A note on Sturm－type comparison theorems on a half－open interval

1．Introduction and statement of the results

In this note，we investigate comparison theorems of Sturm－type on a half－open interval $[a, \omega), \omega \leq \infty$ ．We consider two differential equations

$$
\begin{array}{ll}
\left(p(t) x^{\prime}\right)^{\prime}+q(t) x=0, & a \leq t<\omega \\
\left(P(t) y^{\prime}\right)^{\prime}+Q(t) y=0, & a \leq t<\omega \tag{1.2}
\end{array}
$$

where $p(t), q(t), P(t)$ ，and $Q(t)$ are continuous functions on $[a, \omega)$ ，and

$$
p(t) \geq P(t)>0 \quad \text { and } \quad Q(t) \geq q(t) \quad \text { on }[a, \omega) .
$$

In this case，（1．2）is called a Sturm majorant for（1．1）on $[a, \omega)$ and（1．1）is called a Sturm minorant for（1．2）．

Sturm＇s comparison theorem can be stated as folows：（See，e．g．，［2，Chap．11，Theo－ rem 3．1］．）

Theorem A．Let $x(t) \not \equiv 0$ be a solution of（1．1）and let $x(t)$ has exactly $n(\geq 1)$ zeros $t=t_{1}<t_{2}<\cdots<t_{n}$ in $(a, b], b<\omega$ ．Let $y(t)$ be a solution of（1．2）．If either $x(a)=0$ or $x(a) \neq 0, y(a) \neq 0$ ，and

$$
\frac{p(a) x^{\prime}(a)}{x(a)} \geq \frac{P(a) y^{\prime}(a)}{y(a)}
$$

then $y(t)$ has one of the following properties：
（i）$y(t)$ has at least n zeros in $\left(a, t_{n}\right)$ ；
（ii）$y(t)$ is a constant multiple of $x(t)$ on $\left[a, t_{n}\right]$ and $p(t) \equiv P(t), q(t) \equiv Q(t)$ on $\left[a, t_{n}\right]$ ．

Let $x(t)>0$ in $\left(t_{n}, \omega\right)$ in Theorem A. In this case, it seems interesting to ask the question whether a solution $y(t)$ of (1.2) has at least one zero in $\left(t_{n}, \omega\right)$ or not?

Assume that (1.1) is nonoscillatory at $t=\omega$. It is well known [2, Chap.11, Theorem 6.4] that (1.1) has a principal solution $x_{0}(t)$ which is essentially unique (up to a constant factor) such that

$$
\int^{\omega} \frac{d s}{p(s)\left[x_{0}(s)\right]^{2}}=\infty
$$

and for any solution $x_{1}(t)$ linearly independent of $x_{0}(t)$,

$$
\lim _{t \rightarrow \omega} \frac{x_{0}(t)}{x_{1}(t)}=0 .
$$

The solution $x_{1}(t)$ is called a nonprincipal solution.
Our main results are the following.
Theorem 1. Assume that (1.1) is nonoscillatory at $t=\omega$. Let $x_{0}(t)$ be a principal solution of (1.1) satisfying $x_{0}(t)>0$ in (a, ω). Let $y(t)$ be a solution of (1.2). If either $x_{0}(a)=0$ or $x_{0}(a) \neq 0, y(a) \neq 0$, and

$$
\begin{equation*}
\frac{p(a) x_{0}^{\prime}(a)}{x_{0}(a)} \geq \frac{P(a) y^{\prime}(a)}{y(a)} \tag{1.3}
\end{equation*}
$$

then $y(t)$ has one of the following properties:
(i) $y(t)$ has at least one zero in (a, ω);
(ii) $y(t)$ is a constant multiple of $x_{0}(t)$ on $[a, \omega)$ and $p(t) \equiv P(t), q(t) \equiv Q(t)$ on $[a, \omega)$.

Theorem 2. Assume that (1.1) is nonoscillatory at $t=\omega$. Let $x_{0}(t)$ be a principal solution of (1.1) and let $x(t)$ has exactly $n(\geq 1)$ zeros in (a, ω). Let $y(t)$ be a solution of (1.2). If either $x_{0}(a)=0$ or $x_{0}(a) \neq 0, y(a) \neq 0$, and (1.3) holds, then $y(t)$ has one of the foll.owing properties:
(i) $y(t)$ has at least $n+1$ zeros in (a, ω);
(ii) $y(t)$ is a constant multiple of $x_{0}(t)$ on $[a, \omega)$ and $p(t) \equiv P(t), q(t) \equiv Q(t)$ on $[a, \omega)$.

