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Introduction

The aim of this note is to report a recent result on arithmetic deformation of
degenerate (algebraic) curves and its application to studying automorphic func-
tions on the Teichmiiller space (which we call Teichmiiller modular forms for
short). Arithmetic deformation theory is to give a higher genus version of Tate’s
elliptic curve over Z[[q]], i.e. to construct a deformation of a given degenerate
curve as a stable curve over a certain “primitive” ring. The construction is done
by extending Mumford’s uniformization theory [M], so this theory is also called
arithmetic uniformization theory. In this note, we only treat a deformation of
a degenerate curve obtained by identifying points of the projective line in pairs.
And inspired by the result of Ihara-Nakamura [I-N] giving an arithmetic deforma-
tion of a maximally degenerate curve with smooth components, we could obtain
an arithmetic deformation of any degenerate curve, which will be useful to study-
ing Teichmiller modular forms of higher level. The results in §2, 3 are mainly
extensions of results in [I2, 3] to Teichmiiller modular forms over a ring, especially
over Z, which can be obtained using results in §1.

1 Arithmetic uniformization theory

Classical Schottky uniformization theory for Riemann surfaces had been con-
structed by Schottky [S] about 1 century ago. Modern Schottky type uniformiza-
tion theory for p-adic algebraic curves was constructed by Mumford [M] about 20
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years ago. Combining these theories, we obtain arithmetic unifomization theory.
This is needed to study automorphic functions on the Teichmiiller space.

We review Schottky and Mumford uniformization theory. Let K be Cora
nonarchimedean valuation field with multiplicative valuation | |. Let PGLy(K)
(: the projective linear group of degree 2 over K ) act on the projective line
P'(K) = K U{oco} over K by the Mdbius transformation:

por) 03 (7 2).2) o 220 o)

Let

Dy1,...;Dyy : open domains in P*(C) bounded by Jordan curves
open disks in P'(K) if K is nonarchimedean

’yl,...,’yg € PGLZ(K)

such that 4,(P'(K) — D_;) = Dy, (: the closure of Dy).

Then 7(0D_x) = 0Dy (: the boundary of D).
Let

r & (Y15 -, Yg) : called a Schottky group over K of rank g.

Then T' is known to be a free group of rank g consisting of hyperbolic elements
except 1. Hence each -y, has 2 fixed points ay; € Dy and the multiplier §;, € KX
with lﬂk' <1, ie.

Te(2) — ag Y z— ag
T (2) — a_p Z—Qa_p

(z € PY(K))

which is equivalent to

[ ar ag 1 0 Qi Qg - x
’)’k—(l 1)(Oﬂk)(l 1) mod(K™).

We call (aik,Br)i<k<g the Koebe coordinates of a Schottky group I' with free
generators 7y, ..., Y.

Let Cr be the K-analytic space obtained from P*(K)—UJZ_, (DrUD_y) identifying
0Dy, and 8D_;, via

cr & (PI(K)— O(Dkup_k)) / 0Dy U, 8D_y.

k=1

Then Cr is Schottky uniformized by T, i.e. it becomes the quotient space by T' of
P'(K) — {limit points of T'}. When K = C, C} is evidently a Riemann surface
of genus g, and when K is nonarchimedean, it is shown by Mumford [M] that Cr



has a natural structure of a proper and smooth algebraic curve over K which is

called a Mumford curve.

Arithmetic uniformization theory is to construct a family of stable curves over

1

def
A = Z[mil,...,wig,ﬂ )

i#j v T VI

} [[y1, - yg]]

(T41, -y g, Y1, .-, Yy : variables) which is a “universalization” of Schottky and
Mumford uniformized curves, i.e. becomes those curves under specializing 4, yx
to the associated Koebe coordinates. For this purpose, we extend Mumford’s for-
mal analytic construction [M] of stable curves for Schottky groups over complete
local rings to the group generated by

-1
( zlk x{k ) ( (1) ;k ) ( mlk zik ) modulo center

over the nonlocal ring A, and we have:

Theorem 1. There exists a stable curve C over A satisfying
(1) C is smooth over A[l/y] (y :=y1 - ¥q),
(2) Cly=..=y,=0 becomes the degenerate curve over

1

:l:,'—:l:j

Ay = Z w:tla'"ax:i:g’H
ii

obtained by identifying i and z_y (k= 1,...,9) in Ple,

(3) for K as above and the Koebe coordinates (air,Bi)i1<k<g of a Schottky
group T = (y1,...,7,) over K with sufficiently small |By|,

C|z¢h=aik,yk=ﬁk = Cr.

