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1 Introduction

We are concerned with scheduling $n$ independent jobs $J_{1},$ $J_{2},$
$\ldots,$

$J_{n}$ on a single machine so as
to minimize a given objective function involving generalized due dates. We make the following
assumptions about feasibility of schedules.

1. The scheduling period is the interval $[0, \infty)$ .
2. The machine is continuously available from the beginning, and it cannot process more

than one job at a time.

3. The processing times $p_{1},p_{2},$ $\ldots,p_{n}$ of jobs $J_{1},$ $J_{2},$
$\ldots,$

$J_{n}$ are positive numbers known in
advance, and they are in.dependent of schedules.

4. Preemption is not permitted, that is, each job, once started, must be completed without
interruption before another job is started.

5. All jobs are available for processing from the beginning.

The objective functions we are interested in involve generalized due dates proposed by
Hall [7]. To illustrate the difference between the traditional view of due dates and Hall’s view,
consider the concept of lateness of ajob in a schedule. In the traditional view, each job $J_{i}$ has as-
sociated with it not only a processing time $p_{i}$ but also a due date $d_{i}$ . All due dates $d_{1},d_{2},$

$\ldots,$
$d_{n}$

are known in advance and they are independent of schedules. In Hall’s view, no job has its own
due date in advance. Instead, only a non-decreasing sequence

$\delta_{1}\leq\delta_{2}\leq\cdots\leq\delta_{n}$

of numbers, called generalized due dates, is given. In both cases, for each $1\leq i\leq n$ , every
schedule $S$ determines uniquely

1. the job $J_{S(i)}$ in the $i\mathrm{t}\mathrm{h}$ position of schedule $S$ , that is, an order (sequence)

$(S(1), S(2),$ $\ldots,$
$s(n))$

in which the jobs are processed on the machine, and

2. the completion time Ci $(S)$ of job $J_{i}$ in schedule $S$ .
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The lateness of the $i\mathrm{t}\mathrm{h}$ job in $S$ , that is, the lateness $L_{S(i)}(S)$ of job $J_{S(i)}$ in $S$ under the
traditional view is given by

$L_{S(i)}(S)=C_{S(i)}(S)-d_{s(i)}$ ,

whereas the lateness $L_{S(i)}^{H}(s)$ of job $J_{S\langle i)}$ in $S$ according to Hall’s view is given by

$L_{S(i)S}^{H}(S)=C(i)(S)-\delta i$ .

For example, if
$p_{1}=3$ , $p_{2}=2$ , $p_{3}=5$ ,
$d_{1}=4$ , $p_{2}=7$ , $p_{3}=10$ ,
$\delta_{1}=4$ , $\delta_{2}=7$ , $\delta_{3}=10$ ,

then, for the permutation schedule given by the sequence $(J_{1}, J_{3}, J_{2})$ , we have

$L_{1}=-1$ , $L_{2}=3$ , $L_{3}=-5$ ,
$L_{1}^{H}=-1$ , $L_{2}^{H}=0$ , $L_{3}^{H}=-2$ ,

Several authors [2, 7, 11] describe situations in which generalized due dates arise quite nat-
urally. These include public utility planning, survey design and some types of fiexible manufac-
turing. Obviously, the concept of generalized due dates was proposed with the aim of allowing
for job independent due dates. It may, however, be also useful to consider generalized due dates
as numbers through which the sequence dependent due dates are determined. Then we obtain
the traditional concept and Hall’s concept as two (very) special cases of sequence dependent due
dates $D_{1}(S),$ $D_{2}(s),$

$\ldots,$
$D_{n}(S)$ . Taking constant (sequence independent) functions

$D_{i}(S)=d_{i}$ for $1\leq i\leq n$ ,

we obtain the traditional concept, taking

$D_{i}(S)=\delta_{S^{-1}()}i$ for $1\leq i\leq n$ ,

we obtain Hall’s concept.
Now it is clear that we may expect a variety of changes in results concerning the generalized

due date counterparts of the traditional scheduling problems. The following table, in which the
notation1 proposed by Graham et al. [6] is used, shows that problems involving generalized due
dates may be easier, harder, or equally difficult as their traditional counterparts. The table
suggests that the $\max$-problems tends to be harder and the sum-problems tend to be easier for
the problems involving generalized due dates (see [8] for further details).

