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1. Introduction and statement of the results

In this note, we investigate comparison theorems of Sturm-type on a half-open $\mathrm{i}\mathrm{l}\mathrm{l}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{v}_{\mathrm{L}}’\iota 1$

$[a, \omega),$ $\omega\leq\infty$ . We consider two differential equations

(1.1) $(p(t)x)//+q(t)x=0$ , $a\leq t<\omega$ ,

(1.2) $(P(t)y’)’+Q(t)y=0$ , $a\leq t<\omega$ ,

where $p(t),$ $q(t),$ $P(t)$ , and $Q(t)$ are continuous functions on $[a, \omega)$ , and

$p(t)\geq P(t)>0$ and $Q(t)\geq q(\dagger_{\text{ノ}})$ on $[a, \omega)$ .

In this case, (1.2) is called a Sturm majorant for (1.1) on $[a, \omega)$ and (1.1) is called a Sturm
minorant for (1.2).

Sturm’s comparison theorem can be stated as folows: (See, e.g., [2, Chap.11, Theo-
rem 3.1].)

Theorem A. Let $x(t)\not\equiv 0$ be a solution of (1.1) and let $x(t)$ has exactly $\gamma\gamma_{J}(\geq 1)$ zeros
$t=t_{1}<t_{2}<\cdots<t_{n}$ in $(a, b],$ $b<\omega$ . Let $y(t)$ be a solution of (1.2). If either $x(a)=0$ or
$x(a)\neq 0,$ $y(a)\neq 0$ , and

$\frac{p(a)_{X’}(a)}{x(a)}\geq\frac{P(a)y’(a)}{y(a)}$ ,

then $y(t)$ has one of the foflowing properties:
(i) $y(t)$ has at least $n$ zeros in $(a, t_{n})$ ;
$(\ddot{\mathrm{n}})y(i)$ is a constant multiple of $x(t)$ on $[a, t_{n}]$ and $p(t)\equiv P(t),$ $q(t)\equiv Q(t)$ on $[a, t_{n}]$ .
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Let $x(t)>0$ in $(t_{n}, \omega)$ in Theorem A. In this case, it seems interesting to ask the question
whether a solution $y(t)$ of (1.2) has at least one zero in $(t_{n}, \omega)$ or not?

Assume that (1.1) is nonoscillatory at $t=\omega$ . It is well known [2, Chap. 11, Theorem 6.4]
that (1.1) has a principal solution $x_{0}(t)$ which is essentially unique (up to a constant factor)
such that

$\int^{\omega}\frac{ds}{p(s)[X_{0}(_{S})]^{2}}=\infty$

and for any solution $x_{1}(t)$ linearly independent of $x_{0}(t)$ ,

$\lim_{tarrow\omega}\frac{x_{0}(t)}{x_{1}(t)}=0$ .

The solution $x_{1}(t)$ is called a nonprincipal solution.
Our main results are the following.

Theorem 1. Assume that (1.1) is nonoscillatory at $t=\omega$ , Let $x_{0}(t)$ be a principal
solution of (1.1) $sati\mathit{8}fyingx_{0}(t)>0$ in $(a, \omega)$ . Let $y(t)$ be a solution of (1.2). If either
$x_{0}(a)=0$ or $x_{0}(a)\neq 0,$ $y(a)\neq 0$ , and

(1.3) $\frac{p(a)x_{0}’(a)}{x_{0}(a)}\geq\frac{P(a)y’(a)}{y(a)}$ ,

then $y(t)$ has one of the following $propertie\mathit{8}$ :
(i) $y(t)$ has at least one zero in $(a, \omega)$ ;
(\"u) $y(t)i_{\mathit{8}}$ a constant multiple of $x_{0}(t)$ on $[a, \omega)$ and $p(t)\equiv P(t),$ $q(t)\equiv Q(t)$ on $[a, \omega)$ ,

