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Abstract

A speculation on von Mises’ type notion of randomness will be presented.
Ideas proposed by Doob, Church and Loveland on this theme will first be
outlined, and then a principle of selecting subsequences will be proposed.

Introduction

The notion of randomness with coin-tossing as a typical model has at-
tracted many mathematicians, including mathematical logicians. As is known,
von Mises attempted to give a mathematical formulation to it in terms of
the concept Kollektiv and developed the theory of Kollektiv. We will not go
into the theory of Kollektiv, but will explain briefly some of the succeeding
works by Doob, Church and Loveland.

In order to make the story simple, we will consider an infinite sequence
of two symbols, $h$ and $t$ , meaning head and tail. That is, the universe of
discourse is $\Omega^{\mathrm{N}}$ , where $\Omega$ is the set $\{h, t\}$ and $\mathrm{N}$ is the set of positive integers.
The question is, how to characterise random ones among the sequences in
$\Omega^{\mathrm{N}}$ .

What the predecessors above agree on the notion of randomness is the
following.

Let $\{a_{i}\}\mathrm{b}\mathrm{e}$ a sequence from $\Omega^{\mathrm{N}}$ . $\{a_{i}\}\mathrm{i}\mathrm{s}$ said to be random if it satisfies
the conditions (1) and (2) below. Let $\sigma(a_{i})\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}1$ if $a_{i}$ is $h$ , and $0$ if it is $t$ .

(1) $\Sigma_{i=1}^{n}\sigma(ai)/n$ converges to a real number $p$ as $n$ tends to $\infty$ , where
$0<p<1$ .
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(2) Let $\{a_{n_{\mathrm{j}}}\}$ be any admissible subsequence of $\{a_{i}\}$ . Then $\Sigma_{k=1}^{j}\sigma(an_{k})/j$

converges to $p$ as $j$ tends to $\infty$ .
Everybody would agree on (1).
A subsequence is admissible if it is chosen according to some principle

of selechon. It is this principle that has to be speculated on and, hopefully,
settled. It would probably be agreed that

$(^{*})$ selection of an element $a_{i}$ may depend only on information with re-
gards to some finitely many elements of the sequence excepting $a_{i}$ .

Let us set $(^{*})$ as the requirement for a selection function of admissible
subsequences.

We expect that there be a principle, which I temporarily call $\mathrm{P}$ , such that,
given a sequence $\{a_{i}\}$ , it is determined by $\mathrm{P}$ whether to select $a_{i}$ or not. $\mathrm{P}$

is thus expected to contain some (local) information on $\{a_{i}\}$ . It is obvious
that $\mathrm{P}$ ought to regulate the selection so that not all the subsequences be
selected.

Doob in [1] sets a scheme called a system, representing a principle $P$.
A system is a sequence of functions

$\tau_{1},$
$\tau_{2(}a_{1}),$ $\tau 3(a_{1}, a_{2}),$ $\cdots,$ $\tau i(a1, \cdots, ai-1),$ $\cdots$

where the values of the functions are yes or $no$.
$\tau_{1}$ is a constant, meaning that $a_{1}$ be chosen or not by default. $\tau_{i}(a_{1,i-1}\ldots, a)$

decides whether to select $a_{i}$ or not according to information on $<a_{1},$ $\cdots,$ $a_{i-1}>$ .
Betting in gambling is a typical model of this system.

In [1], it is demonstrated that ”a successful system is impossible” ; that
is, ”betting in accordance with it leaves the player $\mathrm{i}\mathrm{n}$ the same position as if
he had bet on the result of each trial.”

This version of the selection rule $\mathrm{P}$ has the property that
(A) given a $\{a_{i}\}$ , whether $a_{i}$ be selected or not depends only on informa-

tion with regards to $<a_{1},$ $\cdots,$ $a_{i-1}>$ .
It is not clear, however, what kind of a function be allowed for a system
Church in [2] proposed recursive functions as candidates of such. Let me

explain his idea with my phrases.
Let $\phi$ be any recursive function, and let $\{b_{n}\}$ be a sequence of positive

integers defined as follows.

$b_{1}:=1;bn+1:=2b_{n}+\sigma(a_{n})$
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It is an enumeration of finite sequences $<\sigma(a_{1}),$ $\cdots$ , $\sigma(a_{m-1})>$ . $b_{n}$ is com-
puted primitive recursively in terms of the basic function $2x+y$ by substi-
tuting $b_{n-1}$ for $x$ and $\sigma(a_{n})$ for $y$ . We can thus express the sequence $\{b_{n}\}$

with a function $\beta$ as follows.