1This notation will be used throughout this paper.
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Problem (notation
Traditional view Hall’s view

$\frac{\mathrm{f}_{\mathrm{o}\mathrm{r}\mathrm{t}\mathrm{r}\mathrm{a}}\mathrm{d}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{l}\mathrm{V}\mathrm{i}\mathrm{e}\mathrm{w})}{\mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}\mathrm{n}\mathrm{o}\mathrm{m}\mathrm{i}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}_{\mathrm{S}}\mathrm{o}\mathrm{l}\mathrm{v}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}\mathrm{n}\mathrm{o}\mathrm{m}\mathrm{i}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}\mathrm{S}\circ 1\mathrm{v}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}}$

$1||L_{\max}$

$1|prec|L_{\max}$ Polynomially solvable NP-hard
$1|r_{j}|L_{\max}$ $\mathrm{N}\mathrm{P}$-hard NP-hard

$1|| \sum U_{j}$ Polynomially solvable Polynomially solvable
$1|prec,pj=1| \sum U_{j}$ $\mathrm{N}\mathrm{P}$ -hard Polynomially solvable
$1|r_{j}| \sum U_{j}$ $\mathrm{N}\mathrm{P}$ -hard NP-hard

$1|| \sum T_{j}$ $\mathrm{N}\mathrm{P}$ -hard Polynomially solvable
$1|prec,p_{j}=1| \sum T_{j}$ $\mathrm{H}\mathrm{P}$-hard Polynomially solvable
$1|r_{j}| \sum\tau j$

(

$\mathrm{N}\mathrm{P}$ -hard NP-hard

Most research in scheduling involving generalized due dates has been concerned with es-
tablishing the complexity status of the problems whose traditional counterparts have regular
objective functions. Little is known about the problems whose traditional counterparts have
non-regular objective functions, and about approximation algorithms for the problems involving
generalized due dates.

In what follows, we are concerned with several single machine problems involving non-regular
objective functions and generalized due dates. The objective functions we are interested in are
defined as follows.

Traditional model Hall’s model
$L_{\max}(S)= \max 1\leq i\leq nLi(S)$ $L_{\max}^{H}(S)= \max_{1\leq i\leq ni}LH(s)$

$L_{\min}(S)= \min_{1}\leq i\leq nLi(S)$ $L_{\min}^{H}(S)= \min_{1\leq i\leq ni}LH(s)$

$\Delta L(S)=L_{\max}(s)-L_{\min(S)}$ $\Delta L^{H}(S)=L_{\max}^{H}(S)-LH(\min S)$

$L_{\mathrm{a}\mathrm{b}\mathrm{s}}(S)= \max|L_{i}(S)|$ $L_{\mathrm{a}\mathrm{b}\mathrm{s}}^{H}(S)= \max|L_{i}^{H}(S)|$

Main results can be summarized as follows. First, we show that the problems of minimizing
the maximum absolute lateness and range of lateness are $\mathrm{N}\mathrm{P}$ -hard in the strong sense, both with
and without allowing for machine idle time. Second, for all of these problems, we give simple
efficient approximation algorithms based on the first-fit strategy. We show that they achieve the
performance ratios of $n$ for the problems of minimizing the maximum absolute lateness and of
$(n+1)/2$ for the problems of minimizing the range of lateness.

2 Complexity

In this section, we begin with surveying the maximum and minimum lateness problems. For these
problems, simple sequencing rules give optimal schedules. Then, we investigate the complexity
of the problems of minimizing the maximum absolute lateness and minimizing the range of
lateness both under and without the requirement that machine idle time is forbidden.

Following the notation of Hoogeveen [9], we use nmit to indicate that no machine idle time is
allowed. Recall that a permutation schedule is a non-preemptive schedule in which the machine
starts processing at time $t=0$ and continues without any inserted idle time until $t= \sum_{j=1}^{n}p_{j}$ .
Such schedules are usually specified by sequencing rules. We use the following rules.
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Shortest processing time (SPT) rule: sequence the jobs in non-decreasing order of
processing times

Ps(1) $\leq Ps(2)\leq\cdots\leq PS\langle n)$

Longest processing time (LPT) rule: sequence the jobs in non-increasing order of
processing times

Ps(1) $\geq Ps(2)\geq\cdots\geq PS(n)$

Earliest due date (EDD) rule: sequence the jobs in non-decreasing order of (tradi-
tional) due dates

