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1. INTRODUCTION

The upper half-space $H=H_{n}$ is the open subset of $\mathbb{R}^{n}$ given by

$H=\{(z^{J}, \mathcal{Z}n)\in \mathbb{R}^{n} : Z’\in \mathbb{R}n-1,>Zn0\}$ ,

where we have written a typical point $z\in \mathbb{R}^{n}$ as $z–(Z’, Z_{n})$ . For $1\leq p<\infty$ , we
will write $b^{p}$ for the harmonic Bergman space consisting of all harmonic functions
$u$ on $H$ such that

$||u||_{p}= \{\int_{H}|u(w)|^{p}dw\}^{1/p}<\infty$ .

Being closed subspaces of $L^{p}=L^{p}(H)$ , the spaces $b^{\mathrm{p}}$ are Banach spaces. There is a
reproducing kernel $R(z, w)$ such that

$u(z)= \int_{H}u(w)R(z, w)dw$

for all $u\in b^{\mathrm{P}}$ and $z\in H$ . The explicit formula for $R(z, w)$ is given by (see [3])

$R(z, w)= \frac{4}{n\sigma_{n}}\frac{n(Z_{n}+w_{n})^{2}-|_{Z}-\overline{w}|2}{|z-\overline{w}|n+2}$ .

Here, we use the $\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}\overline{w}=(w’, -wn)$ for $w\in H$ and $\sigma_{n}$ denotes the volume of
the unit ball of $\mathbb{R}^{n}$ . The kernel $R(z, w)$ has the following properties:

$\bullet R(z, w)=R(w, z)$

$\bullet$ $R(z, \cdot)$ is a bounded harmonic function on $H$ .
$\bullet R(z, \cdot)\in b^{p}$ iff $1<p<\infty$ .

Associated with the kernel $R(z, w)$ is the integral operator

$Rf(z)= \int_{H}f(w)R(z, w)dw$

which takes $L^{p}$-functions into harmonic functions on $H$ . In fact, $R:L^{2}arrow b^{2}$ is the
Hilbert space orthogonal projection and $R:L^{p}arrow b^{p}$ is a bounded projection for
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$1<p<\infty$ . See [9]. Ramey and Yi [9] have also shown that there are many other
nonorthogonal bounded projections. To be more explicit, put

$R_{k}(z, w)= \frac{(-2)^{k}}{k!}w_{n}D_{w}kkR(nz, w)$ $(k=0,1,2, \cdots)$

where $D_{w_{n}}$ denotes the differentiation with respect to the last component of $w$ . Note
that $R_{0}(z, w)=R(z, w)$ . This kernel $R_{k}(z, w)$ also has the following reproducing
property as does $R(z, w)$ : If $1\leq p<\infty$ and $u\in b^{p}$ , then

$u(z)= \int_{H}u(w)R_{k}(z, w)dw$ (1.1)

for every $z\in H$ . Associated with the kernel $R_{k}(z, w)$ is the integral operator $R_{k}$

defined by the formula

$R_{k}f(z)= \int_{H}f(w)R_{k}(z, w)dw$

whenever the above integral makes sense. For $k\geq 1$ , the kernel $R_{k}(z, w)$ behaves
better than the kernel $R(z, w)$ in the sense that $R_{k}$ : $L^{p}arrow b^{\mathrm{p}}$ is a bounded projection
for every $1\leq p<\infty$ (see [9]).

The purpose of this lecture is to announce recent joint work [5] with Yi concerning
the following properties of $b^{p}$-functions:
1. The property of $b^{p}$-functions that can be represented as sums based on reproduc-
ing kernels along a sequence with weighted $l^{p}$-coefficients, which can be viewed as
discrete versions of the $\mathrm{r}\mathrm{e}_{1^{)\mathrm{r}\mathrm{o}}}\mathrm{d}\mathrm{u}\mathrm{C}\mathrm{i}\mathrm{n}\mathrm{g}$ formula (1.1).
2. The “dual” property of the above $b^{p}$-representation property. This property is
the interpolation perperty of $b^{p}$-functions.
3. The limiting cases of the above two properties of $b^{p}$-functions. These are the
representation and interpolation properties of harmonic (little) Bloch functions.

