A note on Sturm-type comparison theorems on a half-open interval

広島大・理 内藤 雄基 (Yūki Naito)

1. Introduction and statement of the results

In this note, we investigate comparison theorems of Sturm-type on a half-open interval $[a, \omega), \omega \leq \infty$. We consider two differential equations

(1.1)
$$(p(t)x')' + q(t)x = 0, \qquad a \le t < \omega,$$

(1.2)
$$(P(t)y')' + Q(t)y = 0, \quad a \le t < \omega,$$

where p(t), q(t), P(t), and Q(t) are continuous functions on $[a, \omega)$, and

 $p(t) \ge P(t) > 0$ and $Q(t) \ge q(t)$ on $[a, \omega)$.

In this case, (1.2) is called a Sturm majorant for (1.1) on $[a, \omega)$ and (1.1) is called a Sturm minorant for (1.2).

Sturm's comparison theorem can be stated as folows: (See, e.g., [2, Chap.11, Theorem 3.1].)

Theorem A. Let $x(t) \neq 0$ be a solution of (1.1) and let x(t) has exactly $n \geq 1$ zeros $t = t_1 < t_2 < \cdots < t_n$ in (a, b], $b < \omega$. Let y(t) be a solution of (1.2). If either x(a) = 0 or $x(a) \neq 0$, $y(a) \neq 0$, and

$$\frac{p(a)x'(a)}{x(a)} \ge \frac{P(a)y'(a)}{y(a)}$$

then y(t) has one of the following properties:

- (i) y(t) has at least n zeros in (a, t_n) ;
- (ii) y(t) is a constant multiple of x(t) on $[a, t_n]$ and $p(t) \equiv P(t)$, $q(t) \equiv Q(t)$ on $[a, t_n]$.

Let x(t) > 0 in (t_n, ω) in Theorem A. In this case, it seems interesting to ask the question whether a solution y(t) of (1.2) has at least one zero in (t_n, ω) or not?

Assume that (1.1) is nonoscillatory at $t = \omega$. It is well known [2, Chap.11, Theorem 6.4] that (1.1) has a principal solution $x_0(t)$ which is essentially unique (up to a constant factor) such that

$$\int^{\omega} \frac{ds}{p(s)[x_0(s)]^2} = \infty$$

and for any solution $x_1(t)$ linearly independent of $x_0(t)$,

$$\lim_{t \to \omega} \frac{x_0(t)}{x_1(t)} = 0.$$

The solution $x_1(t)$ is called a nonprincipal solution.

Our main results are the following.

Theorem 1. Assume that (1.1) is nonoscillatory at $t = \omega$. Let $x_0(t)$ be a principal solution of (1.1) satisfying $x_0(t) > 0$ in (a, ω) . Let y(t) be a solution of (1.2). If either $x_0(a) = 0$ or $x_0(a) \neq 0$, $y(a) \neq 0$, and

(1.3)
$$\frac{p(a)x'_0(a)}{x_0(a)} \ge \frac{P(a)y'(a)}{y(a)},$$

then y(t) has one of the following properties:

(i) y(t) has at least one zero in (a, ω) ;

(ii) y(t) is a constant multiple of $x_0(t)$ on $[a, \omega)$ and $p(t) \equiv P(t)$, $q(t) \equiv Q(t)$ on $[a, \omega)$.

Theorem 2. Assume that (1.1) is nonoscillatory at $t = \omega$. Let $x_0(t)$ be a principal solution of (1.1) and let x(t) has exactly $n \geq 1$ zeros in (a, ω) . Let y(t) be a solution of (1.2). If either $x_0(a) = 0$ or $x_0(a) \neq 0$, $y(a) \neq 0$, and (1.3) holds, then y(t) has one of the following properties:

(i) y(t) has at least n + 1 zeros in (a, ω) ;

(ii) y(t) is a constant multiple of $x_0(t)$ on $[a, \omega)$ and $p(t) \equiv P(t)$, $q(t) \equiv Q(t)$ on $[a, \omega)$.

Remark. For other results concerning comparison theorems of Sturm-type on a half-open interval, we refer to [4] and [5].

When $p(t) \equiv P(t)$ and $q(t) \equiv Q(t)$ on $[a, \omega)$, as a consequence of Theorems 1 and A, we have the following.

Corollary 1. Assume that (1.1) is nonoscillatory at $t = \omega$. Let $x_0(t)$ be a principal solution of (1.1) and let $t_0 (\geq a)$ be the largest zero, i.e., $x_0(t_0) = 0$ and $x_0(t) > 0$ in (t_0, ω) . Then we have the following properties:

(i) every nonprincipal solution has exactly one zero in (t_0, ω) ;

(ii) every solution of (1.1) has exactly one zero on $[t_0, \omega)$.

Equation (1.1) is said to be disconjugate on an interval J if every solution of (1.1) has at most one zero on J. (See [1] and [2].) By Corollary 1, we obtain a criterion for (1.1) to be disconjugate.