$d_{S(1)}\leq d_{S(2)}\leq\cdots\leq ds(n)$

Minimum slack time (MST) rule: sequence the jobs in non-decreasing order of slack
times

$d_{S(1)}-p_{S(1)}\leq d_{S(2)}-p_{s(2)}\leq\cdots\leq d_{S(n}-)Ps(n)$

Proposition 1 Each permutation schedule generated by the

1. $EDD$ rule is optimal for the $1||L_{\max}$ problem,

2. $MST$ rule is optimal for the $1|nmit|-L_{\min}$ problem,

3. $SPT$ rule is optimal for the $1||L_{\max}^{H}$ problem,

4. $LPT$ rule is optimal for the $1|nmit|-L_{\min}H$ problem.

Proof. All these results can easily be proved by a straightforward adjacent pairwise interchange
argument. The first case is also known as Jackson’s rule [10]. The second case, a mirror image
of Jackson’s rule, was already presented in $[1, 3]$ . 1

Now, we investigate the problem of minimizing the maximum absolute lateness. Garey,
Tarjan, and Wilfong [5] proved the following proposition.

Proposition 2 The problems
$1||L_{\mathrm{a}\mathrm{b}\mathrm{s}}$ and
$1|nmit|L\mathrm{a}\mathrm{b}\mathrm{s}$

can be $\mathit{8}olved$ in polynomial time.

On the other hand, we have the following theorem concerning Hall’s model.

Theorem 1 The problems
$1||L_{\mathrm{a}\mathrm{b}_{8}}^{H}$ and
$1|nmit|L^{H}\mathrm{a}\mathrm{b}\mathrm{s}$

are $NP$-hard in the strong sense.

Proof. First, we consider the problem $1|nmit|L_{\mathrm{a}\mathrm{b}\mathrm{s}}H$ . We use 3-partition problem, which is known
to be $\mathrm{N}\mathrm{P}$-hard in the strong sense [4]. We transform 3-partition problem to the maximum
absolute lateness problem with the constraint nmit.

Suppose we have an instance of 3-partition problem, i.e., suppose we $\dot{\mathrm{h}}\mathrm{a}\mathrm{v}\mathrm{e}\mathrm{a}_{\mathrm{P}}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\dot{\mathrm{v}}\mathrm{e}$ integer
$B$ and a family $A=\{a_{1}, a_{2,\ldots,3n}a\}$ of positive integers such that $\sum_{j=1}^{3n}a_{j}=nB$ and $B/4<$
$a_{j}<B/2$ for $1\leq j\leq 3n$ . We construct an instance of the lateness problem under consideration
with
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1. $4n$ jobs $f_{1},$ $J_{2},$
$\ldots$ , $J_{4n}$ whose processing times $p_{1},p_{2},$ $\ldots,p_{4}n$ are

$p_{i}=a_{i}$ for $1\leq i\leq 3n$ ,
$p_{i}=B+1$ for $3n+1\leq i\leq 4n$ , and

2. Hall’s due dates $\delta_{1},$ $\delta_{2},$

$\ldots,$
$\delta_{4n}$ given by

$\delta_{i}=(2B+1)\lceil i/4\rceil-B/2$ for $1\leq i\leq 4n$ ,

where $\lceil x\rceil$ is the smallest integer no less than $x$ .

We now show that the problem above has a schedule with the maximum absolute lateness
$B/2$ iff $A$ has a desired partition. Suppose that $A$ has a partition $A=A_{1}\cup A_{2}\cup\cdots\cup A_{n}$ such
that $\sum_{a_{j}\in A_{i}}a_{j}=B$ for $1\leq i\leq n$ . Further suppose that $A_{i}=$ { $a3i-2,$ a$3i-1,$ $a3i$ } for $1\leq i\leq n$ .
It is easy to check that the schedule

$(J\mathrm{s}_{n+3+2}1, J_{1}, J_{2}, J_{3}, Jn’ J_{4}, J_{5}, J_{6}, . , ., J_{4n}, J_{3}n-2, J3n-1, J3n)$

is feasible and gives the maximum absolute lateness $B/2$ .
On the other hand, suppose that there exists a schedule with the maximum absolute lateness

$B/2$ . Notice that all feasible schedules give the maximum lateness no less than $B/2$ and the
minimum lateness no greater than $-B/2$ , thus, the maximum absolute lateness no less than
$B/2$ .