2 Teichmiiller modular forms

We define Teichmiiller modular forms (denoted by TMFs for short) as global
sections of line bundles on the moduli space of algebraic curves, which are seen
to be, over C:

automorphic functions on the Teichmiiller space,
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i.e. holomorphic functions on the Teichmiiller space with automorphy condition
under the action of the mapping class group. This naming is an analogy of

Siegel modular forms (denoted by SMFs for short)

= automorphic functions on the Siegel upper half space

Besides the analogy of the namings, TMFs and SMF's are connected by the period
map and the Torelli map. But there are TMFs not induced from SMFs. These
TMF's appear in string theory, conformal field theory and soliton theory. We will
study TMFs by constructing their arithmetic expansion. This is an analogy of
the theory on arithmetic Fourier expansion for Siegel modular forms constructed
by Shimura (over fields of characteristic 0) and by Chai and Faltings [F-C] (over
rings). And these 2 expansion theories are connected by the so called “universal
periods”: A
{SMFs} Fourier_expansion {power series}
i universal | periods

{TMFs} arithmetic expansion {power series}

In what follows, we fix a natural number g. This means the genus of consid-
ering Riemann surfaces. Moreover, we assume: '

g23.

Because if the genus is equal to 1 or 2, then the moduli of Riemann surfaces is
an affine space, so some cusp condition is needed for the definition of TMFs.

Let

T, : the Teichmiiller space of degree g

' the moduli space of Riemann surfaces C of genus g

with canonical generators of 7;(C) modulo the conjugation.

Then by Teichmiiller’s theory, T, is known to be diffeomorphic to R®~¢ and T,
has the natural complex structure corresponding to the deformation of Riemann
surfaces. In particular, T, becomes a simply connected complex manifold of
dimension 3g — 3.

Let

Iy, : the mapping class group of degree g
' the group of orientation (H(m(C), Z)>7Z) preserving

automorphisms of 71(C) modulo inner automorphisms.
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Then T', acts on canonical generators of 71(C), so it acts on T, properly discon-
tinuously. The quotient space T,/T', becomes the moduli space (as a complex
orbifold) of Riemann surfaces of genus g. We denote this by M:

M, o T,/T, : the moduli space (orbifold) of Riemann surfaces of genus g.

By Riemann’s period relation, the period matrix of each element of T; belongs
to the Siegel upper half space H, of degree g. Sending Riemann surfaces to their
Jacobian varieties with canonical polarization, we have the Torelli map 7 from M,
to the moduli space A, of principally polarized g-dimensional abelian varieties
over C, and A, is the quotient of H by the integral symplectic group Spay(Z) of
degree g. Hence we have the following commutative diagram:

Tg p: pe_l;ifi map Hg
LML [Sey(@)
Mg T To_lfg map Ag.

Since every v € T'; induces an automorphism ¥ of n;(C)/[m, 7] = H;(C,Z) and
preserves the natural intersection form on H(C, Z):

. A, B
I',3y—~%Fon Hy(C,Z) = T ) € Spay(Z).
v C, D, :
Let
¢ : the Hodge line bundle on A,
4 the line bundle on A, corresponding to the antomorphic factor
Ag B
det(CeZ+Dg) (G = % ¢ ) eSpy(Z), ZeH,),
Ce Dg
A %' 7*(n) : the line bundle on M, corresponding to det(Cyp(t) + D,).
Then

T(Ag,p®") = {p:Hy— C:hol. | p(G(2)) = det(CsZ + Dg)"p(2)},
D(M,,3%) = {f:T, - C:hol. | f(x(t)) = det(C,p(t) + Dy)*F().
We note that it is shown by Harer [H] that the line bundles on M, (modulo
isomorphism) form a free cyclic group generated by A. As is shown in [D-M],

there exist canonical models of M, and A, as moduli stacks (i.e. algebraically

defined orbifolds) over Z. We denote these by

M, : the moduli stack /Z of (proper, smooth) algebraic curves of genus g,
A, : the moduli stack /Z of prin. polar. g-dim. abelian varieties.