Theorem 2. Assume that (1.1) is $nono\mathit{8}cillatory$ at $t=\omega$ . Let $x_{0}(t)$ be a principal
solution of (1.1) and let $x(t)$ has exactly $n(\geq 1)$ zeros in $(a, \omega)$ . Let $y(t)$ be a solution of
(1.2). If either $x_{0}(a)=0$ or $x_{0}(a)\neq 0,$ $y(a)\neq 0$ , and (1.3) holds, then $y(t)$ has one of the
following $propertie\mathit{8}$ :

(i) $y(t)$ has at least $n+1zero\mathit{8}$ in $(a, \omega)$ ;
(ii) $y(t)$ is a constant multiple of $x_{0}(t)$ on $[a, \omega)$ and $p(t)\equiv P(t),$ $q(t)\equiv Q(t)$ on $[a, \omega)$ .

Remark. For other results concerning comparison theorems of Sturm-type on a half-open
interval, we refer to [4] and [5].

When $p(t)\equiv P(t)$ and $q(t)\equiv Q(t)$ on $[a, \omega)$ , as a consequence of Theorems 1 and $\mathrm{A}$ , we
have the following.

Corollary 1. Assume that (1.1) $i_{\mathit{8}}$ nonoscillatory at $t=\omega$ . Let $x_{0}(t)$ be a principal
solution of (1.1) and let $t_{0}(\geq a)$ be the $large\mathit{8}t$ zero, $i.e.,$ $X_{0}(t_{0})=0$ and $x_{0}(t)>0$ in
$(t_{0}, \omega)$ . Then we have the following properties:

2



(i) every nonprincipal $\mathit{8}oluti_{\mathit{0}}n$ has exactly one zero in $(t_{0,\omega})$ ;
(ii) every solution of (1.1) has exactly one zero on $[t_{0}, \omega)$ ,

Equation (1.1) is said to be disconjugate on an interval $J$ if every solution of (1.1) has
at most one zero on J. (See [1] and [2].) By Corollary 1, we obtain a criterion for (1.1) to
be disconjugate.

Corollary 2. Assume that (1.1) is nonoscillatory at $t=\omega$ . Let $x_{0}(t)$ be a principal
solution of (1.1) and let $t_{0}(\geq a)$ be the largest zero. Then (1.1) is $di_{\mathit{8}C\mathit{0}}njugate$ on $[t_{1}, \omega)$

if and only if $t_{0}\leq t_{1}$ ,

Finally, we give a comparison theorem for disconjugacy.

Corollary 3. Assume that (1.2) is nonoscillatory at $t=\omega$ . (Then (1.1) $i_{\mathit{8}}$ nonoscillatory
at $t=\omega.$ ) Let $x_{0}(t)$ and $y_{0}(t)$ be principal $\mathit{8}olvti_{\mathit{0}nS}$ of (1.1) and (1.2), respectively. Let

$t_{0}$ and $t_{1}(t_{0}, t_{1}\geq a)$ be the largest zeros of $x_{0}(\dagger \text{ノ})$ and $y_{0}(t)$ , respectively. Then, we have
either (i) $t_{0}<t_{1}$ or (ii) $t_{0}=t_{1}$ and $p(t)\equiv P(t),$ $q(t)\equiv Q(t)$ on $[t_{0}, \omega)$ , In particular, if
(1.2) $i_{\mathit{8}}$ disconjugate on an interval $J$ , then (1.1) $i_{\mathit{8}}$ disconjugate on $J$ ,

Remark. The comparison theorems for disconjugacy have been shown in [1] by different
methods.

2. Proofs of Theorems

We prepare the following lemmas.

Lemma 1. Assume that $q(t)\leq 0$ on $[a, \omega)$ in (1.1). Then (1.1) is nonoscillatory at
$t,$ $=\omega$ and a principal solution $x_{0}(t)$ of (1.1) $\mathit{8}atisfieSx0(t)>0$ and $X_{0}’(t)\leq 0$ on $[a, \omega)$ .

Lemma 2. Assume that (1.1) $i_{\mathit{8}}$ nonoscillatory at $t–\omega$ . Let $x_{0}(t)$ be a principal
solution of (1.1) and let $y(t)$ be a solution of (1.2) satisfying $y(t)>0$ on $[T, \omega),$ $T\geq a$ .
Then $x_{0}(t)>0$ on $[T, \omega)$ and ..

