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Abstract

Crossover events for a linear programming problem were introduced by Vavasis

and Ye and provide important insight into the behavior of the path of centers. The

complexity of a layered-step interior-point algorithm presented by them depends on

the number of disjoint crossover events and the coefficient matrix $A$ , but not on $b$

and $c$ . In this short note, we present a linear programming instance with more than

$(1/8)n^{2}$ crossover events.
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1 Introduction

Interior-point methods for linear programming have been developed tremendously since

the presentation of Karmarkar [1]. Recently Vavasis and Ye [2] proposed a layered-step

primal-dual interior-point algorithm, whose number of operations has an upper bound that

depends only on the coefficient matrix $A$ and not on $b$ and $c$ .

Crossover events for a linear programming problem were introduced by Vavasis and Ye

[2] and provide important insight into the behavior of the path of centers. The number of

operations of the layered-step interior-point algorithm depends on the number of disjoint

crossover events. Although the number depends on $b$ and $c$ , they prove that it is bounded

by $(1/2)n(n-1)$ . The question of whether there could be more than $n$ crossover events was

left open in [2]. If one could prove that the number is bounded by $O(n)$ , the complexity of

the layered-step interior-point algorithm could be reduced by a factor of $n$ . In this short

note, we present a linear programming instance with more than $(1/8)n^{2}$ disjoint crossover

events. We believe that the instance helps much for understanding the behavior of the path

of centers.

2 Crossover events

Let $n\geq m>0$ be integers. For an $m\mathrm{x}n$ matrix $A$ and vectors $b\in R^{m}$ and $c\in R^{n}$ , an

instance $LP(A, b, c)$ denotes a primal-dual pair of linear programming problems

minimize $c^{T}x$

subject to $Ax=b$, $x\geq 0$

and
maximize $b^{T}y$

subject to $A^{T}y+s=c$ , $s\geq 0$ .
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We assume that the primal-dual pair has feasible interior point $(x,y, s)$ (i.e., $x>0$ and

$s>0)$ . For each $\mu>0$ , we denote by $(x(\mu), y(\mu),$ $s(\mu))$ the solution of the system

$Ax=b$, $x\geq 0$ ,

$A^{T}y+s=c$ , $s\geq 0$ ,

$Xs=\mu e$ ,

where $e$ is the vector of l’s and $X=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(x)$ is the diagonal matrix such that $Xe=x$ . The

solution is called a center and the set of centers $P=\{(x(\mu), y(\mu), S(\mu)) : \mu>0\}$ is called

a path of centers.

In this note, we define crossover events for the path of centers for simplicity and clari-

fication of the definition, although Vavasis and Ye [2] defined them for a neighborhood of

the path. Moreover their definition depends on a point generated by an algorithm, while

ours depends only on the instance $LP(A, b, c)$ .

For a given $g>10$ and $(x, y, \mathit{8})\in P$ , we partition the index set $\{1, 2, \ldots, n\}$ into layers

$J_{1},$ $J_{2},$
$\ldots,$

$J_{p}$ as follows: Let $\pi$ be a permutation that sorts components of $s$ in nondecreasing

order:

$s_{\pi(1)}\leq s_{\pi(2)}\leq\cdots\leq s_{\pi(n)}$ .

Let $J_{1}=\{\pi(1), \ldots, \pi(i)\}$ be the set of successive indices of $\pi$ such that the ratio-gap

$s_{\pi(1)}j+/s_{\pi(j)}$ is less than or equal to $g$ for each $j=1,$ $\cdots,$ $i-1$ but $s_{\pi \mathrm{t}^{i+}1)}/s_{\pi(i)}$ is greater

than $g$ . Then put $\pi(i+1),$ $\pi(i+2),$ $\ldots$ in $J_{2}$ , until another ratio-gap greater than $g$ is

encountered, and so on. Let $J_{p}$ be the last set which contains $\pi(n)$ .

For two indices $i,j\in\{1,2, \ldots , n\}$ , we denote

$i\prec j$ at $(x, y, s)$

if there exists $k\in\{1,2, \ldots,p-1\}$ such that $i\in J_{1}\cup\cdots\cup J_{k}$ and $j\in J_{k+1}\cup\cdots\cup J_{p}$ . We
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also denote

$i\preceq j$ at $(x,y, s)$

if there exists $k\in\{1,2, \ldots,p\}$ such that $i\in J_{1}\cup\cdots\cup J_{k}$ and $j\in J_{k}\cup\cdots\cup J_{p}$ .

Definition 1 For an instance $LP(A, b, c)$ and a constant $g>10$ , we say that the triple

$(\mu, i,j)$ defines $a$ crossover event, if $\{i,j\}\subseteq\{1,2, \ldots, n\}$ ,

$i\preceq j$ at the point $(x(\mu), y(\mu),$ $s(\mu))\in P$,

there $exist\mathit{8}$ a positive $\mu’<\mu$ such that

$j\prec i$ at any $(x(\mu’)’, y(\mu’’),$ $\mathit{8}(\mu’)’)\in P$ where $\mu’’\in(0, \mu’]$ , (1)

and $s(\mu’’)_{j}arrow 0$ as $\mu’’arrow 0$ .

The definition above is slightly different from the one given in Vavasis and Ye [2], but

the essential meaning is the same. It is not hard to see that whenever our crossover event

occurs, theirs does too. So our definition is sufficient to give a lower bound for their

crossover events.

