Modular varieties associated to quaternion unitary groups of degree 2

神戸大自然科学 浜畑芳紀 (Yoshinori HAMAHATA)
Graduate School of Science and Technology
Kobe University
Rokkodai, Nada-ku, Kobe 657, Japan

We treat quaternion unitary groups of degree 2, which were studied by Arakawa in [1]. The purpose of this note is to report that modular varieties associated to those unitary groups with fully large levels are of general type.

1 Modular varieties

Let **B** be an indefinite division quaternion algebra over the rational number field **Q**, and $\bar{}$: $\mathbf{B} \to \mathbf{B}$ $(a \mapsto \bar{a})$ the canonical involution of **B**. Since $\mathbf{B}_{\infty} = \mathbf{B} \otimes_{\mathbf{Q}} \mathbf{R} \cong M_2(\mathbf{R})$, we identify \mathbf{B}_{∞} and $M_2(\mathbf{R})$ by fixing an isomorphism. Let G be the **B**-unitary group of degree 2. We put

$$G_{\mathbf{Q}} := \{g \in M_2(\mathbf{B}) \mid g \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}^t \bar{g} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \},$$

where ${}^t\bar{g}=\begin{pmatrix} \bar{a} & \bar{c} \\ \bar{b} & \bar{d} \end{pmatrix}$ for $g=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Then $G_{\mathbf{Q}}$ is **Q**-rational points of G. Let N be a natural number, and $\mathfrak O$ a maximal order of $\mathbf B$. Set

$$\Gamma(N) := \{ g = \left(egin{array}{cc} a & b \\ c & d \end{array}
ight) \in G_{\mathbf{Q}} \mid a-1,b,c,d-1 \in N\mathfrak{O} \ \}.$$

Let

$$\mathfrak{S}_2 := \{ Z \in M_2(\mathbf{C}) \mid {}^tZ = Z, \operatorname{Im}(Z) > 0 \}$$

be the Siegel upper half plane of degree 2, and set

$$\mathfrak{H}:=\{\; Z\in M_2(\mathbf{C})\;|\; ZJ^{-1}\in\mathfrak{S}_2\;\}, \qquad J:=\left(egin{array}{cc} 0 & 1 \ -1 & 0 \end{array}
ight).$$

For the group $G_{\mathbf{R}}$ of **R**-rational points of G, we have

$$qG_{\mathbf{R}}q^{-1} = Sp_2(\mathbf{R}) := \{ g \in M_4(\mathbf{R}) \mid g \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}^t g = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix} \},$$

where $I := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $q := \begin{pmatrix} I & 0 \\ 0 & J \end{pmatrix}$. The group $G_{\mathbf{R}}$ acts on \mathfrak{H} by $g\langle Z \rangle = (aZ+b)(cZ+d)^{-1}$ for $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G_{\mathbf{R}}, Z \in \mathfrak{H}$. Though pairs $(G_{\mathbf{R}}, \mathfrak{H})$ and $(Sp_2(\mathbf{R}), \mathfrak{S}_2)$ are the same essentially, we here consider the pair $(G_{\mathbf{R}}, \mathfrak{H})$.

Since the **Q**-rank of $G_{\mathbf{Q}}$ is 1, $\Gamma(N)$ has only point cusps. Let Y(N) be a toroidal compactification of $\Gamma(N) \setminus \mathfrak{H}$.

2 Modular forms

In this section, we remember modular forms with respect to $\Gamma(N)$. See Arakawa [1] and Hashimoto [2] for details. For any positive integer k, let $M_k(\Gamma(N))$ be the C-vector space of modular forms of weight k with respect to $\Gamma(N)$. Namely, $M_k(\Gamma(N))$ is the space of holomorphic functions f(Z) on \mathfrak{H} satisfying

$$f(g\langle Z\rangle) = \det(cZ + d)^k f(Z)$$
 for all $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(N)$.

An element f(Z) in $M_k(\Gamma(N))$ is called a cusp form if $|f(Z)\det(\operatorname{Im}(Z))^{k/2}|$ is bounded on \mathfrak{H} . We denote by $S_k(\Gamma(N))$ the C-vector space of cusp forms of weight k with respect to $\Gamma(N)$. Let \mathbf{B}^- be the set of pure quaternions in \mathbf{B} . We put

$$L:=\mathfrak{O}\cap \mathbf{B}^-, \quad L^*:=\{\ y\in \mathbf{B}^- \mid \operatorname{tr}(xy)\in \mathbf{Z} \quad \text{for all} \quad x\in L\}.$$

Then Arakawa showed the following Proposition and Theorem.

Proposition(Arakawa). Each modular form $f(Z) \in M_k(\Gamma(N))$ has the following Fourier expansion

$$f(Z) = a(0) + \sum_{\substack{t \in L^* \\ tJ > 0}} a(t)e[\frac{1}{N}\text{tr}(tZ)],$$

where $e[\cdot] = \exp(2\pi i \cdot)$. In particular, $f(Z) \in S_k(\Gamma(N))$ is equivalent to a(0) = 0.