We consider the positions of $J_{31}n+,$ $J_{3}n+2,$
$\ldots,$

$J4n$ . We call jobs $J_{1},$ $J_{2,\ldots,3n}J$ a-type and
jobs $J_{31}n+,$ $J_{32}n+,$

$\ldots,$
$J_{4}nb$-type. For each $1\leq i\leq n$ , a $b$-type job must be scheduled in the

$(4i-3)\mathrm{r}\mathrm{d}$ position from $(2B+1)(i-1)$ to $(2B+1)i-B$ . If $a$-type job $J_{a}$ is scheduled in the
$(4i-3)\mathrm{r}\mathrm{d}$ position, the lateness of the job in the $(4i-4)\mathrm{t}\mathrm{h}$ position is greater than $B/2$ , or the
lateness of $J_{a}$ is less $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{n}-B/2$ .

If $b$-type job $J_{b}$ in the $(4i-3)\mathrm{r}\mathrm{d}$ position is not scheduled from $(2B+1)(i-1)$ to $(2B+1)i-B$,
the lateness of the job in the $(4i-4)\mathrm{t}\mathrm{h}$ position is greater than $B/2$ , or the lateness of $J_{b}$ is less
$\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{n}-B/2$ .

The positions of $b$-type jobs divide the whole time interval where the machine runs into $n$

time intervals of the same length $B$ . This implies $A$ has a partition $A=A_{1}\cup A_{2}\cup\cdots\cup A_{n}$ such
that $\sum_{a_{j}\in A_{i}}a_{j}=B$ for $1\leq i\leq n$ , where the jobs from the $(4i-2)\mathrm{n}\mathrm{d}$ position to the $(4i)\mathrm{t}\mathrm{h}$

correspond to the elements in $A_{:}$ for each $1\leq i\leq n$ .
Next, we consider the problem $1||L_{\mathrm{a}\mathrm{b}_{\mathrm{S}}}^{H}$ . Notice that if the machine idle time is inserted, the

maximum lateness of $B/2$ cannot be attained, neither can the maximum absolute lateness. So,
even if we allow the machine to be idle, no optimal schedule has the machine idle time. This
enable us to apply a similar argument as for the nmit version of the problem. I

Next, we investigate the complexity of the problems of minimizing the range of lateness.
Hoogeveen [9] proved the following proposition.

Proposition 3 The problems
$1||\Delta L$ and
$1|nmit|\Delta L$

can be solved in polynomial time.

On the other hand, we have the following two theorems concerning Hall’s model.

Theorem 2 The problem $1|nmit|\Delta L^{H}$ is $NP$-hard in the strong sense.
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Proof. We transform 3-partition problem to the range of lateness problem with the constraint
nmit by constructing the same lateness problem as in the proof of Theorem 1.

Notice that all feasible schedules give the maximum lateness no less than $B/2$ and the min-
imum lateness no greater than $-B/2$ , thus, the range of lateness no less than $B$ . By a similar
argument as in the proof of Theorem 1, we can show that the problem above has a schedule
with the range $B$ of lateness (i.e., the maximum lateness $B/2$ and the minimum $\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{S}\mathrm{s}-B/2$)
iff $A$ has a desired partition. 1

Theorem 3 The problem $1||\Delta L^{H}$ is $NP$-hard in the strong sense.

Proof. We transform 3-partition problem to the range of lateness problem by constructing the
same lateness problem as in the proof of Theorem 1.

We now show that the problem above has a schedule with the range $B$ of lateness iff $A$ has a
desired partition. Suppose that $A$ has a partition. It is easy to check that the following schedule
gives the range $B$ of lateness: the order of the jobs $\mathrm{i},\mathrm{s}$ the same as in the proof of Theorem 1 and
there is no machine idle time in the schedule.