We say that two crossover events $(\mu_{1}, i_{1},j_{1})$ and $(\mu_{2}, i_{2},j_{2})$ with $\mu_{1}>\mu_{2}$ are disjoint if

the value $\mu_{1}’$ that is required for the first one satisfies $\mu_{1}’\geq\mu_{2}$ . Vavasis and Ye proved that

the number of disjoint crossover events is bounded by $n(n-1)/2$ .

3 The linear programming instance

Let $m$ be a positive integer and let $n=2m$. We denote the $m\cross m$ identity matrix by $I$ .
Let $\epsilon>0$ be a sufficiently small real number. Then we define an instance $LP(A, b, c)$ by

$A=(I, I),$ $b=(\epsilon, \epsilon,., \epsilon^{m})2..T,$ $c=(0, \ldots, 0, \epsilon^{m}, \epsilon^{2m}, \ldots, \epsilon^{m^{2}})^{T}$,
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Table 1: Approximate values at a center

where the number of $0’ \mathrm{s}$ in $c$ is $m$ . Then for any $\mu>0$ , the center $(x(\mu), y(\mu),$ $s(\mu))$ is the

solution of the system

$x_{i}+x_{i+m}=\epsilon^{i}$ for $i=1,2,$ $\ldots,$
$m$

$y_{i}+s_{i}=0$ for $i=1,2,$ $\ldots,$
$m$

$y_{i}+s_{i+m}=\epsilon^{im}$ for $i=1,2,$ $\ldots$ , $m$

$x_{i}s_{i}=\mu$ for $i=1,2,$ $\ldots$ , $2m$

When the value of $\mu$ decreases from 1 to $0$ , approximate values of $x_{i},$ $x_{i+m},$ $s_{i}$ and $s_{i+m}$

at a center are shown in Table 1 for each $i=1,2,$ $\ldots,$
$m$ , where $\lambda_{j}(j=1,2,3,4)$ are

real numbers between 1 and 3. From Table 1, we can compute the layers at the centers

$(x(\mu), y(\mu),$ $S(\mu))$ as follows: If $\mu\in[\epsilon^{m+1},1]$ then $p=m$ and

$J_{1}=\{1, m+1\},$ $J_{2}=\{2, m+2\},$ $\cdots,$ $J_{m}=\{m, 2m\}$ ,

if $\mu\in[10g\epsilon^{m+2}, (10g)^{-}1m+1\epsilon]$ then $p=m+1$ and

$J_{1}=\{1\},$ $J_{2}=\{m+1\},$ $J_{3}=\{2, m+2\},$ $\cdots,$ $Jm+1=\{m, 2m\}$ ,

if $\mu=\epsilon^{m+2}$ then $p=m$ and

$J_{1}=\{1\},$ $J_{2}=\{2, m+1, m+2\},$ $\cdots,$ $Jm=\{m, 2m\}$ ,
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and so on. If $\mu=\epsilon^{2m+1}$ then $p=m+1$ and

$J_{1}=\{1\},$ $J_{2}=\{2, m+2\},$ $\cdots,$ $J=m\{m, 2m\},$ $J_{m+}1=\{m+1\}$ .

It is easy to see that if $j\in\{1,2, \ldots, m\}$ then

$j\prec m+1$ at $(x(\mu’’), y(\mu\prime J),$ $\mathit{8}(\mu)\prime J)\in P$ where $\mu’’\in(0, \epsilon^{m+j+1}]$

and $s(\mu’’)_{j}arrow 0$ as $\mu’’arrow 0$ . Hence while $\mu$ decreases from $\epsilon^{m+1}$ to $\epsilon^{2m+1}$ , there are $m$

disjoint crossover events $(\epsilon^{m+1}, m+1,1)$ with $\mu’=\epsilon^{m+2},$ $(\epsilon^{m+2}, m+1,2)$ with $\mu’=\epsilon^{m+3}$ ,

$\ldots,$
$(\epsilon^{2m}, m+1, m)$ with $\mu’=\epsilon^{2m+1}$ . Similarly, while $\mu$ decreases from $\epsilon^{2(m+1)}$ to $\epsilon^{3m+2}$ ,

there are $m-1$ crossover events, and so on. As a total, the number of disjoint crossover

events is

$m+(m-1)+\cdots+1=(1/2)m(m+1)\geq(1/8)n^{2}$ .

4 Concluding remarks

We have presented a linear programming instance with more than $(1/8)n^{2}$ crossover events.

This result indicates that the path of centers consists of more than $(1/8)n^{2}$ parts each of

which defines a partition of $\{$ 1, 2, $\ldots$ , $n\}$ as layers. As discussed in Vavasis and Ye [2],

we can also see that the path consists of almost straight parts and curved parts, and the

number of such parts is bounded by twice of the number of crossover events. From Table 1,

we can observe that the projection { $(x_{iim},$$x+,$ s , $s_{im}+)$ : $(x,$ $y,$ $s)\in P$ } of the path of centers

consists of two almost straight parts and one curve part for $\mu$ around $\epsilon^{i(m+1)}$ . Thus the path

of centers appears to consist of $(n/2)+1$ straight parts and $(n/2)$ curved parts, which are

much less than the number of crossover events. So if we could trace each almost straight

part of the path in a constant number of steps, it would yield a very efficient algorithm for

linear programming.
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