$\frac{p(t)x_{0}’(t)}{x_{0}(t)}\leq\frac{P(t)y’(t)}{y(t)}$ on $[T, \omega)$ .

Lemmas 1 and 2 are shown in [2, Chap. 11, Corollary 6.4] and [2, Chap. 11, Corollary 6.5],
respectively. However, for the sake of the completeness, we give (slight simple) proofs of
them.
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Proof of Lemma 1. Let $x_{i}(t),$ $i=1,2$ , be solutions of (1.1) determined by $x_{i}(a)=1$ and
$x_{l}’.(a)=i$ . It is easy to see that $(p(t)x_{i}(/t))’\geq 0$ and $x_{i}(t)>0$ on $[a, \omega),$ $i=1,2$ . Since $x_{1}(t)$

and $x_{2}(t)$ are linearly independent, either $x_{1}(t)$ or $x_{2}(t)$ is a nonprincipal solution. Without
loss of generality, we may. assume that $x_{1}(t)$ is a nonprincipal solution. By [2, Chap.11,
Corollary 6.3],

$x_{0}(t)=x_{1}(t) \int^{\omega}t\frac{d_{\mathit{8}}}{p(s)[_{X_{1}(_{\mathit{8}})}]^{2}}$ , $a\leq t<\omega$ ,

is well defined and a principal solution of (1.1). We see that $x_{0}(t)>0$ on $[a, \omega)$ . We obtain

$x_{0}’(t)=X_{1}’(t) \int_{t}^{\omega}\frac{d_{\mathit{8}}}{p(\mathit{8})[X_{1}(_{S})]^{2}}-\frac{1}{p(t)_{X_{1}}(t)}$ , $a\leq t<\omega$ .

Since $p(t)X_{1}’(t)$ is nondecreasing and $x_{1}(t)$ is positive,

$p(t)X_{0}(/t) \leq\int_{t}\omega\frac{x_{1}’(_{S)}}{[x_{1}(\mathit{8})]2}ds-\frac{1}{x_{1}(t)}=-\lim_{\omega sarrow}\frac{1}{x_{1}(\mathit{8})}\leq 0$ , $a\leq t<\omega$ .

Thus, we have $X_{0}’(t)\leq 0$ on $[a, \omega)$ . $\square$

Proof of Lemma 2. Let

$u(t)= \exp(\int_{T}^{t}\frac{P(\mathit{8})y’(S)}{p(s)y(_{S})}d\mathit{8}\mathrm{I},$ $T\leq t<\omega$ .

Then $u(t)>0$ on $[T, \omega)$ and satisfies

(2.1) $\frac{p(t)u’(t)}{u(t)}=\frac{P(i)y’(t)}{y(t)}$ and $(p(t)u’)’+Q_{0}(t)u=0$ for $T\leq t<\omega$ ,

where
$Q_{0}(t)=Q(t)+( \frac{1}{P(t)}-\frac{1}{p(t)})(\frac{P(t)y’(t)}{y(t)})^{2}$ , $T\leq t<\omega$ .

Let $z(t)=x_{0}(t)/u(t)$ on $[T, \omega)$ . Then $z(t)$ is a solution of

(2.2) $(p(t)[u(t)]2z)’/+[u(i)]^{2}(q(t)-Q_{0}(t’))Z=0$ , $T\leq t<\omega$ .

Since $x_{0}(t)$ is a principal solution, we have

$\int^{\omega}\frac{d_{\mathit{8}}}{p(s)[x_{0}(_{\mathit{8})]}2}=\int^{\omega}\frac{ds}{p(s)[u(\mathit{8})]2[Z(S)]2}=\infty$ .