On the other hand, suppose that there exists a schedule with the range $B$ of lateness. Let $C$

be the sum of the intervals where the machine is idle. Then, all schedules give the the maximum
lateness no less than $B/2+C$ , and the minimum lateness no greater $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{n}-B/2+C$ , thus, the
range of lateness no less than $B$ . We calljobs $J_{1},$ $J_{2},$

$\ldots,$
$J_{3n}$ a-type and jobs $J_{3n+3n+}1,$$J2,$ $\ldots$ , $J_{4n}$

b-type.
We show the sum of the processing times of the jobs in these positions is exactly $B$ for all

$1\leq i\leq n$ . Suppose the sum of the processing times of the jobs in the $(4i-2)\mathrm{n}\mathrm{d}$ position to the
$(4i)\mathrm{t}\mathrm{h}$ is greater than $B$ for some $1\leq i\leq n$ . Then, the difference between the completion time
of the job in the $(4i-3)\mathrm{r}\mathrm{d}$ position and that in the $(4i)\mathrm{t}\mathrm{h}$ is greater than $B$ , which prevents
us from attaining the range $B$ of lateness. Thus, there are only $a$-type jobs in the $(4‘ i-2)\mathrm{n}\mathrm{d}$

position to the $(4i)\mathrm{t}\mathrm{h}$ .
On the other hand, suppose the sum of the processing times of the jobs in the $(4i-2)\mathrm{n}\mathrm{d}$

position to the $(4i)\mathrm{t}\mathrm{h}$ is less than $B$ for some $1\leq i\leq n$ . Then, that in the $(4j-2)\mathrm{n}\mathrm{d}$ position
to the $(4j)\mathrm{t}\mathrm{h}$ is greater than $B$ for some $1\leq j\leq n,$ $j\neq i$ . This implies $A$ has a partition
$A=A_{1}\cup A_{2}\cup\cdots\cup A_{n}$ such that $\sum_{a_{j}\in A:^{a_{j}}}=B$ for $1\leq i\leq n$ , where the jobs from the $(4i-2)_{\mathrm{S}}\mathrm{t}$

position to the $(4i)\mathrm{r}\mathrm{d}$ correspond to the elements in $A_{i}$ for each $1\leq i\leq n$ . I

3 Approximation algorithms

In this section, we present two simple approximation algorithms for the problems $1||L_{\mathrm{a}\mathrm{b}\mathrm{s}}H$ ,
$1|nmit|L_{\mathrm{a}\mathrm{b}\mathrm{s}}^{H},$ $1||\Delta L^{H}$ , and $1|nmit|\Delta L^{H}$ . The algorithms are based on the first-fit strategy.

First, we introduce Algorithm A which works for the problems of minimizing $L_{\mathrm{a}}^{H}.$,bs and
minimizing $\Delta L^{H}$ without allowing for the machine idle time.

The algorithm returns the resulting schedule $A$ as a permutation, i.e., $A$ returns the index
$A(i)$ of the job in the $i\mathrm{t}\mathrm{h}$ position for each $i,$ $1\leq i\leq n$ .

Algorithm $\mathrm{A}(p_{1},p_{2}, \ldots,pn’\delta 1, \delta_{2,\ldots,n}\delta)$

$\delta_{0}arrow 0$

for $i=1$ to $n$ do
$a_{i}=\delta i-\delta i-1$

$Iarrow\{1,2, \ldots,n\}$

$Jarrow\{1,2, \ldots,n\}$
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while $I\neq\emptyset$ do
Choose $i$ such that $a_{i}= \min_{k\in I}a_{k}$

Choose $j$ such that $p_{j}= \min_{k\in Jp_{k}}$

$A(i)arrow j$

$Iarrow I\backslash \{i\}$

$Jarrow J\backslash \{j\}$

od
Output$(A)$

end

The time complexity of Algorithm A is $O(n\log n)$ , if we use a fast sorting scheme. First,
we show the following lemma which plays an important role in the proofs of establishing the
performance guarantees.

Lemma 1 For each schedule $S$ , we have

$\max_{i}\{p_{A(i)i}-a\}\leq\max_{i}\{ps(i)-a_{i}\}$

and
$\min_{i}\mathrm{f}^{p_{A(i})}-a_{i}\}\geq\min_{i}\{ps(i)-ai\}$ .

Proof. We only verify the validity of the first inequality. The proof of the second one is
analogous. Without loss of generality, we assume that $p_{1}\leq p_{2}\leq\cdots\leq p_{n}$ . The proof is by
contradiction. Suppose that there exists a schedule $S$ such that $p_{A\langle j)}-a_{j}>ps(k)-ak$ , where
$j$ and $k$ are such that $p_{A(j)j}-a= \max_{i}\{pA(i)-ai\}$ and $p_{S(}k$ ) $-ak= \max_{i}\{ps(i)-ai\}$ .

