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\S l.Introduclion

In this talk we define the Radon transform of a class of hyperfunctions and discuss

their support. The Radon transform was first introduced by J.Radon in [R], where

he proved an inversion formula. Later, the Radon transforms turned out to be useful

tools for the study of computerized tomography $([\mathrm{S}\mathrm{K}])$ , radio astronomy $([\mathrm{B}\mathrm{R}])$ and so

on. There are numerous studies of Radon transform in the shoes of applications. Here,

however, we are interested in a purely mathematical problem and study this transform

from the viewpoint of micro-local analysis and the theory of hyperfunctions. In section

2, we make some definitions, state the support theorems known already, introduce the

sketches of their proofs and mention some remarks around them. In section 3, we define

the Radon transform for a class of hyperfunctions, demonstrate some examples. Where

growth condition on functions plays an important role. In section 4, we show the support

theorem for rapidly deceasing Fourier hyperfunctions, which is what we would like to

insist here. For the proof of our main theorem, the fact that our Fourier hyperfunctions

decay more rapidly than any polynomials of negative power is essential.

Throughout this talk what we would like to claim with stress is that decay conditions

to be assigned on functions are important for the definition of the Radon transfrom and

for the proofs of global support theorem. Smoothness of functions affects little.
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\S 2.The Radon transform and support theorems

First we introduce the Radon transform

Definition 2.1. Let $f$ be a function on R and $\xi$ be a hyperplane. The Radon transform
$Rf(\xi)$ of $f$ is

(2.1) $Rf( \xi)\equiv\int_{\xi}f(X)d_{X}$ ,

where $dx$ is Euclidean measure on $\xi$ .

When $f\in \mathcal{E}’(R^{n})$ we can define $Rf(\xi)(\mathrm{c}\mathrm{f}.[\mathrm{H}\mathrm{e}])$ and this idea applies to distributions
with some decay condition without modifications. Of course we can define the radon
transform on $d$ planes $(1 \leq d\leq n-1)$ , but in this talk we mean the ones on the hyper-
planes by the word the Radon transform. Support theorem established by S.Helgason
([He]) is as follows;

Theorem 2.2. $f\in C(P)$ satisfies

(i) $|x|^{k}|f(X)|<\infty$ for $\forall k\in N$,

(ii) $Rf(\xi)=0$ for $d(\mathrm{O}, \xi)>A(A>0)$ ,

where $d$ denotes the distance. Then

$f(x)=0$ for $|x|>A$ .

The concept of his proof is as follows; from the assumption that the Radon transforms
vanish, we can claim that any integral over spheres which contain $B(\mathrm{O}, A)$ inside vanish,
furthermore with the condition of rapid decay it turns out that $f$ and any polinomial
are orthogonal on such spheres. Therefore we conclude that $f=0$ outside $B(\mathrm{O}, A)$ .
Helgason’s proof holds for rapidly decreasing distributions with some adjustment. We
remark that the decay conditon assigned on $f$ cannot be omitted, to our astonishment
there exists a continuous function on $R^{n}$ any line integral of which vanishes but $f$ is not
identically zero (cf. [Z]). In 1991 J.Boman detailed this theorem, in order to state his
theorem we need some preparations. Let $Z=$ { $(x,$ $H)|H\subset R^{n}$ isahyperplane $x\in H$ },
$f\in C(P)$ . For $\rho\in A(Z)$ , define

$R_{\rho}f( \xi):=\int_{\epsilon^{f(X)\rho}}(X, \xi)dx$ ,

if possible. Now we introduce Boman’s theorem $([\mathrm{B}2])$ .
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Theorem 2.3. Let $f\in C(\mathbb{P})$ decays fast enough to be integrable over any hyperplanes

and decay faster than any negative power $of|x|$ in $\Gamma,$ $\rho\in A(Z)$ be able to be extend$\mathrm{e}d$

to a real analytic and positive function on $Z,$ $K$ be a compact $su$ bset of $R^{n}$ . $Ass\mathrm{u}\mathrm{m}e$