2. SOME GEOMETRY

In the hyperbolic geometry of $H$ , the arclength element is $|d\vec{x}|/x_{n}$ and geodesics
are (i) vertical lines and (ii) semi-circles centered on and orthogonal to $\mathbb{R}^{n-1}$ . Thus,
one can verify that the hyperbolic distance between two points $z,$ $w\in H$ is

$\log\frac{1+\rho(_{Z},w)}{1-\rho(z,w)}$

where
$\rho(_{Z,w})=\frac{|z-w|}{|z-\overline{w}|}$ .

It turns out that this $\rho$ itself is a distance function on $H$ , which we shall call the
pseudohyperbolic distance. See [7] for the case of the upper half-plane. Note that $\rho$

is horizontal translation invariant and dilation invariant. In particular,

$\rho(z, w)=\rho(\emptyset a(Z),$ $\phi a(w))$ $(z, w\in H)$ (2.1)
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where $\phi_{a}(a\in H)$ denotes the function defined by

$\phi_{a}(z)=(\frac{z’-a’}{a_{n}},$ $\frac{z_{n}}{a_{n}})$

for $z=(Z’, Z_{n})\in H$ .
For $z\in H$ and $0<\delta<1$ , let $E_{\delta}(z)$ denote the pseudohyperbolic ball centered

at $z$ with radius $\delta$ . Note that $\phi_{\mathcal{Z}}(E_{\delta(z))}=E_{\delta}(z_{0})$ by the invariance property (2.1).
Here and later, $z_{0}=(0,1)\in H$ is a fixed reference point. Also, a straightfoward
calculation shows that

$E_{\delta}(z)=B((Z’,$ $\frac{1+\delta^{2}}{1-\delta^{2}}\mathcal{Z}_{n)},$ $\frac{2\delta}{1-\delta^{2}}z_{n})$

so that $B(z, \delta z_{n})\subset E_{\delta}(z)\subset B(z, 2\delta(1-\delta)^{-}1Z_{n})$ where $B(z, r)$ denotes the euclidean
ball centered at $z$ with radius $r$ .

Let $\{z_{m}\}$ be a sequence in $H$ and $0<\delta<\cdot 1$ . We say that $\{z_{m}\}$ is $\delta$-separated
if the balls $E_{\delta}(z_{m})$ are pairwise disjoint or simply say that $\{z_{m}\}$ is separated if it
is $\delta$-separated for some $\delta$ . Pseudohyperbolic balls (with the same radii) centered
along a separated sequence cannot intersect too often in the following sense.

Lemma 2.1. Let $\alpha>0$ and assume $0<(1+\alpha)\eta<1$ . If $\{z_{m}\}$ is an $\eta$ -separated
sequence, then there is a constant $M=M(n, \alpha, \eta)$ such that more than $M$ of the
balls $E_{\alpha\eta}(z_{m})$ contain no point in common. ...

Also, we say that $\{z_{m}\}$ is a $\delta$-lattice if it is $\delta/2$-separated and $H=\cup Es(z_{m})$ . Note
that any “maximal” $\delta/2$-separated sequence is a $\delta$-lattice. The following covering
lemma is the main tool in proving our results.

Lemma 2.2. Fix $a$ 1/2-lattice $\{a_{m}\}$ and let $0<\delta<1/8$ . If $\{z_{m}\}$ is a $\delta$-lattice,
then we can find a rearrangement $\{z_{ij}|i=1,2, \ldots,j=1,2, \ldots, N_{i}\}$ of $\{z_{m}\}$ and a
pairwise disjoint covering $\{D_{ij}\}$ of $H$ with the following properties:

$(a)$ $E_{\delta/2}(z_{i}j)\subset D_{ij}\subset E_{\delta}(_{Z_{ij}})$

$(b)$ $E_{1/4}(a_{i}) \subset\bigcup_{j=1}^{N}Dij\subset E_{5/8}(a_{i})$

$(c)$ $z_{ij}\in E_{1/2}(a_{i})$

for all $\dot{i}=1,2,$ $\cdots$ , and $j=1,2,$ $\ldots,$
$N_{i}$ .