Since $p_{A(j)j}-a>p_{S(}k$) $-ak\geq p_{S(j)j}-a$ , we have $p_{A(j)}>p_{S(j)}$ , consequently, $A(j)>S(j)$ .
There are at most $(A(j)-2)i’ \mathrm{s}$ such that $i\neq j$ and $p_{S(i}$ ) $<p_{A(j)}$ . But, there are at least
$(A(j)-1)i’ \mathrm{s}$ such that $i\neq j$ and $a_{i}\leq a_{j}$ . Therefore, there exists $i,$ $i\neq j$ such that $a_{i}\leq a_{j}$ and
$p_{S(_{9})}\geq p_{A(j)}$ . Hence,

$p_{S(k)k}-a$ $\geq$ $p_{S(i)i}-a$

$=$ $ps(i)-aj+aj-a_{i}$
$\geq$ $p_{A(j)}-a_{jj}+a-a_{i}$

$\geq$ $p_{A(j)j}-a$ .

This contradicts the assumption. I

Then, we analyze the performance of the algorithm concerning the problem $1|nmit|L^{H}\mathrm{a}\mathrm{b}\mathrm{s}$ .
Let OPT be an optimal schedule for this problem. We obtain the following bound on the
performance of Algorithm A.

Theorem 4

$L_{\mathrm{a}\mathrm{b}\mathrm{s}}^{H}(A)\leq n\cross L_{\mathrm{a}\mathrm{b}\mathrm{s}}^{H}$ (OPT).

Proof. By Lemma 1, we have

$L_{\mathrm{a}\mathrm{b}\mathrm{s}}^{H}(oP\tau)$ $=$ $\max${ $L_{\max}^{H}(OP\tau),$ $-LH\mathrm{m}\mathrm{i}\mathrm{n}$ (OPT)}

$\geq$ $\frac{1}{2}\cross$ ( $L_{\max}^{HH}(OPT)-L_{\min}$ (OPT))

$\geq$ $\frac{1}{2}\cross\max_{i}|L^{H}-OPT(i)L_{o}H(P\tau i-1)|$
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$=$ $\frac{1}{2}\cross\max_{i}|CoP\tau(i)-\delta i-(C_{OPT(}i-1)-\delta i-1)|$

$=$ $\frac{1}{2}\cross\max_{i}|poPT(i)-a_{i}|$

$\geq$ $\frac{1}{2}\cross\max_{i}|pA(i)-ai|$ .

Let $I=\{1,2, \ldots,n\}$ , and let $J$ and $K$ be the set of the indices such that $p_{A(i)}\geq a_{i}$ for all
$i\in J$ and $p_{A(i)}<a_{i}$ for all $i\in K$ , respectively. From the definition of $L_{\mathrm{a}\mathrm{b}\mathrm{s}}^{H}$ and $a_{i}$ , it follows
that ’

$L_{\mathrm{a}\mathrm{b}\mathrm{s}}^{H}(A)$ $=$ $\max\{L_{\max}^{H}(A), -LH\mathrm{m}\mathrm{i}\mathrm{n}(A)\}$

$\leq$

$\max\{\sum_{Ji\in}(p_{A}(i)-ai), -iK\sum_{\in}(p_{A(}i)-a_{i})\}$.

First, we assume that $|J|=n/2$ . Then we have

$L_{\mathrm{a}\mathrm{b}\mathrm{s}}^{H}(A)$ $\leq$ $\max\{|J|\cross\max\{p_{A}i\in J(i)-a_{i}\}, -|K|\cross\min_{i\in K}\{p_{A(}i)-ai\}\}$

$\leq$ $\max\{\frac{n}{2}\cross\max_{i}\{p_{A()}i-a_{i}\}, -\frac{n}{2}\cross\min_{i}\{pA(i)-ai\}\}$

$\leq$ $\frac{n}{2}\cross\max_{i}|p_{A(i})-ai\{$ .

Next, we assume that $|J|\leq(n-1)/2$ . Then we have

$L_{\mathrm{a}\mathrm{b}\mathrm{s}}^{H}(A)$ $\leq$

$\max\{\sum_{Ji\in}(pA(i)-ai), -\sum_{Ji\in I\backslash }(pA(i)-a_{i})\}$

$=$
$\max\{\sum_{i\in J}(p_{A}(i)-ai), \sum_{\in iJ}(pA(i)-ai)-\sum_{i\in I}(pA(i)-a_{i})\}$

$\leq$

$\sum_{i\in f}(p_{A}(i)-ai)+|\sum_{\in iI}(pA(i)-a_{i})|$

$\leq$

$|J| \cross\max\{p_{A}i\in J(i)-a_{i}\}+|C_{A(n)}-\delta_{n}|$

$\leq$ $\frac{n-1}{2}\cross\max_{i}|p_{A(}i)-a_{i}|+|L_{A(n}^{H}|)$ .