Since A and p are defined over M, and A,, for any h € Z and Z-algebra R, we
can define '

T,n(R) gf I'(M,,A®" @ R) : TMFs /R of degree g and weight h
T ~
Syn(R) def T(A,, #®* ® R) : SMFs /R of degree g and weight h.

Then as in the Siegel modular case, using the Satake-type compactification of
M, over fields and the principle of GAGA, we have

R (ifh=0)

%MR):{{M (if b < 0),

and

P(My”\®h) = Tg,h(C) = g,h(z)®c'

Let K be C or a nonarchimedean complete valuation field, and let

Sg/x : the space of Schottky groups over K with free g generators

open subset

—  (PYK) x P}(K) x K*) by the Koebe coordinates,
Sy = S,k /(conjugation by PGLy(K)) '
: called the Schottky space over K of degree g.
By I' — Cr, Sy/x becomes a fiber space over the K-analytic orbispace M, x

associated with M, ® K, and in the case where K = C, we have the following
commutative diagram (S, &f S,/0)

Tg p: peioj} map Hg

l lexp(21r\/—_1 )
S, N H, Zoe+V)/2
! !

7: Torelli map
M, — A,

Then using results in [S], it is shown in [I1] that the middle rightarrow for suf-
ficiently small |Bx| is expressed by the universal periods p; € A (3,5 = 1,...,9)
which are seen to be the multiplicative periods of the Jacobian variety of C (cf.
[M-D}]). We note that p;; are computable, for example,

D = ¢ (1 + 3 (2 — z_i)(x; — z_;) (21 — 2_¢)? k)yl“ 4. ) ,

izt (Ti — ze)(@—i — 2 (25 — 2k (z—j — =-
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where
Gj = (zi—z—j)(z-i-2;) (lfz # ])
Yi (lf 1= ])
By the fibration S;yx — Mgk, any TMF f over K gives a K-analytic function
on S,/k, s0 we obtain this expansion x(f) by the Koebe coordinates (ats, Bt ):

fe€Tyn(K) = 3k(f) € A[1/y)®K such that &(f)]

Trr=04k Ye=Pr f

- Then using Theorem 1 and the irreducibility of M, proved by Deligne-Mumford
[D-M], we have:

- Theorem 2. For any Z-algebra R, the evaluation of TMFs on the universal
curve C in Theorem 1 gives a functorial R-linear homomorphism

kg : T,n(R) — A[l/y|®R

which satisfies the following:

(1) &k = the above &,

2) Kpg s injective,

(2)
(3) f € T,n(R), kr(f) € ABR (R' C R) = f € T,n(R'),
(4)

4) the following diagram is commutative:

F': Fourier expansion

Sgn(R) — R[gij, [Tz 1/ @5lllan1s v doal]l 2 @i
L7 ! !
T,n(R) 5 All/y|®R > pij.

By (2) and (4), we have a characterization of Siegel modular forms vanishing on
the Jacobian locus (cf. [I1]):

Corollary (Schottky Problem). For any ¢ € Syn(R) with Fourier expansion
F(p)= Y. ar]a;" (ar € R),

T=(t:j) 4

T*(cp) = 0 = F((P)|Qij=l7;‘j = 0 in A@R
(i)
_ tii=s;  i<j (zi — z—j)(z_; — )

g
for any 84, ...,8, > 0 with Y s; = min{T'r(T)|ar # 0}.

=1

Brinkmann-Gerritzen [B-G] shows (=) and checks this for Schottky’s relation in
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genus 4.

Studying the behavior of TMFs at the boundary of the moduli space, we can
show that any element of T} ,(Z) is (uniquely) extended to a form on the Deligne-
Mumford compactification [D-M] of M,, and hence we have:

Theorem 3. Fach Ty1(Z) is a free Z-module of finite rank, and the ring
T;(Z) = @nyoTyn(Z) of Teichmiller modular forms over Z of degree g is a
finitely generated Z-algebra.