Note. By property $(c)$ of the above lemma and Lemma 2.1, the sequnce $N_{i}$ cannot
grow arbitrarily. In fact, we have $N_{i}=O(\delta^{-n})$ .
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3. REPRESENTING SEQUENCE

For a motivation, consider a sequence $\{z_{m}\}$ of distinct points in $H$ with $z_{m}arrow$

$\partial H\cup\{\infty\}$ and pick a pairwise disjoint covering $\{E_{m}\}$ of $H$ such that $z_{m}\in E_{m}$ . For
an integer $k\geq 0$ and $u\in b^{p}$ , we see from the reproducing property (1.1)

$u(z)= \sum\int_{E_{m}}u(w)Rk(z, w)dw$ .

Let $q$ be the conjugate exponent of $p$ . Then, the series

$\sum u(_{\sim m}^{\gamma})|Em|^{1/}p|E_{m}|^{1/_{R_{k(Z_{m})}}}qz$, (3.1)

can be considered as an approximating Riemann sum of the above integral. Here,
we use the notation $|E|$ for the volume of a Borel set $E\subset H$ . Note that the sum

$\sum|u(Z_{m})|p|E_{m}|$

can be viewed as an approximating Riemann sum of $||u||_{p}^{p}$ .
Let $\{z_{m}\}$ be a sequence in $H$ . Let $1\leq p<\infty$ and $k\geq 0$ be an integer. For

$(\lambda_{n},)\in\ell^{p}$ , let $Q_{k}(\lambda_{m})$ denote the series defined by

$Q_{k}( \lambda_{m})(z)=\sum\lambda_{m^{Z_{mn}^{n}}}\mathrm{t}1-1/p)Rk(Z, Z_{m})$ $(z\in H)$ . (3.2)

Here, we restrict $k\geq 1$ for $p=1$ . For a sequence $\{z_{m}\}$ good enough, $Q_{k}(\lambda_{m})$ will
be harnlonic on $H$ . We say that $\{z_{m}\}$ is a $b^{p}$-representing sequence of order $k$ if
$Q_{k}(l^{p})=b^{p}$ .

Of course, the motivation for the series (3.2) is the approximating Riemann sum
(3.1) where $E_{m}$ is pretended to be the ball $E_{\delta}(z_{m})$ for some fixed $\delta$ . However, it
might not be clear from the very definition that the series (3.2) defines a $b^{\mathrm{p}}$-function
under the separation condition. The following proposition makes this clear.

Proposition 3.1. Let 1 $\leq p<\infty$ and $k\geq 0$ be an integer. Suppose $\{z_{m}\}$ is
a $\delta$-separated sequence. Let $Q_{k}$ be the associated operator as in (3.2). Then, for
$1<p<\infty,$ $Q_{k}$ : $\ell^{p}arrow b^{p}$ is bounded for each $k\geq 0$ . Also, $Q_{k}$ : $\ell^{1}arrow b^{1}$ is bounded
for each $k\geq 1$ .

We llow state our $b^{p}$-representation result under the lattice density condition. We
first consider the case $1<p<\infty$ .
Theorem 3.2. Let $1<p<\infty$ and let $k\geq 0$ be an integer. Then there exists a
positive number $\delta_{0}$ with the following property: Let $\{z_{m}\}$ be a $\delta$-lattice with $\delta<\delta_{0}$

and let $Q_{k}$ : $l^{p}arrow b^{p}$ be the associated linear operator as in (3.2). Then there is
a bounded linear operator $P_{k}$ : $b^{p}arrow l^{p}$ such that $Q_{k}P_{k}$ is the identity on $b^{p}$ . In
particular; $\{z_{m}\}$ is a $b^{p}$ -representing sequence of order $k$ .

The $b^{1}$ -representation theorem takes exactly the same form as the above $b^{p_{-}}$

representation theorem except for the restriction $k\geq 1$ . This restriction is caused
by the fact that the operator $R$ is not $L^{1}$-bounded.
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Theorem 3.3. Let $k\geq 1$ be an integer. Then there exists a positive number $\delta_{0}$ with
the following property: Let $\{z_{m}\}$ be a $\delta$-lattice with $\delta<\delta_{0}$ and let $Q_{k:}\ell^{1}arrow b^{1}$ be
the associated linear operator as in (3.2). Then there is a bounded linear operator
$P_{k}$ : $b^{1}arrow\ell^{1}$ such that $Q_{k}P_{k}$ is the identity on $b^{1}$ . In particular, $\{z_{m}\}$ is a $b^{1}-$

representing sequence of order $k$ .