Corollary 2. Assume that (1.1) is nonoscillatory at $t = \omega$. Let $x_0(t)$ be a principal solution of (1.1) and let $t_0 (\geq a)$ be the largest zero. Then (1.1) is disconjugate on $[t_1, \omega)$ if and only if $t_0 \leq t_1$.

Finally, we give a comparison theorem for disconjugacy.

Corollary 3. Assume that (1.2) is nonoscillatory at $t = \omega$. (Then (1.1) is nonoscillatory at $t = \omega$.) Let $x_0(t)$ and $y_0(t)$ be principal solutions of (1.1) and (1.2), respectively. Let t_0 and t_1 (t_0 , $t_1 \ge a$) be the largest zeros of $x_0(t)$ and $y_0(t)$, respectively. Then, we have either (i) $t_0 < t_1$ or (ii) $t_0 = t_1$ and $p(t) \equiv P(t)$, $q(t) \equiv Q(t)$ on $[t_0, \omega)$. In particular, if (1.2) is disconjugate on an interval J, then (1.1) is disconjugate on J.

Remark. The comparison theorems for disconjugacy have been shown in [1] by different methods.

2. Proofs of Theorems

We prepare the following lemmas.

Lemma 1. Assume that $q(t) \leq 0$ on $[a, \omega)$ in (1.1). Then (1.1) is nonoscillatory at $t = \omega$ and a principal solution $x_0(t)$ of (1.1) satisfies $x_0(t) > 0$ and $x'_0(t) \leq 0$ on $[a, \omega)$.

Lemma 2. Assume that (1.1) is nonoscillatory at $t = \omega$. Let $x_0(t)$ be a principal solution of (1.1) and let y(t) be a solution of (1.2) satisfying y(t) > 0 on $[T, \omega)$, $T \ge a$. Then $x_0(t) > 0$ on $[T, \omega)$ and

$$\frac{p(t)x_0'(t)}{x_0(t)} \le \frac{P(t)y'(t)}{y(t)} \quad on \ [T,\omega).$$

Lemmas 1 and 2 are shown in [2, Chap.11, Corollary 6.4] and [2, Chap.11, Corollary 6.5], respectively. However, for the sake of the completeness, we give (slight simple) proofs of them.

4

Proof of Lemma 1. Let $x_i(t)$, i = 1, 2, be solutions of (1.1) determined by $x_i(a) = 1$ and $x'_i(a) = i$. It is easy to see that $(p(t)x'_i(t))' \ge 0$ and $x_i(t) > 0$ on $[a, \omega)$, i = 1, 2. Since $x_1(t)$ and $x_2(t)$ are linearly independent, either $x_1(t)$ or $x_2(t)$ is a nonprincipal solution. Without loss of generality, we may assume that $x_1(t)$ is a nonprincipal solution. By [2, Chap.11, Corollary 6.3],

$$x_0(t) = x_1(t) \int_t^\omega \frac{ds}{p(s)[x_1(s)]^2}, \quad a \le t < \omega,$$

is well defined and a principal solution of (1.1). We see that $x_0(t) > 0$ on $[a, \omega)$. We obtain

$$x'_0(t) = x'_1(t) \int_t^\omega \frac{ds}{p(s)[x_1(s)]^2} - \frac{1}{p(t)x_1(t)}, \quad a \le t < \omega.$$

Since $p(t)x'_1(t)$ is nondecreasing and $x_1(t)$ is positive,

$$p(t)x'_0(t) \le \int_t^{\omega} \frac{x'_1(s)}{[x_1(s)]^2} ds - \frac{1}{x_1(t)} = -\lim_{s \to \omega} \frac{1}{x_1(s)} \le 0, \quad a \le t < \omega.$$

Thus, we have $x'_0(t) \leq 0$ on $[a, \omega)$.

Proof of Lemma 2. Let

$$u(t) = \exp\left(\int_T^t \frac{P(s)y'(s)}{p(s)y(s)} ds\right), \quad T \le t < \omega.$$

Then u(t) > 0 on $[T, \omega)$ and satisfies

(2.1)
$$\frac{p(t)u'(t)}{u(t)} = \frac{P(t)y'(t)}{y(t)} \text{ and } (p(t)u')' + Q_0(t)u = 0 \text{ for } T \le t < \omega,$$

where

$$Q_0(t) = Q(t) + \left(\frac{1}{P(t)} - \frac{1}{p(t)}\right) \left(\frac{P(t)y'(t)}{y(t)}\right)^2, \quad T \le t < \omega$$

Let $z(t) = x_0(t)/u(t)$ on $[T, \omega)$. Then z(t) is a solution of

(2.2)
$$(p(t)[u(t)]^2 z')' + [u(t)]^2 (q(t) - Q_0(t)) z = 0, \quad T \le t < \omega.$$