3 Examples of TMFs

Let

b, [ “ ] (z) & Zzg exp [7[‘\/—_1(11, +a)Z4n +a) +27v/=1(n + a)tb]

(a,be (3Z)?/2°, Z € H,)

be the theta constant with characteristic (a,b), and let

0,2 I 6, [ ‘; ] (z‘)

4atb: even

be the product of theta constants with even characteristic. It is well known (cf.
(Ig]) that 6, € S 2n(4)(C) (R(g) &f 29-3(29 + 1)), and 8, is defined over Z because
it has rational Fourier coefficients. Tsuyumine [T2, 3] shows that 6, has a root
as a TMF over C. Calculating the expansion of 8, by Koebe coordinates, we can
determine the number N, such that §,/N, has a root as a TMF over Z which is
primitive, i.e. is not congruent to 0 modulo any prime:

Theorem 4. Put

Y e (9=23)
P T 2 (g2

Then 7%(8,)/N, has a root as a primitive Teichmiller modular form over Z of
degree g and weight h(g).

When g = 3, using f3 = /7*(63)/N3s € T59(Z), we can reduce the structure of
T3(Z) to that of the ring S3(Z) = @p5 Ssn(Z) of Siegel modular forms over Z

of degree 3 (generators of S;(Q) are obtained by Tsuyumine [T1]). First note
S;(Z) inéacl;'®h,:even S3,h(z)

| 7" : injection

T3(2),



however, there exist TMFs of degree 3 with odd weight, for example f3, because
the Torelli map has degree 2'as a morphism between orbifolds. From a result of
Igusa [Ig] and Theorem 2, we have: ’

Theorem 5. The ring T3(Z) is generated by f3 over S3(Z).

When g = 4, 7* induces an injective homomorphism
S;(Z)/(Schottky’s relation) — T,(Z),
but the author does not know whether this map is surjective or not.

In what follows, we consider a kind of TMF on the moduli space of marked
Riemann surfaces. The partition function in conformal field theory with abelian

gage is known to be (cf. [K-N-T-Y], [Ki]):

regarded as a TMF on the moduli of marked Riemann surfaces
expressed by the theta functions of Riemann surfaces
satisfying the system (hierarchy) of soliton (KP) equations

Using arithmetic uniformization theory for algebraic curves, we can give the p-
adic version of this result. Here we will construct p-adic solutions of soliton
equations.

First we treat the genus 1 case. Let L be the lattice generated by 7 and 77,
where 7 is a complex number with positive imaginary part, and let

def 1 1 1

p(z) = =+ (———) (z€C)
22 uG;{O} (z—u)? wu?

be the Weierstrass g-function for L. Then by the theory of elliptic functions, one

can see that

u(z,t) = p(z+3ct+d)+c (c,d: constants)

satisfies the KAV equation:

Ou ou 18

o “"or 40z
(and u(z,t) becomes the 1-soliton solution under Im(7) — +o00). By the ratio-
nality of ((2m)/®*™ (m : positive integers), p(z) can be regarded as a Laurent
power series of z and ¢ f exp(2my/—17) with rational coefficients. So we have a
universal solution u(z,t) of (KdV), and for any p-adic number a with |a|, < 1,

(KdV)

u(,t)|4=q is a formal solution of (KdV) with coeflicients in p-adic numbers.

180



In the genus > 2 case, it is shown by Krichever [Kr] that the theta function
of any Riemann surface induces a quasi-periodic solution of the KP equation:

30%v O [Ou Ou 10
(KP) zw—a;(ar?’“'a;“za';S) =

(and that of the KP hierarchy more generally). Hence using arithmetic uni-
formization theory, we obtain a universal power series for solutions of KP from
Riemann surfaces with square roots of canonical bundles. By specializing this

universal solution to the Koebe coordinates of Schottky groups over p-adic fields,
we have (cf. [14]):

Theorem 6. The p-adic theta function of any algebraic curve with splitting
reduction over a p-adic field induces a solution of the KP hierachy.

Finally we will mention “analytic curves of infinite genus”. In string theory
and soliton theory, it is necessary to consider Riemann surfaces of infinite genus
and their theta functions. We can construct a theory on analytic curves (Riemann
surfaces and Mumford curves) of infinite genus which gives p-adic solutions of the
KP hierarchy as in the finite genus case.
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