4. INTERPOLATING SEQUENCE

We have seen that the representation property amounts to the “onto” property of
the operator $Q_{k}$ . Considering their adjoint operators we are led to the interpolation
property. For example, consider a $\delta$-separated sequence $\{z_{m}\}$ and let $k=0$ for
simplicity. The associated operator $Q_{0}$ is then bounded from $\ell^{p}$ into $b^{p}$ for $1<p<\infty$

by Proposition 3.1. Let $q$ be the conjugate exponent of $p\in(0, \infty)$ . Using the
duality $(\nu)^{*}=b^{q}([9])$ under the standard integral pairing, one can check that the
$\mathrm{a}\mathrm{d}.|_{\mathrm{o}\mathrm{i}}\mathrm{n}\mathrm{t}$ operator of $Q_{0}*$. $l^{p}arrow b^{p}$ can be identified with $T_{0}$ : $b^{q}arrow\ell^{q}$ defined by
$T_{0}u=(z_{mn}^{n/q}u(z_{m}))$ .

Let $\{z_{m}\}$ be a sequence in $H$ . Let $k\geq 0$ be an integer and $1\leq p<\infty$ . Associated
with the sequence $\{z_{m}\}$ is the operator $T_{k}$ taking a $b^{p}$ -function $u$ into the sequence
$T_{k}u$ of complex numbers defined by

$T_{k}u=(z_{mn}^{n/p+}Du(_{Z_{m})}kk)$ (4.1)

where $D$ denotes the differentiation with respect to the last component. We say
that $\{z_{m}\}$ is a $b^{p}$-interpolating sequence of order $k$ if $T_{k}(b^{p})=\ell^{p}$ .

Separation is necessary for $b^{p}$-interpolation.

Proposition 4.1. Every $b^{p}$ -interpolating sequence of order $k$ is separated.

On the other hand, separation ensures the boundedness of the operator $T_{k}$ .

Proposition 4.2. Let $1\leq p<\infty$ and $k\geq 0$ be an integer. Suppose $\{z_{m}\}$ is
a $\delta$ -separated sequence. Let $T_{k}$ be the associated operator as in (4.1). Then, for
$1\leq p<\infty_{f}T_{k:}b^{p}arrow\ell^{p}$ is bounded.

Instead of the lattice density condition for representation, we need the sufficient
separation condition for interpolation.

Theorem 4.3. Let $1\leq p<\infty$ and $k\geq 0$ be an integer. Then there exists a
positive number $\delta_{0}$ with the following property: Let $\{z_{m}\}$ be a $\delta$ -separated sequence
with $\delta>\delta_{0}$ and let $T_{k^{\mathrm{r}}}$. $b^{\mathrm{p}}arrow l^{p}$ be the associated linear operator as in (4.1). Then
there is a bounded linear operator $S_{k}$ : $l^{p}arrow b^{\mathrm{p}}$ such that $T_{k}S_{k}$ is the identity on $l^{p}$ .
In $parti_{C}ular_{2}\{z_{m}\}$ is a $b^{p}$ -interpolating sequence of order $k$ .
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5. THE LIMITING CASE $parrow\infty$

When one tries to describe the dual of $b^{1}$ , one may expect that the dual of $b^{1}$ would
be the Bergman projections of $L^{\infty}$-functions. However, the Bergman integral is not
even defined on $L^{\infty}$ , simply because the kernel $R(z, \cdot)$ is not integrable. Overcoming
this difficulty, Ramey and Yi [9] have shown that the dual of $b^{1}$ is identified with
the “modified” Bergman projections of $L^{\infty}$ . They consider the integral operator

$\tilde{R}f(z)=\int_{H}f(w)\tilde{R}(z, w)dw$ ,

where
$\overline{R}(z, u2)--R(_{Z,w)}-R(Z_{0}, w)$

is a kernel which is an integrable function of $w$ for each fixed $z$ , and prove the
duality $(b^{1})^{*}=\tilde{R}(L^{\infty})$ . Ramey and Yi [9] also give an intrinsic description of the
space $\tilde{R}(L^{\infty})$ by means of the growth restriction of derivatives. To be more precise,
let $u$ be a harmonic function on $H$ . We shall say $u\in\tilde{\mathcal{B}}$ , the harmonic Bloch space,
if $u(z_{0})=0$ and if

$||u||_{B} \sim=\sup_{w\in H}wn|\nabla u(w)|<\infty$ .