Remark. For other results concerning comparison theorems of Sturm-type on a half-open interval, we refer to [4] and [5].

When $p(t) \equiv P(t)$ and $q(t) \equiv Q(t)$ on $[a, \omega)$, as a consequence of Theorems 1 and A , we have the following.

Corollary 1. Assume that (1.1) is nonoscillatory at $t=\omega$. Let $x_{0}(t)$ be a principal solution of (1.1) and let $t_{0}(\geq a)$ be the largest zero, i.e., $x_{0}\left(t_{0}\right)=0$ and $x_{0}(t)>0$ in $\left(t_{0}, \omega\right)$. Then we have the following properties:
(i) every nonprincipal solution has exactly one zero in $\left(t_{0}, \omega\right)$;
(ii) every solution of (1.1) has exactly one zero on $\left[t_{0}, \omega\right)$.

Equation (1.1) is said to be disconjugate on an interval J if every solution of (1.1) has at most one zero on J. (See [1] and [2].) By Corollary 1, we obtain a criterion for (1.1) to be disconjugate.

Corollary 2. Assume that (1.1) is nonoscillatory at $t=\omega$. Let $x_{0}(t)$ be a principal solution of (1.1) and let $t_{0}(\geq a)$ be the largest zero. Then (1.1) is disconjugate on $\left[t_{1}, \omega\right)$ if and only if $t_{0} \leq t_{1}$.

Finally, we give a comparison theorem for disconjugacy.
Corollary 3. Assume that (1.2) is nonoscillatory at $t=\omega$. (Then (1.1) is nonoscillatory at $t=\omega$.) Let $x_{0}(t)$ and $y_{0}(t)$ be principal solutions of (1.1) and (1.2), respectively. Let t_{0} and $t_{1}\left(t_{0}, t_{1} \geq a\right)$ be the largest zeros of $x_{0}(t)$ and $y_{0}(t)$, respectively. Then, we have either (i) $t_{0}<t_{1}$ or (ii) $t_{0}=t_{1}$ and $p(t) \equiv P(t), q(t) \equiv Q(t)$ on $\left[t_{0}, \omega\right)$. In particular, if (1.2) is disconjugate on an interval J, then (1.1) is disconjugate on J.

Remark. The comparison theorems for disconjugacy have been shown in [1] by different methods.

2. Proofs of Theorems

We prepare the following lemmas.
Lemma 1. Assume that $q(t) \leq 0$ on $[a, \omega)$ in (1.1). Then (1.1) is nonoscillatory at $t=\omega$ and a principal solution $x_{0}(t)$ of (1.1) satisfies $x_{0}(t)>0$ and $x_{0}^{\prime}(t) \leq 0$ on $[a, \omega)$.

Lemma 2. Assume that (1.1) is nonoscillatory at $t=\omega$. Let $x_{0}(t)$ be a principal solution of (1.1) and let $y(t)$ be a solution of (1.2) satisfying $y(t)>0$ on $[T, \omega), T \geq a$. Then $x_{0}(t)>0$ on $[T, \omega)$ and

$$
\frac{p(t) x_{0}^{\prime}(t)}{x_{0}(t)} \leq \frac{P(t) y^{\prime}(t)}{y(t)} \quad \text { on }[T, \omega) \text {. }
$$

Lemmas 1 and 2 are shown in [2, Chap.11, Corollary 6.4$]$ and [2, Chap.11, Corollary 6.5], respectively. However, for the sake of the completeness, we give (slight simple) proofs of them.

