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0. INTRODUCTION -DEFINITIONS AND THEOREMS-

We define a class of wavelet transforms as a continuous and micro-

local version of the Littlewood-Paley decompositions. Hormander’s
wave front sets as well as Besov and Triebel-Lizorkin spaces may be
characterized in terms of our wavelet transforms. We remark that our
decompositions can be regarded linearly independent.
This paper consists of two parts. The former part is the comparison
between the wave front sets defined by our wavelet transforms and
Hoérmander’s wave front sets. The latter part is the characterization of
Besov, Triebel-Lizorkin spaces by using our wavelet transforms. First,
we define our wavelet transforms as follows;

Definition 1. Suppose that the function 1(z) (called wavelet) has the
following properties;

P(z) € S(R™), ¥(€) € CP(R™) and () 2 0. Let Q=supp(£),
(0,--,0,1) is the central axis of Q, and r¢ is any rotation which sends
£/1€] to (0,--,0,1). When n =1, Q C (0,00) and when n 2 2, Q is
connected, does not contain the origin 0 and ¥(2) = (rz) for any
r € SO(n) satisfying r(0,-,0,1) =(0,-,0,1). Then our wavelet trans-
form is defined as follows; '

for f(t) € S'(R™), (z,¢) € R?",

Jo FOIEN2p(E(t — z))dt, ifn=1,
Jun SN2 p([E]re(t — 2))dt, Hn22

Wy f(2,€) ='{
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Remark 1. Wy f(x,€) is rewritten as follows;

| 31t - e
R" 19

From this, the meaning of our wavelet transforms is clear.

Remark 2. Our wavelet transforms in R® are the reduced versions
of those defined by R.Murenzi(See,[¢]). Our purpose is to carry out the
analogy of the microlocal anaiysis L.Hérmander succeeded in |3].

Remark 3. The domain of a wavelet transformation is usually the
L,-space(See,[f]), but can be extended to S ,that is, the dual space of
S. It is easy to see that the image of S by this transformation is also

S.

Now, we define our wave front set WFy(f)(C RExRZ)of f € S'(R?)
as follows.

Definition 2. (2¢,£°%) ¢ WFy(f) is defined as follows:
there exists a neighbourhood U(z¢) of ¢ and a conic neighbourhood
T(€°) of €° such that [Wy f(z,€)|= O(J¢|~N) as |¢] tends to co for any

N € Nin U(zg) x I'(¢9).
Moreover, we define the refinement ifVFé,’)( f) as follows.

Definition 3.

(20, ) ¢ WES(f) & // (W fz, €)1+ €Y dedé < oo.
U(z0)xI'(£°)

It is clear that if f € Ly(R™),

W Fy(f) = the closure of | ] WFS)(f).
820

We need the following definition to state Theorem 1.

Definition 4. Let
conef) ={t§|§ €Q,t> OJ‘ X

(0,8%) ¢ WF” is defined as follows:
zo ¢ proj;,WF and £° € R,
- or 2o € proj; WF and r(coneQ?) does not intersect {¢ € R™;(zo,&) €
WF} for any r € SO(n) with r(coneQ) including ¢°.
Here, proj, W F denotes the projection of WF onto z-space.
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Theorem 1. Let f € Ly(R"™), and s 2 0. When n = 1, WF,E,S)(f) =
WFO(f). When n 2 2, WES)(f) € WEFO(f). and WF@(f) C

P
WF&,S)(f) . We have the same inclusions between W Fy(f) and W F(f).

The latter part of this paper is the characterization of Besov,
Triebel-Lizorkin spaces by using our wavelet transforms: We use
continuous decompositionsnot only of the radial direction but also of
the unit sphere of the frequency space. (See,J.Peetre[4],H. Triebel[5])

Defi V\it"am\r‘,

.Let #(z) be a rapidly decreasing function whose Fourier transform
is compactly supported in 3 < [¢] £ 2. Moreover, suppose that any
half line starting from the orlgm intersects supp 9$(§)

Let ¢.(z) be r"¢(rz). Then, ¢.(¢) is equal to ¢(§)

Deﬁnitiox.l of Besov spaces B: (R"). f € B (R™) (s > 0,1 £
P,q S 00) is defined by the following:

([ 180 % F s, ) SN < oo,

Definition of Triebel-Lizorkin spaces F}f’q(R”). f € F;q(R")
(s >0,1 £p<oo,l S gs ) is defined by the following: ’