$b_{1}=\beta(1, <>):=1$

$b_{n+1}=\beta(n+1, <a_{1}, \cdots , a_{n}>)$ $:=2\beta(n, <a_{1}, \cdots , a_{n-1}>)+\sigma(a_{n})$

$b_{n}$ thus depends only on $<a_{1},$ $\cdots,$ $a_{n-1}>$ .
Next, define $c_{n}:=\phi(b_{n})$ and $C:=\{n|c_{n}=1\}$ . Under the assumption

that $C$ be an infinite set, arrange its elements in the increasing order: $\{n_{j}\}_{j}$ .
This scheme can be a candidate for a selection rule as required in (2) which
satisfies (A). For, it is obvious that $c_{n}$ is computed with information given
by $<a_{1},$ $\cdots$ , $a_{n-1}>$ . We can thus write $c_{n}$ as $c_{n}=\psi(n, <a_{1}, \cdots, a_{n-1}>)$ .
$\psi$ is recursive in $\{a_{i}\}$ . $\{n_{j}\}_{j}$ is then determined as follows.

$n_{1}:= \min(m;\psi(m, <a_{1}, \cdots, a_{m-1}>)=1)$

$n_{j+1}:= \min(m;m\geq n_{j}+1\wedge\psi(m, <a_{1}, \cdots , a_{m-1}>)=1)$

$n_{j}$ as a function of $j$ is recursive in $\{a_{i}\}$ , as the infinity of the set $C$ is assumed.
Now, asked if $a_{i}$ be chosen, one computes $\psi(i, <a_{1}, \cdots, a_{i-1}>)$ and see

if the value be $0$ or 1. So, $\psi(i$ , -

$)$ can be adopted as the system $\{\tau_{i}\}$ . That
is, this selection scheme is in accord with Doob’s system. Let us say $\{a_{i}\}\mathrm{i}\mathrm{s}$

$C$-random if it is random in this sense.
A recursive funtion produces values in a regular manner and hence one

can expect that it does not destroy randomness as it selects a subsequence.
Church then proves that there are many (in fact with power c) C-random
sequences.

Much later than these predecessors, Loveland in [3] came up with another
view on the selection principle. He explains an example of a situation in
which a selction rule not satisfying the property (A) can be realistic. That is,
selection of $a_{i}$ may depend on information with regards to some $a_{k_{1}},$ $\cdots,$ $a_{k_{j}}$ ,
where the subscripts may be greater than $i$ .

He gives a method how to construct a selection rule which does not violate
the condition $(^{*})$ but does not obey (A).

In the next section, I will give a mathematical formulation to this idea.
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1Church-LoVeland-randOmnesS
Given a sequence $\{a_{i}\}$ , which is random in the sense of Church. Let $\nu$ be

a recursive $re$-enumeration of positive integers. Its inverse, say $\mu$ is also

recursive. $\{a_{\nu()}\iota\}(=\{d_{l}\})$ will be a $\mathrm{r}\mathrm{e}$-enumeration of $\{a_{i}\}$ . (It can easily be

seen that the condition (1) does not necessarily hold with $\{d_{l}\}$ . )

We will define a function to determine a system, which realizes a selection

principle, in a manner similar to $\psi$ above.
Let $\{b_{n}’\}$ be a sequence of positive integers defined as follows.

$b_{1}’=\beta’(1, <>):=1$

$b_{n+1}’=\beta’(n+1, <a_{\nu(1)},\cdots,a(n-1)>)\nu$

$:=2\beta’(n, <a\nu(1),$ $\cdots,$
$a\nu(n-1\rangle>)+\sigma(a_{\nu}(n))$

Let $\phi$ be any recursive function. Then, define $c_{n}’:=\phi(b_{n}’)$ and $C’$ $:=$

$\{n|c’n=1\}$ . Under the assumption that $C’$ be an infinite set, arrange
its elements in the increasing order: $\{n_{j}\}$ . $c_{n}’$ can be computed with in-

formation with regards to $<a_{\nu(1),(\mathrm{t}}\ldots,$$a_{\nu}$ ) $>$ . We can thus write $c_{n}’$ as
$c_{n}’=\psi’(n, <a_{\nu(1)}, \cdots , a_{\nu(l)}>)$ . $c_{n}’$ is recursive in $\{a_{l}\}$ , depending only on
$<a_{y(1)},$ $\cdots,$ $a\nu(l)>$ .

Put $q=q_{i}=\mu(i)$ . That is, $a_{i}=a_{\nu(q)}$ . We would like to decide whether

to select $a_{i}$ or not according to the scheme given by $\psi’$ . That is, $a_{i}$ will be

chosen if and only if $c_{q}=1$ . The original sequence $\{a_{i}\}\mathrm{w}\mathrm{i}\mathrm{l}1$ be said to be

L-C-random if it satisfies (1) and (2) with the selection rule $\psi’$ as above.
The idea is simple and natural. As a very special case of $\nu$ , we can take

the identity function, and hence $C-L$-random sequences are C-random.
Loveland presents a construction method such that it produces a sequence

$\{a_{i}\}\mathrm{W}\mathrm{h}\mathrm{i}\mathrm{C}\mathrm{h}$ is $C$-random but not C-L-random. This guarantees the significance
of Loveland’s generalization of the notion of randomness. The construction
is an elaborate one relying on a diagonal method.