Proof of Lemma 1. Let $x_{i}(t), i=1,2$, be solutions of (1.1) determined by $x_{i}(a)=1$ and $x_{i}^{\prime}(a)=i$. It is easy to see that $\left(p(t) x_{i}^{\prime}(t)\right)^{\prime} \geq 0$ and $x_{i}(t)>0$ on $[a, \omega), i=1,2$. Since $x_{1}(t)$ and $x_{2}(t)$ are linearly independent, either $x_{1}(t)$ or $x_{2}(t)$ is a nonprincipal solution. Without loss of generality, we may assume that $x_{1}(t)$ is a nonprincipal solution. By [2, Chap.11, Corollary 6.3],

$$
x_{0}(t)=x_{1}(t) \int_{t}^{\omega} \frac{d s}{p(s)\left[x_{1}(s)\right]^{2}}, \quad a \leq t<\omega,
$$

is well defined and a principal solution of (1.1). We see that $x_{0}(t)>0$ on $[a, \omega)$. We obtain

$$
x_{0}^{\prime}(t)=x_{1}^{\prime}(t) \int_{t}^{\omega} \frac{d s}{p(s)\left[x_{1}(s)\right]^{2}}-\frac{1}{p(t) x_{1}(t)}, \quad a \leq t<\omega .
$$

Since $p(t) x_{1}^{\prime}(t)$ is nondecreasing and $x_{1}(t)$ is positive,

$$
p(t) x_{0}^{\prime}(t) \leq \int_{t}^{\omega} \frac{x_{1}^{\prime}(s)}{\left[x_{1}(s)\right]^{2}} d s-\frac{1}{x_{1}(t)}=-\lim _{s \rightarrow \omega} \frac{1}{x_{1}(s)} \leq 0, \quad a \leq t<\omega .
$$

Thus, we have $x_{0}^{\prime}(t) \leq 0$ on $[a, \omega)$.

Proof of Lemma 2. Let

$$
u(t)=\exp \left(\int_{T}^{t} \frac{P(s) y^{\prime}(s)}{p(s) y(s)} d s\right), \quad T \leq t<\omega .
$$

Then $u(t)>0$ on $[T, \omega)$ and satisfies

$$
\begin{equation*}
\frac{p(t) u^{\prime}(t)}{u(t)}=\frac{P(t) y^{\prime}(t)}{y(t)} \quad \text { and } \quad\left(p(t) u^{\prime}\right)^{\prime}+Q_{0}(t) u=0 \quad \text { for } T \leq t<\omega, \tag{2.1}
\end{equation*}
$$

where

$$
Q_{0}(t)=Q(t)+\left(\frac{1}{P(t)}-\frac{1}{p(t)}\right)\left(\frac{P(t) y^{\prime}(t)}{y(t)}\right)^{2}, \quad T \leq t<\omega
$$

Let $z(t)=x_{0}(t) / u(t)$ on $[T, \omega)$. Then $z(t)$ is a solution of

$$
\begin{equation*}
\left(p(t)[u(t)]^{2} z^{\prime}\right)^{\prime}+[u(t)]^{2}\left(q(t)-Q_{0}(t)\right) z=0, \quad T \leq t<\omega \tag{2.2}
\end{equation*}
$$

Since $x_{0}(t)$ is a principal solution, we have

$$
\int^{\omega} \frac{d s}{p(s)\left[x_{0}(s)\right]^{2}}=\int^{\omega} \frac{d s}{p(s)[u(s)]^{2}[z(s)]^{2}}=\infty .
$$

Thus $z(t)$ is a principal solution of (2.2). We note that $Q_{0}(t) \geq Q(t) \geq q(t)$ on $[T, \omega)$. Then, by Lemma 1, we have $z(t)>0$ and $z^{\prime}(t) \leq 0$ on $[T, \omega)$, which implies $x_{0}(t)>0$ on [T, ω). From the left side of (2.1) and

$$
\frac{x^{\prime}(t)}{x(t)}=\frac{u^{\prime}(t)}{u(t)}+\frac{z^{\prime}(t)}{z(t)}, \quad T \leq t<\omega
$$

we conclude that

$$
\frac{p(t) x^{\prime}(t)}{x(t)} \leq \frac{p(t) u^{\prime}(t)}{u(t)}=\frac{P(t) y^{\prime}(t)}{y(t)}, \quad T \leq t<\omega .
$$

Proof of Theorem 1. Assume that $y(t)>0$ in (a, ω). By Picone's identity [3], we have

$$
\begin{equation*}
\frac{d}{d t}\left[\frac{x_{0}}{y}\left(p x_{0}^{\prime} y-P x_{0} y^{\prime}\right)\right]=(Q-q) x_{0}^{2}+(p-P) x_{0}^{\prime 2}+\frac{P\left(x_{0}^{\prime} y-x_{0} y^{\prime}\right)^{2}}{y^{2}} . \tag{2.3}
\end{equation*}
$$