H(/(ra K f(w))qi:_)%

< oo.
Ly(dx)

Theorem 2. f € B,’,’q(R“) (s>0,15 j),q < o) can be character-
ized by the following:

et et 1w e, 01y

sz(rgif'r)<oo

Theorem 3. f € F? (R") (s >0, 1<p<oo 1 £ ¢S o) can be
characterized by the foIIowmg

““’ﬂ’*%iWr»f (= Ol 30|, (d2)




1.WAVE FRONT SETSDEFINED BY our WAVELET
TRANSFORMCAND HORMANDER’S WAVE FRONT SETS

As we have already defined, the wavelet 1(z) is of essentially two
parameters that is rotationally invariant around © when n 2 2. For
the purpose of proving Theorem 1,we prepare three propositions.

( Heve , @ = (0,:,0,1) €R™,)

Proposition 1(Parseval formula and inversion formula).’
For f,g € L,(R"),

[ wasta, st et = 0y [ et

Here,

7 2
Cy = (2r)" ———-|¢|g3| dé.

From this, we also have:

56 = 05 [[ Was(a, ) 1% b(lelre(s - 2ot

when n 2 2. Whenn =1, |élre(t — ) is replaced by €(t — z).

For é/g'/(@%), this inversion fopmula mast be
rejmﬁd""( in the distribution Sense,

Proposition 2(Locality). '
If zo ¢ suppf,then there exists a neighbourhood U(zg) of zq such

that Wy, f(z,§) is rapidly decreasing in ¢ with respect to = € U(z,)
uniformly.

Proposition 3(Global Sobolev property).
fem®) e [[Wse 0 +16PY < oo

SRS e 3EY 1T Z G HLa 9T E (See 113, 14])
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Proof of Theorem 1. It suffices to show when n 2 2. Moreover,
by the fact that W Fy(f)=the closure of |J WF‘(;)( f), it suffices to
: 520

prove the statement for any s 2 0 fixed.

Step.1

Let (0,¢°) ¢ VVF(’)(f)¢. If we take a conic neighbourhood I'(¢?)
of ¢ as the union of all r(coneQd), where r is any rotation with ¢°
included in r(conef)), then there exists a function ¢(z) € C$(R")

which is always equal to 1 near z = 0 and satisfies fl‘(£°) () (E)12(1+

[€]2)*d¢ < co. This follows from the definition of VV—¢, the definition
of Hormander’s wave front set .and Heine-Borel’s lemma.

What we want to say is that there exist a conic neighbourhood I~‘(§°)
of £° and a neighbourhood U(0) of 0, satisfying:

[ s ora iy <o

U(0)xT'(£°)

Here,using the inversion forrﬁula, we divide Wy f(:t, £) into two parts:

Wy (e,6) =1t [ (81)0)- FEReC - 2 (1)
et / (1= D)F)E) - BEreE=2)dt  (2)

If U(0) € {¢(z) = 1} ,then, by the argument of propotion 2, (2) is
rapidly decresing in || with respect to z € U(0) uniformly. There-
fore, it is clear that (0,é) ¢ WFS (1 — 4)f). On the other hand, if
we take I'(¢°) sufficiently small, then we get the following:

- / / Wo($ )z, O)R(L + |€[2) dede

U(0)xT'(£°)

< / dt / Wo(65)(=, (1 + ¢[2)* dude

F(eo) Rz .

=(27)" ISP ()2 ié_ 2ys,00 7€ 2

=(2n) R/ FENET [ R+ kR 9GEn
r INCL))

If we change variables from 7 to w= ]%‘I'r as before , w must be in Q.

Therefore, we can see that 7 stays in I'(¢°) because we took I'(¢°)
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very small. The inequality above is followed by:

12
sy [ arl@nr / S+ gy
r'((¢%)
£C / (AP + |7[?)%dr < oo(Here, C is a constant.)
r'(¢%)

Therefore, (0,¢°) ¢ WFS (45).

Step.2

Let (0,£°) ¢ WFéf)(f) . If we take a conic neighbourhood I'(£°)
of £° as the union of all r(cone(Y), where r is any rotation with £°
included in r(cone?), then there exists a neighbourhood U(0) of = = 0

and satisfies [ |Wyf(z, )21+ |¢]*)*dzdé < oo, as in Step 1.
U(0)xI'(¢°)

Here, using the inversion formula, we divide f into two parts:
f=fr+ fre, where

rO=05" [[ Wase,6) 10 0(elre(s - )iz

F(¢°)xR;

fre®=05" [ Werle,0)- 0% W(llre(t - 2))dzdt.