$R_{\rho}f(\xi)=0$ for all $\xi$ not intersecting K. Then $f=0$ in $\bigcap_{x\in K}(x+(\Gamma\cup(-\Gamma)))$

As a corollary of this theorem, Theorem 2.2 follows. In Boman’s theory, we take $f$ for

the one defined on $P^{n}$ which is difficult in considering $f$ being a distribution or Fourier

hyperfunction with decay. Among main tools to prove Theorem 2.3 are Holmgren’s

uniqueness theorem (Theorem 8.5.6’) and a local vanishing theorem for distributions

with analytic parameters (cf. [B1]) which reads as

Theorem 2.4. Let $f$ be a distribution defin$e\mathrm{d}$ in some neighborhood of the real analytic

hypersurface $S\subset R^{n}$ ,
$N^{*}(S)\cap WF_{A}(f)=\emptyset$

and
$\partial^{\alpha}f|s=0$ forall $\alpha$ .

Then $f$ vanishes in some neighborhood of $S$ .

This theorem holds for non-qllasi-analytic ultradistributions $([\mathrm{T}\mathrm{T}])$ , which implies

Theorem 2.4 is true for ultradistributions decaying faster than any negative power of

$|x|$ , and the parameter, by which we mean the regularity near $S$ , can be extended to be

quasi-analytic $([\mathrm{B}3])$ . We note that though Holmgren’s uniqueness theorem holds for

hyperfunctions (Theorem 9.6.6 in $[\mathrm{H}_{\ddot{0}}]$ ) Theorem 2.4 does not, which requires another

vanishing theorem for hyperfunctions for extension (cf. Section 4).

\S 3 Radon transform for hyperflnctions

The Radon transform for hyperfuncitons was first discussed in [KT] and studied

much in detail in [TK]. In [TK], so as to define Radon transform for hyperfunctions we

interpret the definition of the Radon transfrom in three ways;

$Rf( \xi)=\int_{\xi}f(_{X})dx$

$= \int_{R^{\mathfrak{n}}}\delta(x\cdot\omega-t)f(x)d_{X}$

$= \frac{1}{2\pi}\int_{R}e^{its_{ds}}\int_{R^{n}}e^{-i}fs\omega\cdot x(x)dx$ ,
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where $\xi=\{x\cdot\omega=t\},$ $\omega\in S^{n-1}$ .
From this interpretation or by duality argument, we can define the class of hyper-

functions for any element of which the Radon transform is well defined. We call this

the class of Radon hyperfunctions, which is not a subclass of Fourier hyperfunctions,

unfortunately. Fourier hyperfunctions with some decay conditions, however, belong to

this class. Here we impose some examples;

Example 3.1. 1) For $f(x)=J(D)\delta(X-a)$ , where $a\in R^{n}$ is a fixed point and $J(D)$

we have

$Rf( \omega, t)=J(\omega\frac{d}{dt})\delta(t-a\omega)$ .

2) Take $f(x)=1/(x_{1}+ix_{2})m+1$ in $R^{2}$ . We have

$Rf( \omega, t)=2\pi\frac{(-1)^{m}}{m!2^{m}}\frac{(\omega_{1^{-i}2}\omega)^{m}}{\omega_{1}+i\omega_{2}}\delta^{(1)}m-(t)$.

For $m=0$ we would have

$R \frac{1}{x_{1}+ix_{2}}=\pi\frac{1}{\omega_{1}+i\omega_{2}}$sgnt.

But this is not covered by our present theory.