Thus $z(t)$ is a principal solution of (2.2). We note that $Q_{0}(t)\geq Q(t)\geq q(t)$ on $[T, \omega)$ .
Then, by Lemma 1, we have $z(t)>0$ and $z’(t)\leq 0$ on $[T, \omega)$ , which implies $x_{0}(t)>0$ on
$[T, \omega)$ . From the left side of (2.1) and

$\frac{x’(t)}{x(t)}=\frac{u’(t)}{u(t)}+\frac{z’(t)}{z(t)}$ , $T\leq t<\omega$ ,
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we conclude that

$\frac{p(t)_{X’}(t)}{x(t)}\leq\frac{p(t)u’(t)}{u(t)}=\frac{P(t)y’(t)}{y(t)}$ , $T\leq t<\omega$ .

$\square$

Proof of Theorem 1. Assume that $y(t)>0$ in $(a, \omega)$ . By Picone’s identity [3], we have

(2.3) $\frac{d}{dt}[\frac{x_{0}}{y}(P^{X_{0}’}y-P_{X}0y’)]=(Q-q)x^{2}0+(p-P)x_{0^{2}}/+\frac{P(_{X_{0}’}y-x0y)^{2}/}{y^{2}}$ .

We observe that if $x_{0}(a)=0$ then

$\lim_{tarrow a}\frac{x_{0}(t)}{y(t)}(p(t)_{X(t)y(t)-P}/0(t)x0(t)y’(t))=-P(a)x\mathrm{o}(a)y/(a)\lim\frac{x_{0}(t)}{y(i)}tarrow a=0$ ,

and that if $x_{0}(a)\neq 0,$ $y(a)\neq 0$ , and (1.3) holds, then

$\lim_{tarrow a}\frac{x_{0}(t)}{y(t)}(p(t)_{X}\prime \mathrm{o}(t)y(t)-P(t)x0(t)y(t)’)--[x_{\mathrm{o}()]^{2}}a(\frac{p(a)x’\mathrm{o}(a)}{x_{0}(a)}-\frac{P(a)y’(a)}{y(a)})\geq 0$ .

Therefore, integrating (2.3) over $[\tau, t]$ and letting $\tauarrow a$ , it follows that

$[x_{0}(t)]^{2}( \frac{p(t)x_{0}’(t)}{x_{0}(t)}-\frac{P(t)y’(t)}{y(t)})\geq\int_{a}^{t}[(Q-q)_{X^{2}}0+(p-P)X’+02\frac{P(x_{0}’y-x_{0y)^{2}}/}{y^{2}}]d_{\mathit{8}}$

for $a<t<\omega$ . From Lemma 2, we have

$\int_{a}^{t}[(Q-q)X_{0}+(2-pP)_{X+}/20\frac{P(_{X_{0}’}y-x\mathrm{o}y’)^{2}}{y^{2}}]d_{\mathit{8}}\leq 0$ , $a<t<\omega$ ,

which implies that $q(t)\equiv Q(t),$ $p(t)\equiv P(t)$ , and $x_{0}(t)y(/t)\equiv x_{0}’(t)y(t)$ on $[a, \omega)$ . Hence,
$y(t)\square$

is a constant multiple of $x_{0}(t)$ on $[a, \omega)$ . This completes the proof of Theorem 1.

Proof of Theorem 2. Let $t=t_{1}<t_{2}<\cdots<t_{n}$ be zeros of $x_{0}(t)$ in $(a, \omega)$ . We note that
$y(t)$ satisfies either (i) or (ii) in Theorem A on $[a, t_{n}]$ .

By applying Theorem 1 on $[t_{n}, \omega)$ , we have either $y(t)$ has at least one zero in $(t_{n}, \omega)$ or
$y(t)$ is a multiple constant of $x_{0}(t)$ on $[t_{n}, \omega)$ and $p(t)\equiv P(t)$ and $q(t)\equiv Q(t)$ on $[t_{n}, \omega)$ . In
the former case, $y(t)$ has at least $n+1$ zeros in $(a, \omega)$ . In the latter case, since $y(t_{n})=0$ , we
have either $y(t)$ has at least $n+1$ zeros in $(a, \omega)$ or $y(t_{J})$ is a multiple constant of $x_{0}(t)$ on
$\square [a, \omega)$

and $p(t)\equiv P(t)$ and $q(t)\equiv Q(t)$ on $[a, \omega)$ . This completes the proof of Theorem 2.
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