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This paper presents results from the numerical implementation of an algorithm for

the direction inversion of data to yield unknowns [2] to study inverse problems associated

with a 28-step CO-hydrogen-oxygen reaction mechanism proposed in [10]. In section 1,

we describe the class of chemical inverse problems which are suitable for study using the

technique. The algorithm and examples of applications are given in section 2. Results

from our investigation of a CO-hydrogen-oxygen reaction mechanism will be described
in the final section.

1. Introduction and Problem Formulation

The problem considered in this paper lies in a very active area of research known as
inverse problems. All inverse problems are associated with a forward $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{l}\mathrm{n}$ , which is

often much easier to solve. For $\mathrm{e}\mathrm{x}\mathrm{a}\dot{\mathrm{l}}\mathrm{n}\mathrm{p}\mathrm{l}\mathrm{e}$, consider a simple system studied by Euler and

Bernoulli: given the density, length and t,ension of a plucked string, $\mathrm{d}\mathrm{e}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{n}\dot{\mathrm{u}}\mathrm{n}\mathrm{e}$ the tones

produced. An associated inverse problem is to determine the density of the string from

its tones, length and tension [3]. Inverse problems appear in a wide range of scientific
areas which include: the reconstruction of images in $\mathrm{X}$-ray tomography, the study of

potential flows and heat conduction, the determination of material properties of a beam
from its vibrational modes, the recovery of a cross-sectional area of the vocal tract from

measured data, the determination of the density inside the earth from seismographic
data, and mathematical inverse problems.

The main topic of this paper is an inverse problem which arises in the field of chemical
kinetics. Kinetics systems are often described by evolution-type equations of the form:

$\frac{\partial u}{\partial t}$ $=T(V, u(V))$ for $t>0$ , (1)

$u$ $=$ $u_{0}$ for $t=0$ , (2)

where $u$ is a vector representing the concentration of chemical species and $V$ describes

other parameters, e.g., diffusion and kinetics rate constants [1]. The standard textbook
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or forward problem consists of determining $u$ for a choice of $V$ . In actual laboratory
situations some of the $V_{i}$ may not be nueasurable, even though we would like accurate
approximations of their values under various conditions, e.g. temperature, pressure. This
quandary may be fornlulated as a nlathematical inverse problem; determine $V$ , given a
set of data measurements $d=\{d_{j}\}$ , which are related to $V$ through equations of the
fornl:

$L_{j(u,V)}=f_{j}(d_{j}, u)$ ; $j=1,2,3,$ $\ldots,$
$m$ , (3)

where each $L_{j}(u, V)$ is a, possibly non-linear, operator acting on $u$ and $V$ . An algorithm
for determining a numerical solution to this problem is given in the next section.

2. Algorithm and Examples

An algorithm proposed by Caudill, Rabitz and Askar [2] for the direct inversion of
data to yield unknown functions consists of three steps:

(i) Formally invert, the system (3) to express the unknown $V$ in terms of the
data $d$ and the (unknown) forward solution $u$ :

$V=\nu[d, u]$ . (4)
$($

(ii) Input (4) into equation (1) and solve the resulting $\mathrm{s}\mathrm{y}_{\mathrm{S}\mathrm{t}}\mathrm{e}\mathrm{n}1$ for $u$ .

(iii) Substitute the solution $u$ obtained in step (ii) into the $\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}-\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{d}_{\mathrm{S}\mathrm{i}}- \mathrm{d}\mathrm{e}$ of
(4) to determine $V$ explicitly in terms of the data $d$ .

Since the algorithm is based on system identities, it should be of no surprise if it yields
excellent results for clean and complete data sets. Through implementation studies,

we seek to determine its ability to reconstruct desired parameters from ideal as well as
incomplete or noisy laboratory data.

This algorithm can be used to solve a variety of inverse problems which can be mathe-
matically modeled by equations of the form (1) $-(2)$ with measurable laboratory data (3).

Three other types of applications: heat conduction, age-structured population dynamics

and molecular dynamics are discussed in [2].