3) Consider $f(x)= \prod_{j=1(x_{j}}^{n}+i\epsilon)^{-1}$ with $\epsilon\geq 0$ , we obtain

$Rf( \omega, t)=-(-2\pi i)^{n-1}(\frac{\chi(\omega.)}{t+i\epsilon|\omega_{1}+\cdot\cdot+\omega n|}-\frac{\chi(-\omega)}{t-i\epsilon|\omega 1+\cdots+\omega n|})$ ,

where $\chi(\omega)$ denotes the characteristic function of the part of $S^{n-1}$ lying in the first

orthant. This is analytic in $t$ for $\epsilon>0$ btlt discontinuous in $\omega$ whatever $\epsilon$ may be. By

a similar calculus we obtain the Radon transform of $f(x)= \prod_{j=1}^{n}(x_{j}+i\epsilon)^{-m}$ :

$Rf( \omega, t)=-(-2\pi i)n-1\frac{(2m-2)!}{(m-1)!^{2}}(\omega 1\ldots\omega_{n})m-1$

$\cross(\frac{\chi(\omega.)}{t+i\epsilon|\omega_{1}+\cdot\cdot+\omega n|}-\frac{\chi(-\omega)}{t-i\epsilon|\omega_{1}+\cdots+\omega n|})$ .

This becomes more and more regular in $\omega$ as $m$ grows.
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\S 4 Support Theorem for rapidly decreasing Fourier hyperfunctions

In order to state our main theorem, we define Rapidly decreasing Fourier hyperfunc-

tions. For $U\subset D^{n}+R$ let

$o^{(-\infty)}(U)= \{f(z)\in \mathcal{O}(U\cap C^{n}|\forall K\subset\subset U,\forall m\in N, \sup_{n,z\in K\cap C}|{\rm Re} Z|^{m}|f(z)|<\infty\}$ .

Here, $K\subset\subset U$ means that the closure of $K$ in $D^{n}$ is included in $U$ . We denote the

corresponding sheaf on $D^{n}+iR^{n}$ by $\mathcal{O}^{(-\infty)}$ . The sheaf of rapidly decreasing Fourier hy-

perfunctions is defined as $\mathcal{H}_{D^{n}}^{n}(\mathcal{O}^{(-\infty)})$ . Remark that by the term ”rapidly decreasing”

we mean the decay faster than any negative power of $|x|$ at infinity, which is different

use from the usual one for Fourier hyperfunctions.

Support theorem implies the uniqueness of the exterior problem;

Theorem 4.1. Let $f(x)$ be a rapidly decreasing Fourier hyperfunction. Assume that

$Rf(\omega, t)$ vanishes $for|t|\geq A.$ Then $f(x)$ vanishes on $|x|\geq A$ .

In [TK], we have extended both proofs by S.Helgason and J.Boman to verify this

theorem.

To extend Helgason’s proof to rapidly decreasing Fourier hyperfunctions we apply

some uniqueness theorem for hyperfunctions containing analytic paremeters (Theorem

4.4.7 in [K] $)$ .
Enlarging Boman’s certification makes us be in much trouble. First trouble is the

interpretation of the Radon transform over hyperplane at infinity when $f$ is regarded

the one on $P^{n}$ . In Theorem 2.3, since $f$ is continuous we can extend $f=0$ at infinity

naturally. But here the problem is not so easy, even among exponentially decreasing

Fourier hyperfunctions, by which we mean rapidly decraesing ones as usual, there exists

the one whose support intersects the sphere at infinity (cf. Example 8.4.6 in [K]).

However, the assumption of the Radon transform enable us exclude such critical case

when $f$ is of rapidly decay.

The second trouble is, as was mentioned in section 2, alocal vanishing theorem (Theorem

2.4) does not apply for hyperfunctions (cf. Note 3.3 in [K]). Fortunately, in this casewe

can apply Theorem 4.4.5 in [K] in place of Theorem 2.4.
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We would be very happy if we could extend Theorem 2.4 to hyperfunctions, for which

we have some problems left to be solved.

First, in this case, $f$ does dot decrease rapidly outside the cone $\Gamma$ , the interpretation at

infinity is not such a simple one.

In this case rapidly decreasing does not seem enough. We know exponontially decay

implies this extension if the first problem is cleared.
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