Finally, we assume that $|J|\geq(n+1)/2$ . Then we have

$L_{\mathrm{a}\mathrm{b}\mathrm{s}}^{H}(A)$ $=$
$\max\{\sum_{i\in I\backslash K}(p_{A}(i)-ai), -iK\sum_{\in}(p_{A(}i)-a_{i})\}$

$=$
$\max\{\sum_{i\in I}(p_{A}(i)-ai)-\sum_{Ki\in}(pA.(i)-ai), -\sum_{i\in K}(p_{A()}i-a_{i})\}$

$\leq$

$| \sum_{i\in I}(pA(i)-ai)|-\sum_{i\in K}(pA(i)-a_{i})$

$\leq$
$|C_{A(n)}- \delta n|-|K|\cross\min_{i\in K}\{p_{A(}i)-ai\}$

$\leq$ $|L_{A(n)}^{H}|+ \frac{n-1}{2}\cross\max_{i}|p_{A(}i)-ai|$ .

To conclude the proof, it is sufficient to observe that

$|L_{A(n)}^{H}|=|L_{OpT}^{H}|(n)\leq L_{\mathrm{a}\mathrm{b}\mathrm{s}}^{H}$(OPT).

1
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Theorem 4 provides the performance ratio $n$ between the optimal value of $L_{abs}^{H}$ and the value
induced by a schedule found by Algorithm A. The following theorem says that this ratio cannot
be improved.

Theorem 5 There $exi\mathit{8}tS$ an instance satisfying

$L_{\mathrm{a}\mathrm{b}\mathrm{s}}^{H}(A)=n\cross L_{\mathrm{a}\mathrm{b}\mathrm{s}}^{H}$(OPT).

Proof. Let $n$ be an even number and let $m=n/2$ . Consider an instance of the absolute lateness
problem with

1. $2m$ jobs $J_{1},$ $J_{2},$
$\ldots,$

$J_{2m}$ whose processing times $p_{1},p_{2},$ $\ldots,p_{2m}$ are

$p_{1}=2$ ,
$p_{i}=1$ for $2\leq i\leq m$ ,
$p_{i}=5$ for $m+1\leq i\leq 2m$ ,

2. Hall’s due dates $\delta_{1},$ $\delta_{2,\ldots,2m}\delta$ given by

$\delta_{i}=3i$ for $1\leq i\leq 2m$ .

For the instance above, it follows that $a_{i}=3$ for all $1\leq i\leq 2m$ . So, Algorithm A has the
possibility to give the schedule

$(J_{m+1}, J_{m}+2, \ldots, J2m’ J1, J2, \ldots, Jm)$ ,

while an optimal schedule is

$(J_{1}, J_{m+1}, J_{2}, Jm+2, \ldots, J_{m}, J2m)$ .

The value of $L_{\mathrm{a}\mathrm{b}\mathrm{s}}^{H}$ of the schedule $\mathrm{f}\mathrm{o}\mathrm{u}\mathrm{n}_{\vee}\mathrm{d}$ by Algorithm A is $2m$ , while the optimal value of $L_{\mathrm{a}\mathrm{b}\mathrm{s}}^{H}$

is 1. I

Next, we analyze the performance of the algorithm concerning the problem $1|nmit|\Delta L^{H}$ .
Now, let OPT be an optimal schedule for this problem. We obtain the following bound on the
performance of Algorithm A.

Theorem 6

$\Delta L^{H}(A)\leq\frac{n+1}{2}\cross\Delta L^{H}$ (OPT).

Theorem 6 provides the performance ratio $(n+1)/2$ between the optimal value of $\Delta L^{H}$ and
the value induced by a schedule found by Algorithm A. The following theorem says that this
ratio cannot be improved.

Theorem 7 There $exi\mathit{8}tS$ an instance satisfying

$\Delta L^{H}(A)=\frac{n+1}{2}\cross\Delta L^{H}$ (OPT).