3. Numerical Experiments

In this section we describe results from the implementation of the algorithm from
section 2 to solve the inverse problem for recovery of kinetics rate constants for a non-
linear, highly coupled 28-step reaction mechanism for the oxidation of carbon monoxide in
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the presence of hydrogen proposed by Yetter, Dryer and Rabitz in [10]. Before considering
this complicated $\mathrm{s}\mathrm{y}_{\mathrm{S}\mathrm{t}}\mathrm{e}\mathrm{n}1$, we examined the simple explosive reaction model

$A+2X$ $-arrow$ 3 $X$ ( propagation )

$X$ $-arrow$ $B$ $( \mathrm{t}\mathrm{e}\mathrm{r}\mathrm{n}\mathrm{u}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}} )$ ,

as a feasibility study. Here the forward and backward rate constants for the propagation
and termination reactions are $k_{1},$ $k_{2},$ $k_{3}$ , and $k_{4}$ respectively [8]. We assume that an
infinite reservoir of the principal reagent is available and no or negligible back reactions
take place. Our numerical experiments consisted of 4 steps:

1. Given all rate constants and initial concentrations of all reagents, solve the
forward problenl, i.e. determine concentrations of all reagents for finite
times $t:0\leq t<\infty$ .

2. Select data for concentrations of reagents at various times
$0=t_{0<}t_{1}<\ldots<t_{n}$ .

3. Formulate the inverse problem and apply the algorithm from section 2.
4. Compare the computed algorithm from step 3 with the actual solution

from step 1.

A $\mathrm{b}\mathrm{a}s$ic forward difference scheme was used to solve the forward problem, i.e., compute
the concentrations of $X,$ $A$ and $B$ . Subsets of the generated data were used to solve an
inverse problem. We considered the inverse problem: Given the rate constants $k_{1},$ $k_{-1}$ ,
$k_{-2}$ and the concentrations of $A$ and $B$ , determine the concentration of $X$ and the rate
constant $k_{2}$ . Recovery of both was perfect (within significant digits), even when partial
data sets were used.

The 28-step $\mathrm{c}\mathrm{o}_{-}\mathrm{H}\mathrm{y}\mathrm{d}\mathrm{r}\mathrm{o}\mathrm{g}\mathrm{e}\mathrm{n}$ -Oxygen reaction mechanism we considered is given below
[10]. Although the mechanism has been validated for a wide range of conditions, the
regions of calibration may differ quite a bit from step to step. One of the motivations
for our work is to exalnine the reaction mechanism under a range of conditions, some
of which may not be experimentally validated. A second motivation is the study of the
sensitivities of the reagents and rate constants to changes in experimental conditions.

$CO,$ $H_{2},$ $O_{2}$ Reaction Mechanism

$H_{2},$ $O_{2}$ Chain Reactions
1. $H+O_{2}=O+OH$
2. $O+H_{2}=H+OH$
3. $OH+H_{2}arrow-H+H_{2}O$
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4. $OH+OH-arrow O+H_{2}O$

$H_{2},$ $O_{2}$ Dissociation-Recombination Reactions
$5\mathrm{a}$ . $H_{2}+M_{-}^{arrow}H+H+M(N_{2})$

$5\mathrm{b}$ . $H_{2}+M=H+H+M(Ar)$
$6\mathrm{a}$ . $O+O+M_{-}^{arrow}O_{2}+M(N_{2})$

$6\mathrm{b}$ . $O+O+M=O_{2}+M(Ar)$
7. $O+H+M_{-}^{arrow}OH+M$

$8\mathrm{a}$ . $H+OH+M_{-}^{arrow}H_{2}O+M(N_{2})$

$8\mathrm{b}$ . $H+OH+M_{-}^{arrow}H_{2}O+M(Ar)$

$9\mathrm{a}$ . $H+O_{2}+M_{-}^{arrow}HO_{2}+M(N_{2})$

$9\mathrm{b}$ . $H+O_{2}+M_{-}^{arrow}HO_{2}+M(Ar)$

10. $HO_{2}+H--H_{2}+O_{2}$

11. $HO_{2}+H=OH+OH$
12. $HO_{2}+O_{-}^{arrow}OH+O_{2}$

13. $HO_{2}+OH--H_{2}O+O_{2}$

Formation and Consumption of $H_{2}O_{2}$

$14$ . $HO_{2}+HO_{2}=H_{2}O_{-},+O_{2}$

$15\mathrm{a}$ . $H_{2}O_{2}+M=OH+OH+M(N_{2})$
$15\mathrm{b}$ . $H_{2}O_{2}+M-arrow OH+OH+M(Ar)$