We observe that if $x_{0}(a)=0$ then

$$
\lim _{t \rightarrow a} \frac{x_{0}(t)}{y(t)}\left(p(t) x_{0}^{\prime}(t) y(t)-P(t) x_{0}(t) y^{\prime}(t)\right)=-P(a) x_{0}(a) y^{\prime}(a) \lim _{t \rightarrow a} \frac{x_{0}(t)}{y(t)}=0
$$

and that if $x_{0}(a) \neq 0, y(a) \neq 0$, and (1.3) holds, then

$$
\lim _{t \rightarrow a} \frac{x_{0}(t)}{y(t)}\left(p(t) x_{0}^{\prime}(t) y(t)-P(t) x_{0}(t) y(t)^{\prime}\right)=\left[x_{0}(a)\right]^{2}\left(\frac{p(a) x_{0}^{\prime}(a)}{x_{0}(a)}-\frac{P(a) y^{\prime}(a)}{y(a)}\right) \geq 0
$$

Therefore, integrating (2.3) over $[\tau, t]$ and letting $\tau \rightarrow a$, it follows that

$$
\left[x_{0}(t)\right]^{2}\left(\frac{p(t) x_{0}^{\prime}(t)}{x_{0}(t)}-\frac{P(t) y^{\prime}(t)}{y(t)}\right) \geq \int_{a}^{t}\left[(Q-q) x_{0}^{2}+(p-P) x_{0}^{\prime 2}+\frac{P\left(x_{0}^{\prime} y-x_{0} y^{\prime}\right)^{2}}{y^{2}}\right] d s
$$

for $a<t<\omega$. From Lemma 2, we have

$$
\int_{a}^{t}\left[(Q-q) x_{0}^{2}+(p-P) x_{0}^{\prime 2}+\frac{P\left(x_{0}^{\prime} y-x_{0} y^{\prime}\right)^{2}}{y^{2}}\right] d s \leq 0, \quad a<t<\omega
$$

which implies that $q(t) \equiv Q(t), p(t) \equiv P(t)$, and $x_{0}(t) y^{\prime}(t) \equiv x_{0}^{\prime}(t) y(t)$ on $[a, \omega)$. Hence, $y(t)$ is a constant multiple of $x_{0}(t)$ on $[a, \omega)$. This completes the proof of Theorem 1.

Proof of Theorem 2. Let $t=t_{1}<t_{2}<\cdots<t_{n}$ be zeros of $x_{0}(t)$ in (a, ω). We note that $y(t)$ satisfies either (i) or (ii) in Theorem A on [a, t_{n}].

By applying Theorem 1 on $\left[t_{n}, \omega\right)$, we have either $y(t)$ has at least one zero in $\left(t_{n}, \omega\right)$ or $y(t)$ is a multiple constant of $x_{0}(t)$ on $\left[t_{n}, \omega\right)$ and $p(t) \equiv P(t)$ and $q(t) \equiv Q(t)$ on $\left[t_{n}, \omega\right)$. In the former case, $y(t)$ has at least $n+1$ zeros in (a, ω). In the latter case, since $y\left(t_{n}\right)=0$, we have either $y(t)$ has at least $n+1$ zeros in (a, ω) or $y(t)$ is a multiple constant of $x_{0}(t)$ on $[a, \omega)$ and $p(t) \equiv P(t)$ and $q(t) \equiv Q(t)$ on $[a, \omega)$. This completes the proof of Theorem 2.

References

[1] W. A. Coppel, Disconjugacy, Lecture Notes in Mathematics, No. 220, Springer-Verlag, New York, 1971.
[2] P. Hartman, Ordinary Differential Equations, John Wiley, New York, 1964.
[3] E. L. Ince, Ordinary Differential Equations, Longmans, London, 1927. (Dover, New York, 1956).
[4] W. T. Reid, Sturmian theory for ordinary differential equations, Springer-Verlag, New York, Heidelberg, Berlin, 1980.
[5] C. A. Swanson, Comparison and oscillation theory of linear differential equations, Academic Press, New York, London, 1968.