It then turns out that $\tilde{R}(L^{\infty})=\tilde{B}$ . We also say that $u\in\tilde{\beta}_{0}$ , the harmonic little
Bloch space, if $u\in\tilde{\mathcal{B}}$ satisfies the additional boundary vanishing condition

$\lim w_{n}|\nabla u(w)|=0$

where the limit is taken as $warrow\partial H\cup\{\infty\}$ . It is not hard to verify that $\tilde{B}$ is
a Banach space and $\overline{\beta}_{0}$ is a closed subspace of $\tilde{B}$ . Also, $\tilde{B}_{0}$ is identified with the
predual of $b^{1}$ in [11].

More generally, for an integer $k\geq 0$ , consider the modified $\mathrm{k}\mathrm{e}1^{\backslash }\mathrm{n}\mathrm{e}1$

$\tilde{R}_{k}(z, w)=Rk(z, w)-Rk(z_{0}, w)$ .

Then $\tilde{R}_{k}(z, u’)$ has the following reproducing property for harmonic Bloch functions:
If $u\in\tilde{B}$ , then

$u(z)= \int_{H}u(w)\tilde{R}k(z, w)dw$ (5.1)

for all $z\in H$ . The associated integral operator $\tilde{R}_{k}$ defined by the formula

$\tilde{R}_{k}f(z)=\int_{H}f(w)\tilde{R}_{k}(z, w)dw$

takes $L^{\infty}$ onto $\tilde{B}$ boundedly. A consideration of approximating Rienlann sum of the
$\mathrm{r}\mathrm{e}_{1^{)\mathrm{r}0\mathrm{d}\mathrm{c}}\mathrm{g}}\mathrm{u}\mathrm{i}\mathrm{n}$ formula (5.1) leads us to a similar definition of representing sequences
for the spaces $\tilde{\mathcal{B}}$ and $\tilde{\beta}_{0}$ .

Let $\{z_{m}\}$ be a sequence in $H$ and $k\geq 0$ be an integer. For $(\lambda_{m})\in l^{\infty}$ , let

$\tilde{Q}_{k}(\lambda_{m})(Z)=\sum\lambda mz_{m}\tilde{R}nnk(Z, z_{m})$ $(z\in H)$ . (5.2)
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We say that $\{z_{m}\}$ is a $\tilde{B}$-representing sequence of order $k$ if $\tilde{Q}_{k}(\ell^{\infty})=\tilde{B}$ . We also
say that $\{z_{m}\}$ is a $\tilde{B}_{0}$-representing sequence of order $k$ if $\tilde{Q}_{k}(C_{0})=\tilde{B}_{0}$ .

As in the case of $b^{p}$-representation, separation implies boundedness of the operator
$\tilde{Q}_{k}$ .

Proposition 5.1. Let $k\geq 0$ be an integer and suppose $\{z_{m}\}$ is a $\delta$-separated se-
quence. Let $\tilde{Q}_{k}$ be the associated operator as in (5.2). Then, $\overline{Q}_{k}$ : $l^{\infty}arrow\tilde{B}$ is
bounded. In addition, $\tilde{Q}_{k}$ maps $c_{0}$ into $\tilde{\beta}_{0}$ .

The following is the limiting version of the $b^{p}$-representation theorem (Theorem
3.2).