I(£%)xR3

Then,
=g [ [ Wese - ke st

If we take a sufficiently small conic neighbourhood f(fo) of £°, then
we obtain

(lflT) = 0 for anyT € I'(¢°) and for any ¢ € V(D

Therefore, it follows (0,£°) ¢ WF()(fp.).



Next, we choose ¢(z) € C°(R™) satisfying that suppé(z) C U(0)
and that ¢(z) = 1 in some neighbourhood U;(0) of 0. Then, we
further divide fr(t) into two parts:

fr=fre + fr1—¢, where

fra=C3t [[ #a) Wasl@,0)- Fv(lehre(t ~ 2))dede

T(£%)xR2

frace®=03" [ (1= 8)Was(a,6)- 1 (eIrele — )izt

I(£°)xRy :

Let Uz(0) € {¢(z) = 1}, then we can easily see that fra-g(t) is C=
with respect to t € U(0), by Proposition 2, and ’the exchange of
order of differentiation and integration’. Therefore, it follows (0, £°) ¢
WEFE(fra1-g)-

Lastly, we want to show (0,£°) ¢ WF(fr 4). This is the heart of
matter in proving Theorem 1. In fact, more strongly, we can show
the global Sobolev property of fr ¢. -

Fa =03 [ 6e) Warla,0) 16 (i< dadg

4
(%) xR

Here, if we put g(z,¢) = ¢(z)Wyf(z,€) - (1 + |€]2)%, then we can

see

|g($a E)IzdxdE < oo.
T(£%)xRD

(This follows from the hypothesis and from the fact that suppé(z)
is included in U(0).)
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If we denote the Fourier partial transform of g(z,¢) from x to 7 by

i(r,€),
Fra(r)(1+ |2

c;* [ sz0eir =M

T(£0) xRy

- =C,'(2m)? /F (é) §(r,) - K(r,£)d¢

1+ |72

Trlep) %

Here, K(7,€) is defined by |¢ ”%ﬁ(%r)(}l—'ﬂa;)%
~ Because suppy) is a compact set not including the origin 0 (by the
defintion of ), there exists a constant C such that

K (r, )] £ CleI~¥( 5 i 7)-

Therefore, by using the result in the proof of Proposition 1( i.e. the
continuous decomposition of the unity), the integral [ |K(r,¢)|2d¢ is
bounded from above. (the bound is (27)~"CyC?2.)

After all, we obtain the following inequality:

J1Famraryar seget [(f o

~C' / dt / 1§(r, €)2dr
(%) R?

~c' // l9(z, €)Pdzde < oo.
T(¢°)xR2

(Theorem 1) q.e.d.
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2.CHARACTERIZATION OF BESOV, TRIEBEL-LIZORKIN
SPACES VIA owy CONTINUOUS WAVELET TRANSFORMS

Now we prove Theorem 2 and Theorem 3.

Theorem 2. f € B;'q(IR") (s >0,1 < p,q S 00) can be character-
ized by the following:

et lier® (W £, )L, sy

< 00.
Lo(184e)

Proof. Sufficiency:
For simplicity, let

¥ i * Feo=I¢ Wy f (=, £),

ble| = 1/45‘,,.5 df¢, where df; is the Haar measure on S™ 7.

Then, ¢,(£) is compactly supported in C;r £ |¢] £ Cyr (because
$(€) is compactly supported.) and any half line starting from the
origin intersects supp ¢r(£).

1] B+ 10022 S W * o))y
<C [([ Wi, + S(@)IPda)} do

The first inequality is due to the continuous version of the Minkowskii
inequality and the second one is due to the Holder inequality. Af-
ter integrating both hand sides of this inequality with respect to

|€]°9-1d|¢|, we can see that the usual Besov norm can be bounded

from above by the Besov norm via the wavelet transform.
Necessity: Let,

Go(r)? = (2m)"C? / $(er)2ds.