Next, we present an approximation algorithm for the problems $1||L_{\mathrm{a}\mathrm{b}\mathrm{s}}H$ and $1||\Delta L^{H}$ . To
describe a schedule $S’$ , which may involve inserted idle times, we use an ordered pair $S’=$

$(s_{1}, s_{2})$ , where $S_{1}$ is a permutation of jobs and $S_{2}$ is a function whose value $S_{2}(i)$ gives the idle
time inserted between jobs $Js_{1}(i-1)$ and $Js_{1}(i)$ .
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Algorithm $\mathrm{A}’(p1,p2, \ldots,p_{n},\delta 1, \delta_{2,\ldots,n}\delta)$
$.$.

$A_{1}$ –Algorithm $\mathrm{A}(p_{1},p_{2}, \ldots ,p_{n},\delta_{1},\delta_{2}, \ldots, \delta a_{n})$ .
$c_{0}arrow 0$

for $i=1$ to $n$ do
$c_{i}arrow c_{i-1}+p_{A\langle i)}1$

$|\mathrm{f}c_{i}<\delta_{i}$ then
$A_{2}(i)arrow\delta_{i}-c_{i}$

$c_{i}arrow\delta_{i}$

neh.t else
$A_{2}(i)arrow 0$

od
Output$((A_{1},A2))$

end

The time complexity of Algorithm $\mathrm{A}’$ is $O(n\log n)$ , if we use a fast sorting scheme. First, we
introduce the following lemma which plays an important role in the proofs of establishing the
performance guarantees. This lemma is an immediate consequence of Lemma 1.

Lemma 2 For each schedule $S’=(s_{1}, s_{2})$ , and for each number $b$ , we have

$\max_{i}\{p_{A_{1}(}i)-ai+b\}\leq\max_{i}\{p_{S_{1(i)i}}-a+b\}$

and
$\min_{i}\{p_{A_{1}(}i)-ai+b\}\geq\min_{i}\{p_{S_{1}(}i)-ai+b\}$.

Then, we analyze the performance of the algorithm concerning the problem $1||L_{\mathrm{a}\mathrm{b}_{8}}^{H}$ . Let
$OPT^{/}=(OP\tau_{1}, OP\tau_{2})$ be an optimal $\mathrm{s}’ \mathrm{c}$hedule for this problem. We obtain the following
bound on the performance of Algorithm $\mathrm{A}’$ .
Theorem 8

$L_{\mathrm{a}\mathrm{b}\mathrm{s}}^{H}(A’)\leq n\cross L_{\mathrm{a}\mathrm{b}\mathrm{s}}^{H}(OP\tau’)$ .

Theorem 8 provides $\mathrm{t}\mathrm{h}.\mathrm{e}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{a}\mathrm{n}\mathrm{c}\mathrm{e},\mathrm{r}\mathrm{a}.\mathrm{t}-|\mathrm{i}\mathrm{o}n$ . The $\mathrm{f}\mathrm{o}\mathrm{l}\mathrm{l}\mathrm{o}\mathrm{W}\mathrm{i}\mathrm{n}\mathrm{g}$

.

$\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}..\mathrm{m}\mathrm{s}\mathrm{a}\mathrm{y}\mathrm{s}\backslash$ that $\mathrm{t}\mathrm{h}.\mathrm{i}\mathrm{s}$ ratio
cannot be improved.

Theorem 9 There exists an instance satisfying

$L_{\mathrm{a}\mathrm{b}\mathrm{s}}^{H/}(A)=n\cross L_{\mathrm{a}\mathrm{b}\mathrm{s}}^{H}$ (OPT’).

Next, we analyze the performance of the algorithm concerning the problem $1||\Delta L^{H}$ . Now,
let $OPT’=$ ($OPT_{1}$ , OPT2) be an optimal schedule for this problen. We obtain the following
bound on the performance of Algorithm $\mathrm{A}’$ . ..

Theorem 10

$\Delta L^{H}(A’)\leq\frac{n+1}{2}\cross\Delta L^{H}$ (OPT’).

Theorem 10 provides the performance ratio $(n+1)/2$ between the optimal value of $\Delta L^{H}$

and the value induced by a schedule found by Algorithm $\mathrm{A}’$ . The following theorem says that
this ratio cannot be improved.

Theorem 11 There exist8 an instance satisfying

$\Delta L^{H}(A’)=\frac{n+1}{2}\cross\Delta L^{H}(OPT’)$ .
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