Let \mathfrak{O}^{\times} be the group of units in \mathfrak{O} . For any element $\epsilon \in \mathfrak{O}^{\times}$ and $x \in L$, we have $\epsilon x \overline{\epsilon} \in L$. The lattice L^* also has this property. The Fourier coefficients a(t) in Proposition satisfy $a(\epsilon t \overline{\epsilon}) = (N\epsilon)^k a(t)$ for $\epsilon \in \mathfrak{O}^{\times}$.

Theorem (Arakawa). Assume $k \geq 5, N \geq 3$. Then we have

$$\dim_{\mathbf{C}} S_k(\Gamma(N)) = 2^{-7} 3^{-3} 5^{-1} [\Gamma : \Gamma(N)](k-1)(k-\frac{3}{2})(k-2) \prod_{p|d(\mathbf{B})} (p-1)(p^2+1)$$

$$+ 2^{-4} 3^{-1} [\Gamma : \Gamma(N)] N^{-3} \prod_{p|d(\mathbf{B})} (p-1),$$

where $d(\mathbf{B})$ is the discriminant of \mathbf{B} .

3 The result

Let $\begin{pmatrix} z_1 & z_2 \\ z_3 & -z_1 \end{pmatrix}$ be the coordinates of \mathfrak{H} . Set $\omega := dz_1 \wedge dz_2 \wedge dz_3$. Arakawa showed that $\Gamma(N)$ is torsion-free if $N \geq 3$. We here consider the case $N \geq 3$. For any cusp form $f \in S_{3k}(\Gamma(N))$, we would like to know the extendability of a $\Gamma(N)$ -invariant form $f\omega^{\otimes k}$ over the resolution of a point cusp.

We set

$$L_{+}^{*} := \{ y \in L^{*} \mid yJ > 0 \}, \quad L_{+} := \{ x \in L \mid J^{-1} > 0 \}.$$

Put

$$\Lambda_m(\infty) := \{ y \in L_+^* \mid \operatorname{tr}(yx) \le m \text{ for some } x \in L_+ \}, \qquad d_m(\infty) := \Lambda_m(\infty) / \sim,$$

where we write $y_1 \sim y_2$ when $y_1 = \epsilon y_2 \overline{\epsilon}$ holds for some norm 1 unit ϵ in \mathfrak{O}^{\times} . This number $d_m(\infty)$ shows us the extendability of $f\omega^{\otimes m}$.

Put $N(L_+) := \min\{ N(x) \mid x \in L_+ \}$. The following is the main result:

Theorem. Assume $N \geq 3$. If

$$3\sqrt{2}N^3[\mathfrak{O}^{\times}:(1+N\mathfrak{O})^{\times}]N(L_+)^{3/2}d(\mathbf{B})\prod_{p|d(\mathbf{B})}(p^2+1)>2^75\pi,$$

then Y(N) is a modular variety of general type.

Sketch of proof: The number of cusps for $\Gamma(N)$ is $[\Gamma(1):\Gamma(N)]/[\mathfrak{O}^{\times}:(1+N\mathfrak{O})^{\times}]N^3$. Hence we get

$$P_m(Y(N)) \ge \dim S_{3m}(\Gamma(N)) - \frac{[\Gamma(1) : \Gamma(N)]}{[\mathfrak{O}^{\times} : (1 + N\mathfrak{O})^{\times}]N^3} \cdot d_m(\infty).$$

If $tr(yx) \leq m$, then we have $N(y)N(x) \leq m^2$. Now we evaluate the cardinality of

$$\{ y \in L_+^* \mid N(y) \le \frac{m^2}{N(L_+)} \} / \sim .$$

Here \sim is defined as above. Then we can show that the cardinality is not bigger than $\frac{\pi}{3\sqrt{2}d(\mathbf{B})}\prod_{p|d(\mathbf{B})}(p-1)m^3 + \epsilon m^3$ for fully big m and fully small ϵ . By using this evaluation and the dimensional formula of Arakawa, we can prove the above theorem.

References

- 1. T. Arakawa: The dimension of the space of cusp forms on the Siegel upper half plane of degree two related to a quaternion unitary groups, J. Math. Soc. Japan 33, (1981), 125-145.
- 2. K. Hashimoto: The dimension of the spaces of cusp forms on Siegel upper half plane of degree two II, Math. Ann. 266, (1984), 539-559.
- 3. F. Knöller: Beispiele dreidimensionaler Hilbertscher Modulmannigfaltigkeiten von allgemeinem Typ, Manuscripta Math. 37, (1982), 135-161.

- 4. S. Tsuyumine: On the Kodaira dimensions of Hilbert modular varieties, Invent. Math. 80, (1985), 269-281.
- 5. H. Yamaguchi: The parabolic contribution to the dimension of the space of cusp forms on Siegel space of degree two, Preprint, (1976).
- 6. T. Yamazaki: On Siegel modular forms of degree two, Amer. J. Math. 98, (1976), 39-53.