Since $x_0(t)$ is a principal solution, we have

$$\int^{\omega} \frac{ds}{p(s)[x_0(s)]^2} = \int^{\omega} \frac{ds}{p(s)[u(s)]^2[z(s)]^2} = \infty.$$

Thus z(t) is a principal solution of (2.2). We note that $Q_0(t) \ge Q(t) \ge q(t)$ on $[T, \omega)$. Then, by Lemma 1, we have z(t) > 0 and $z'(t) \le 0$ on $[T, \omega)$, which implies $x_0(t) > 0$ on $[T, \omega)$. From the left side of (2.1) and

$$\frac{x'(t)}{x(t)} = \frac{u'(t)}{u(t)} + \frac{z'(t)}{z(t)}, \quad T \le t < \omega,$$

we conclude that

$$\frac{p(t)x'(t)}{x(t)} \le \frac{p(t)u'(t)}{u(t)} = \frac{P(t)y'(t)}{y(t)}, \quad T \le t < \omega.$$

Proof of Theorem 1. Assume that y(t) > 0 in (a, ω) . By Picone's identity [3], we have

(2.3)
$$\frac{d}{dt} \left[\frac{x_0}{y} \left(p x_0' y - P x_0 y' \right) \right] = (Q - q) x_0^2 + (p - P) x_0'^2 + \frac{P(x_0' y - x_0 y')^2}{y^2}$$

We observe that if $x_0(a) = 0$ then

$$\lim_{t \to a} \frac{x_0(t)}{y(t)} \left(p(t) x_0'(t) y(t) - P(t) x_0(t) y'(t) \right) = -P(a) x_0(a) y'(a) \lim_{t \to a} \frac{x_0(t)}{y(t)} = 0,$$

and that if $x_0(a) \neq 0$, $y(a) \neq 0$, and (1.3) holds, then

$$\lim_{t \to a} \frac{x_0(t)}{y(t)} \left(p(t) x_0'(t) y(t) - P(t) x_0(t) y(t)' \right) = [x_0(a)]^2 \left(\frac{p(a) x_0'(a)}{x_0(a)} - \frac{P(a) y'(a)}{y(a)} \right) \ge 0.$$

Therefore, integrating (2.3) over $[\tau, t]$ and letting $\tau \to a$, it follows that

$$[x_0(t)]^2 \left(\frac{p(t)x_0'(t)}{x_0(t)} - \frac{P(t)y'(t)}{y(t)}\right) \ge \int_a^t \left[(Q-q)x_0^2 + (p-P)x_0'^2 + \frac{P(x_0'y - x_0y')^2}{y^2} \right] ds$$

for $a < t < \omega$. From Lemma 2, we have

$$\int_{a}^{t} \left[(Q-q)x_{0}^{2} + (p-P)x_{0}^{\prime 2} + \frac{P(x_{0}^{\prime}y - x_{0}y^{\prime})^{2}}{y^{2}} \right] ds \le 0, \quad a < t < \omega,$$

which implies that $q(t) \equiv Q(t)$, $p(t) \equiv P(t)$, and $x_0(t)y'(t) \equiv x'_0(t)y(t)$ on $[a, \omega)$. Hence, y(t) is a constant multiple of $x_0(t)$ on $[a, \omega)$. This completes the proof of Theorem 1. \Box

Proof of Theorem 2. Let $t = t_1 < t_2 < \cdots < t_n$ be zeros of $x_0(t)$ in (a, ω) . We note that y(t) satisfies either (i) or (ii) in Theorem A on $[a, t_n]$.

By applying Theorem 1 on $[t_n, \omega)$, we have either y(t) has at least one zero in (t_n, ω) or y(t) is a multiple constant of $x_0(t)$ on $[t_n, \omega)$ and $p(t) \equiv P(t)$ and $q(t) \equiv Q(t)$ on $[t_n, \omega)$. In the former case, y(t) has at least n+1 zeros in (a, ω) . In the latter case, since $y(t_n) = 0$, we have either y(t) has at least n+1 zeros in (a, ω) or y(t) is a multiple constant of $x_0(t)$ on $[a, \omega)$ and $p(t) \equiv P(t)$ and $q(t) \equiv Q(t)$ on $[a, \omega)$. This completes the proof of Theorem 2. \Box

References

- W. A. Coppel, Disconjugacy, Lecture Notes in Mathematics, No. 220, Springer-Verlag, New York, 1971.
- [2] P. Hartman, Ordinary Differential Equations, John Wiley, New York, 1964.
- [3] E. L. Ince, Ordinary Differential Equations, Longmans, London, 1927. (Dover, New York, 1956).
- [4] W. T. Reid, Sturmian theory for ordinary differential equations, Springer-Verlag, New York, Heidelberg, Berlin, 1980.
- [5] C. A. Swanson, Comparison and oscillation theory of linear differential equations, Academic Press, New York, London, 1968.