{r}\mathrm{c}\mathrm{f})\vdash_{\mathrm{t}v}\exists x_{i}Darrow i(^{arrow}xi)$

nor $C(D(1-4))$ , VVFD, $C(\Phi_{\mathrm{r}\mathrm{c}\mathrm{f}})\vdash_{\omega^{\neg}}\exists x_{i}arrow D_{i}(x_{i}arrow)$ .

The following lemma is a crucial step for Theorem 6. $\mathrm{B}$ .

Lemma 6.2. Let $P_{\omega}\#$ be the set of formulae in $P_{\omega}$ without including $D_{1},$
$\ldots,$

$D_{n}$ .
Then $(\mathcal{P}_{\omega}, C(D(1-4)),$ $\mathrm{T}/VFD,$ $C(\Phi \mathrm{r}\mathrm{c}\mathrm{f}))$ is a conservative extension of $(\mathrm{p}_{\omega}\#,C(\Phi \mathrm{r}\mathrm{c}\mathrm{f}))$ .

7. Conclusions

This paper provided the logic framework for the investigations of game theoretical prob-
lems, and showed two applications. The first application is an epistemic axiomatization
of Nash equilibrium, and the second is the undecidabihty on the playability of a game.

6Lemke-Howson [13] gave a finite algorithm to find a Nash equilibrium for a two-person game with
mixed strategies, wltich implies the existence of a Nash equilibrium in rational numbers. Therefore
undecidability fails since the existential formula is provable for any two-person game. However, if we
formulate the real closed field theory based on only $+\mathrm{a}\mathrm{n}\mathrm{d}.$ , then we obtain an undecidability result
even in the two-person case.

50



The first is still a game theoretical problem, though it was discussed in the game logic
framework. The second is also a game theoretical problem, but it can be regarded as a
logic problem as well in that it is a metatheorem. It is important that the latter was
raised by the former. Therefore, these form a result belonging to both game theory and
mathematical logic.

To obtain the undecidability results, we used the term existence theorem, which
is a metatheorem on provability. It is difficult to prove such metatheorems in the
present Hilbert style formulation. In Part II of this paper, we reformulate the game
logic framework in the Gentzen style sequent calculus, and prove the cut-elimination
theorem for it. By the cut-elimination theorem, we prove the term existence theorem
and the converse of the Proposition 2.2 (faithful representation). The Gentzen style
formulation and the cut-elimination theorem will provide other deeper results. These
are the subjects of Part II.

From the viewpoints of logic as well as of game theory, the epistemic axiomatization
of Nash equilibrium in Section 5 needs more discussions. $\mathrm{C}_{7}\mathrm{a}\mathrm{m}\mathrm{e}$ theoretical discussions
are found in Kaneko-Nagashima [8]. Proof theoretical evaluations of the epistemic
$\mathrm{a}_{d}\mathrm{x}\mathrm{i}\mathrm{o}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{Z}\mathrm{a}}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}$ will be discussed in a different paper.

As was mentioned, the undecidability results of Section 6 depend upon the choice
of constants or function symbols. If more constants are introduced to describe all real
algebraic numbers, then we obtain the decidability results. There still remain important
problems in this direction from the viewpoint of both logic and game theory. These will
be discussed in Kaneko [10].
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