He also proves the existence of C-L-random sequences by the classical

methods emplyoed by Doob and Church.

2 Beyond Recursive Selection

As was mentioned above, recursive selection for the condition (2) (whether it

be $C$-random or C-L-random) is a safe way of selection, due to its regularity.
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I am not sure, however, if it is sufficient. It is a matter of how one views
betting decision.

Given information on $<a_{1},$ $\cdots$ , $a_{i-1}>$ , how would one decides whether
or not to bet on $a_{i}$? In a way, this decision could be quite random (?!),
for one can make decision quite capriciously. One can even toss a coin! In
reality, one would like to win over a game, and hence would evaluate the
preceding results and decide on a pre-set rule of judgement. Such a rule is
usually recursive, as one has to make decision in a finite time interval. If
one becomes desparate, however, one may toss a coin or rely on some omen.
The selection procedure as such still does not depend on the information of
$a_{i}$ itself

Since Doob does not specify the selection rule, all these are admissible.
Even then, mathematically, there are random sequences with power $\mathrm{c}$ . It is
now at our liberty what kind of selection rules (called $\mathrm{P}$ above) we admit.
$\mathrm{P}$ can be expressed in terms of a scheme $\delta$ :

$c_{n}:=\delta(n, <\sigma(a1),$ $\sigma(a_{2}),$
$\cdots,$ $\sigma(a_{n-}1)>)$

A most regular $\delta$ would be recursive, and a most irregular one would be
coin-tossing or something of the sort.

In reality, one would rely on some kind of decidable criteria. For example,
with 69 heads and 31 tails, one may feel that, since 69 is more than twice 31,
the next tossing result would be tail. Being betrayed at the next stage, the
player may judge that, for awhile, the lady luck is on the side of head. So,
the player will bet on head.

Each of these judgements is decidable. The first one is to ask
$(a)$ if $h_{n}>2t_{n}$ ,

and the second one is to ask
$(b)$ if $h_{n}>2t_{n}$ and $\sigma(a_{n})=1$ .
( $h_{n}$ is the number of heads by $n$ stages.) There is, however, no pre-

determined rule what kind of judgement be adapted at each stage. The
player may suddenly getsa hunch that $a_{n+1}$ be 1, and so the player bets on
$a_{n+1}$ .

In order that $\mathrm{P}$ , the selection principle, cover all these possibilities of
selection and yet be consistent in the sense that almost all sequences (from
$\Omega^{\mathrm{N}})$ be random with repsect to $\mathrm{P}$ , a sensible condition be that $\mathrm{P}$ be recursive
in a parameter. Such a parameter is usually called an orade. I thus propose
the following.
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Proposal The selction principle $\mathrm{P}$ be represented in terms offunctions which
are recursive in an oracle.

More explicitly, express $\mathrm{P}$ as follows.

Definition 2.1 Let $f$ be a number-theoretic function with a function param-
eter $\alpha$ . $f$ is said to be recursive in the oracle $\alpha$ , if the follwoing it is defined
by one of the following.

$f(x_{1}, \cdots , x_{n}):=c$ ($c$ is a constant. )

$f(x_{1}, \cdots, x_{n}):=x_{i}(i=1, \cdots, n)$

$f(x_{1}, \cdots, X_{n}):=\alpha(x1, \cdots, X_{n})$

$f(x_{1}, \cdots, x_{n}):=h(g1(X_{1}, \cdots, xn), \cdots, g_{m}(X_{1}, \cdots, x_{n}))$

$f(x):=x+1$

$f(x, x_{1}, \cdots, x_{n}):=$ if $x=0$ then $h(x, x_{1}, \cdots , x_{n})$

else $g(f(x-1, X1, \cdots, Xn), X, X1, \cdots, x_{n})$

$f(x_{1}, \cdots, x_{n}):=$ if $g(x_{1}, \cdots, x_{n}, y)=0$

then $y$ else $f(x_{1}, \cdots , x_{n}, y+1)$

Here $g$ and $h$ are supposed to be recursive in $\alpha$ , and have already been
defined.

(See [4] for details.)
Obviously, a recursive function is obtained as a special case of the defini-

tions above. For (a) above, one can set as follows.

$\alpha(n+1, <s_{1}, \ldots, s_{n}>)=1$ if and only if $h_{n}>2t_{n}$
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Here, $s_{i}$ is $\sigma(a_{i})$ , and $h_{n}$ is the number of $h’ \mathrm{s}$ (1’s) among $a_{1},$ $\cdot\cdot’,$ $a_{n}$ ;
similarly with $t_{n}$ . For (b), $\alpha$ can be determied similarly. Notice that this is
not determined uniformly in $n$ , but is for this particular $n+1$ . At another
stage, say $m$ , one may prefer to tossing another coin for decision, and gets $t$ .
Then, $\alpha(m, <\cdots>)=0$, a constant.

The scheme as proposed above still fits in Doob’s concept of system.
Mathematical details are yet to be worked out.
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