$16$ . $H_{2}O_{2}+H=H_{2}O+OH$

17. $H_{2}O_{2}+H-arrow H_{2}+HO_{2}$

18. $H_{2}O_{2}+O-arrow OH+HO_{\underline{9}}$

19. $H_{2}O_{2}+OH\veearrow H_{2}O+HO_{2}$

Oxidation of $CO$

$20\mathrm{a}$ . $CO+O+M_{-^{co_{2}}}^{arrow}+M(N_{2})$

$20\mathrm{b}$ . $CO+O+M-arrow CO_{\underline{9}}+M(Ar)$

$21$ . $CO+O_{2}=CO_{2}+O$

22. $CO+OH-arrow CO_{2}+H$

23. $CO+HO_{2}-arrow CO_{2}+OH$

Formation and Consumption of $HCO$

$24\mathrm{c}$ . $HCO+M-arrow H+CO+M(N_{2})$

$24\mathrm{b}$ . $HCO+M=H+CO+M(Ar)$
25. $HCO+O_{2}=CO+HO_{2}$

26. $HCO+H-arrow CO+H_{2}$

27. $HCO+O_{-Co}^{\wedge}+OH$

28. $HCO+OH=CO+H_{2}O$
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Forward and backward rate constants for the reactions were computed using data

from $[5],[7],110]$ and the Arrhenius rate formula $k=AT^{n}\exp(-E_{a}/RT)$ , where $A$

is the pre-exponential factor (which is independent of temperature, or nearly so), $T$ is

the temperature, $n$ a power index, $E_{a}$ the activation energy, and $R$ the gas constant.

For reactions 4 and 22, we use the formulae $k_{4}=5.46\cross 10^{11}\exp(0.00149\cross T)$ and
$k_{22}=6.75\cross 10^{10_{\mathrm{e}}}\mathrm{x}\mathrm{p}(0.000907\cross T)$ given in table III of [10] in lieu of the values for $A$ ,

$n$ and $E_{a}$ 4 Even when temperatures selected for study do not necessarily fall within the

calibration range given in the table, we use them as a best estimate.

We follow step 1 of the procedure outlined for the study of the explosive kinetics model

and simulate the forward problem. Since this system is very stiff, a simple finite difference
scheme will lead to poor results [6]; a backward Euler method, such as the LSODE

package of Hindmarsh [4] yields good results for small temporal meshsizes. Our studies

use the same initial conditions as those in a series of sensitivity analysis experiments in

figure 7, p. 115 of [10], in which results fronl numerical simulations were verified with

shock tube experimental data. The initial conditions are: $[CO]=0.0093,$ $[O_{2}]=0.0105$ ,

$[H_{2}O]=$ 0.0058, $[N_{2}]=$ 0.9744, $T=1033\mathrm{K}$ , and $P=1\mathrm{a}\mathrm{t}\mathrm{m}$ , where all concentrations
are in mole fractions. Initial concentrations of all other reagents are zero. In running

LSODE, we set $t=0,$ $tt=tout$ $=$ O.ld-ll, $itol=2$ , $rtol=atol$ $=$ 1.0d-l0 (for all

reagents), itask $=1$ , istate $=1$ , $iopt=0,$ $lrw=250,$ $liw=31$ , and $mf=21$ .

There are several possible ways to recover a rate constant for a particular reaction from

the concentrations of all species and other rate constants; Inversion of the rate equation

for any of the species involved in the reaction can be used. For example, consider the

problem of recovering the constant, $k_{22}$ , for the twenty second reaction, which involves

four species ( $H,$ $OH,$ $CO$ and $CO_{2}$ ). We demonstrate the inversion process using the

rate equation for $CO_{2}$ .