Theorem 5.2. Let $k\geq 0$ be an integer. Then there exists a positive number $\delta_{0}$

with the following property: Let $\{z_{m}\}$ be a $\delta$-lattice with $\delta<\delta_{0}$ and let $\tilde{Q}_{k}$ : $\ell^{\infty}arrow\tilde{B}$

be the associated linear operator as in (5.2). Then there exists a bounded linear
operator $\overline{P}_{k}$ : $\overline{B}arrow l^{\infty}$ such that $\tilde{Q}_{k}\tilde{P}_{k}$ is the identity on $\tilde{\mathcal{B}}$. Moreover, $\tilde{P}_{k}$ maps $\tilde{B}_{0}$

into $c_{0}$ . In particular, $\{Z_{n\iota}\}$ is $a$ both $\tilde{B}$-representing and $\tilde{\beta}_{0}$-representing sequence
of order $k$ .

Let $k\geq 1$ be an integer and let $\{z_{m}\}$ be a sequence in $H$ . For $u\in\tilde{B}$ , let $\tilde{T}_{k}u$

denote the sequence of complex numbers defined by

$\tilde{T}_{k}u=(z_{mn}^{k}D^{k}u(z_{m}))$ . (5.3)

We say that $\{z_{m}\}$ is a $\tilde{B}$-interpolating sequence of order $k$ if $\tilde{T}_{k}(\tilde{B})=l^{\infty}$ . We also
say that $\{z_{m}\}$ is a $\tilde{B}_{0}$-interpolating sequence of order $k$ if $\tilde{T}_{k}(\tilde{B}_{0})=c_{0}$ .

Note that $\overline{T}_{k}$ : $\tilde{B}arrow l^{\infty}$ is clearly bounded. Also, if $\{z_{m}\}$ is separated, then
$z_{m}arrow\partial H\cup\{\infty\}$ and therefore $T_{k}$ maps $\tilde{\beta}_{0}$ into $c_{0}$ . As in the case of $b^{\mathrm{p}}$-interpolation,
separation turns out to be necessary for $\tilde{B}$-interpolation or $\tilde{\beta}_{0}$-interpolation.

Proposition 5.3. Every $\tilde{B}$-interpolating sequence of order $k$ is separated. Also,
every $\tilde{B}_{0}$ -interpolating sequence of order $k$ is separated.

The following theorem shows that “sufficient separation” is also sufficient for
$\tilde{B}$-interpolation or $\tilde{B}_{0}$-interpolation.

Theorem 5.4. Let $k\geq 1$ be an integer. Then there exists a positive number $\delta_{0}$ with
the following property: Let $\{z_{m}\}$ be a $\delta$ -separated sequence with $\delta>\delta_{0}$ and let $\tilde{T}_{k}$ :
$\overline{B}arrow l^{\infty}$ be the associated linear operator as in (5.3). Then there exists a bounded
linear operator $\overline{S}_{k}$ : $l^{\infty}arrow\overline{B}$ such that $\overline{T}_{k}\overline{S}_{k}$ is the identity on $\ell^{\infty}$ . Moreover, $\tilde{S}_{k}$

maps $c_{0}$ into $\tilde{B}_{0}$ . In particular, $\{z_{m}\}$ is $a$ both $\tilde{B}$-interpolating and $\tilde{B}_{0}$ -interpolating
sequence of order $k$ .
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6. REMARKS
In the $\mathrm{h}\mathrm{o}\mathrm{l}\mathrm{o}\mathrm{m}\mathrm{o}\mathrm{r}\mathrm{P}1_{\dot{\mathrm{L}}}\mathrm{C}$ case representation and interpolation properties of Bergman

functions have been studied by several authors on various domains. For represen-
tation theorems, see [6], [8]. For interpolation theorems, see [1], [10] for Bergman
functions and [2], [4] for Bloch functions.

In the harmonic case, $\mathrm{r}\mathrm{e}_{1^{)\mathrm{r}\mathrm{e}\mathrm{S}}}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}$ theorems for harmonic Bergman functions
on the ball are proved in [6]. Theorem 3.2 should be compared with Theorem 3 of
Coifman and Rochberg [6]. While their theorem has the advantage of being valid
for $p<1$ , it contains the restriction $k\geq 1$ for $1<p<\infty$ .

Proofs of the results stated above can be found in [5] which will appear else-
where. In [5] our argument takes a more constructive idea of [6] rather than duality
argument of [8]. In [5] one can find some other related results and applications.
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