(See the proof of Proposition 1.) Then, suppd,(7) is located in

Cir S |r| £ Car and
" dr
/Ur(T)zT =1,

that is,

/ . a,(x)‘-if = §(=).
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By using this continuous decomposition of the unity,

dr
[91et,re * F@ g, 0y /”d)""’t * ey any I *orll 0y 7 )

Because the Fourier transform of Il’lﬂﬂ * 0, 1s not equal to 0 only
when C;]¢| £ r £ C4lé|, and because the L; norm of ¢, and o,
is bounded,

dr
r

Calé|
(1) £C /C o 170l

c dt
—c /C N xeaa@ s, 7

The last term above is independent of the rotation df¢, and more-
over, '

~ |

Lo(jfe) Lo(ife)’

we can conclude that the Besov norm via the wavelet transform is
bounded from above by the usual Besov norm.
(Theorem 2) q.e.d.

“lfls I * ouell 1, as) &l 1 * a1l 2, gaey

Theorem 3. f € F,‘,”q(R") (s>0,1Sp<o00,15 ¢S 0.)can be
characterized by the following:

< oo.
Ly(dz)

”Hlfl’*%IW'pf(w,&)llI,Lq( )

Proof. Sufficiency: As in Theorem.2, let

ble) = / Ple|,re A
Then,
€1y SN = [ (Wi FE1) ol
<c / ((Dlepmg * £())IEI 198

Hence, we can easily see that the usual Triebel-Lizorkin norm is
bounded from above by the norm via the wavelet transform.
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Necessity: This part needs very deep results which are continuous
versions of the work of C.Fefferman-E.M.Stein(2] and H.Triebel[5].

First, we state the results without proof.( The proof is carried out
in the same way as in the discrete case. See[2}[5].)

. Claim 1.(Continuous version of [2]) Let f(z,y) be a function
of (z,y) € RZ x R}, and M f(z,y) bé a maximal function of f(z,y)
with respect to 2. Then,

< Cp,q
Ly(dz)

LAY

|/ weste gt

([ 1t

Iy‘ |y|™ L,(dz) ,

where 1 < p < 00,1 < ¢ = 0.

Claim 2.(Continuous version of maximal inequalities in [5])
Let p,q,r be

0<p<oo 0 < q £ o0,and 0 < r < min(p,q).

Let f(£,v) be the Fourier partial transform of f(:z:,y) with respect to

z, and Q| be a set including the support of f(f,y) with respect to
€. Let the diameter d), of Q,| be a continuous function of |y|, and
djy| > 0. Then the following inequality holds:

 fe=zy)
”(/(zengt 1+Id|y|2|— )‘1

Ly(dz)
s urgei|

Ly(dx)

Claim 3.(Continuous version of multiplier theorem in [5])
Let

1
min(p,q)”"
Let )y}, djy| be as in Claim.2. Then, the following inequality holds:

0<p<oo,0<q§oo,andn>n(-1—_+

|(f @+ ey ,d’l’,, %

L,(dz)

<C sup ”M(d|y| ,y)ng

,y)l l"

L,(dr)



Claim 1 is essential in proving Claim 2.
In proving Claim 3, we need Claim 2 and the following inequality:

e 1162 £ )z = 2)
zER" 1+ |dlylz|-"rL

[f(z - z,y)| ” y K
<C = (| M(dyy-, y) | H

(Here, 0 < r < mz'n(p,~ he>F+E)

b
As in the proof of\’r"/

necessary condition of Theorem 2, we use the
continuous decomposition of the unity:

/ar * ar(:v)ﬁlrz = §(z).

| I€1° (1¢), e * f(x))”Lq(l?‘f'f)“ L,(dz)

_ ” / €1 Wi * 02) # (F # 0, )(z)

C* dtl

Lo(dhe)
I|I|€l (Plel,re * Tuje)) * (f*”tlfl)”z, (||,

Ly(dz)

We apply Claim 3 to the integrand of the last term aboves

dje} =C|¢|, and

Blelre * o1tel(7) ¢(|€| T) U(tlﬂ)

Thus,

sup

5 Gkl T

is bounded from above. Therefore, the Triebel-Lizorkin norm via the
wavelet transform is bounded from above by the usual norm.

(Theorem 3)q.e.d.

Remark # Theorem 3. can be extended to the case when 0 <
p < oo. The case when 0 < ¢ £ 00 remains to be proved. Also in
Theorem 2, the case when 0 < p < 00, 0 < ¢ £ oo remains to be
proved.. Such troubles occur because we used the Hélder inequality
and the Minkowskii inequality in the proof of Theorem 2,3.
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