$\frac{\partial[CO_{2}]}{\partial t}$ $=$ $k_{20}[CO][\mathit{0}][N_{2}]-k_{-2}0[co_{2}][N2]+k_{21}[CO][O2]-k_{-21}[co_{2}][O]$

$+k_{22}1^{c}\mathit{0}][OH]-k-22[Co2][H]+k_{23}[CO][Ho2]-k_{-23}[CO_{2}][oH]$

A forward differencing scheme for $\partial[Co_{2}]/\partial t$ is used to solve for $k_{22}$ , because it is the

simplest tool for solving our problem, however, we note two drawbacks of forward differ-

encing: first, LSODE uses backward differences (which means that we are combining two

4There are different ways to compute backward rate constants, but the method given above appears

to be the best. Another method, which relies on the thermodynamic equations: $\Delta H(T)=\Delta H(298.15)+$

$\int_{298.1}^{T}\mathrm{s}^{C_{p}(\tau)d\mathcal{T}}$ , $\Delta S(T)=\triangle S(298.15)+\int_{2981}^{T}5(c(p\tau)/\mathcal{T})d_{\mathcal{T}}$ , $\Delta G(T)=\Delta H(T)-\tau\Delta s(\tau)$ , and
$k_{r}=k_{f}\exp(-\Delta G/RT)$ , yields considerably different rate constants, which lead to poor simulation
result, $\mathrm{s}$ . Errors from computation of the exponential term may be the cause.
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inconsistent schemes), and second, forward differencing is inherently less stable (which
was our motivation for choosing LSODE). In light of the above, we are careful to select
$\mathrm{e}\mathrm{x}\mathrm{t}_{1}\cdot \mathrm{e}\mathrm{m}\mathrm{e}\mathrm{l}\mathrm{y}$ small step sizes when using the solution formula

$k_{22}^{\wedge}1^{c}\mathit{0}]i1oH]_{i}$ $=$ $\frac{-[CO_{2}]_{ii}++[co_{2}]_{i}}{\triangle t}-k_{20}[co]i[O]i[N2]_{i^{-}}k-20[Co_{2}]_{i}1N_{2}]_{i}$

$-k_{21}[co]_{i}[\mathit{0}2]i-k_{-21}[CO_{2}]_{i}1O]_{i}$

$+k_{-22}[co_{2}]_{i}[H]i-k_{23}[co]i[HO_{2}]_{i}-k_{-23}[co2]_{i}[OH]_{i}$

The subindices $i$ and $i+1$ indicate data from the $i^{th}$ and $(i+1)\mathrm{f}h$ timestep should be used.
Recovery of $k_{22}$ is perfect within the number of significant digits of the initial data used
in computations, as can be seen in the first figure in the appendix. When a backward
differencing scheme is used, convergence to the correct value for $k_{22}$ is faster, but results
are the same after a short while, as shown in the second figure. An analogous procedure
can be used to determine $k_{22}$ by inverting any one of the other rate equations. Results
from using the rate equation for hydrogen, $\partial[H]/\partial t$ , and carbon monoxide, $\partial[Co_{2}]/\partial t$

are given in the third and fourth figures in the appendix.

The technique used to determine $k_{22}$ can be used to solve analogous problems for
the recovery of other rate constants. The chart in the appendix indicates (with a circle
mark) which rate constants can, in principle, be determined from which rate equation.
The horizontal labels are for the rate equations, the vertical for the reaction number.
We are currently investigating formulations of other solvable inverse problems, including
those in which only noisy and incomplete data are available.
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The chart below indicates (with a circle mark) which rate constants can, in principle,

be determined from which rate equation. The horizontal labels are for the rate equations,

the vertical for the reaction number.

rxn $\mathrm{H}$ $\mathrm{O}$ OH H2 O2 $\mathrm{H}2\mathrm{O}$ HO2 $\mathrm{H}2\mathrm{O}2$ CO CO2 HCO
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$4.4\mathrm{e}+11$

recovery of k22 using rate eqn for $[\mathrm{C}\mathrm{O}2]$
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$7\mathrm{e}+12$

recovery of k22 using rate eqn for [H] (forward differencing)

$6\mathrm{e}+12$
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$4\mathrm{e}+12$

$\simeq\circ\triangleleft \mathrm{C}\vee$

$,,\mathrm{k}22.\mathrm{h}’$
.
–

$3\mathrm{e}+12$

$2\mathrm{e}+12$

$1\mathrm{e}+12$

$0$

$0$ 5 10 15 20. 25 30 35 40 45 50
time

264


