REPRESENTING AND INTERPOLATING SEQUENCES FOR HARMONIC BERGMAN FUNCTIONS ON THE UPPER HALF-SPACES

BOO RIM CHOE

1. INTRODUCTION

The upper half-space $H = H_n$ is the open subset of \mathbb{R}^n given by

$$H = \{ (z', z_n) \in \mathbb{R}^n : z' \in \mathbb{R}^{n-1}, z_n > 0 \},\$$

where we have written a typical point $z \in \mathbb{R}^n$ as $z = (z', z_n)$. For $1 \le p < \infty$, we will write b^p for the harmonic Bergman space consisting of all harmonic functions u on H such that

$$||u||_p = \left\{ \int_H |u(w)|^p \ dw \right\}^{1/p} < \infty.$$

Being closed subspaces of $L^p = L^p(H)$, the spaces b^p are Banach spaces. There is a reproducing kernel R(z, w) such that

$$u(z) = \int_{H} u(w) R(z, w) \, dw$$

for all $u \in b^p$ and $z \in H$. The explicit formula for R(z, w) is given by (see [3])

$$R(z,w)=rac{4}{n\sigma_n}rac{n(z_n+w_n)^2-|z-\overline{w}|^2}{|z-\overline{w}|^{n+2}}.$$

Here, we use the notation $\overline{w} = (w', -w_n)$ for $w \in H$ and σ_n denotes the volume of the unit ball of \mathbb{R}^n . The kernel R(z, w) has the following properties:

- R(z,w) = R(w,z)
- $R(z, \cdot)$ is a bounded harmonic function on H.
- $R(z, \cdot) \in b^p$ iff 1 .

Associated with the kernel R(z, w) is the integral operator

$$Rf(z) = \int_{H} f(w)R(z,w) \, dw$$

which takes L^p -functions into harmonic functions on H. In fact, $R: L^2 \to b^2$ is the Hilbert space orthogonal projection and $R: L^p \to b^p$ is a bounded projection for

Supported in part by KOSEF and GARC of Korea.

36

1 . See [9]. Ramey and Yi [9] have also shown that there are many other nonorthogonal bounded projections. To be more explicit, put

$$R_k(z,w) = \frac{(-2)^k}{k!} w_n^k D_{w_n}^k R(z,w) \qquad (k = 0, 1, 2, \cdots)$$

where D_{w_n} denotes the differentiation with respect to the last component of w. Note that $R_0(z, w) = R(z, w)$. This kernel $R_k(z, w)$ also has the following reproducing property as does R(z, w): If $1 \le p < \infty$ and $u \in b^p$, then

$$u(z) = \int_{H} u(w) R_k(z, w) \ dw \tag{1.1}$$

for every $z \in H$. Associated with the kernel $R_k(z, w)$ is the integral operator R_k defined by the formula

$$R_k f(z) = \int_H f(w) R_k(z, w) \, dw$$

whenever the above integral makes sense. For $k \ge 1$, the kernel $R_k(z, w)$ behaves better than the kernel R(z, w) in the sense that $R_k : L^p \to b^p$ is a bounded projection for every $1 \le p < \infty$ (see [9]).

The purpose of this lecture is to announce recent joint work [5] with Yi concerning the following properties of b^p -functions:

1. The property of b^p -functions that can be represented as sums based on reproducing kernels along a sequence with weighted ℓ^p -coefficients, which can be viewed as discrete versions of the reproducing formula (1.1).

2. The "dual" property of the above b^p -representation property. This property is the interpolation perperty of b^p -functions.

3. The limiting cases of the above two properties of b^p -functions. These are the representation and interpolation properties of harmonic (little) Bloch functions.

2. Some Geometry

In the hyperbolic geometry of H, the arclength element is $|d\vec{x}|/x_n$ and geodesics are (i) vertical lines and (ii) semi-circles centered on and orthogonal to \mathbb{R}^{n-1} . Thus, one can verify that the hyperbolic distance between two points $z, w \in H$ is

$$\log \frac{1 + \rho(z, w)}{1 - \rho(z, w)}$$

where

$$\rho(z,w) = rac{|z-w|}{|z-\overline{w}|}.$$

It turns out that this ρ itself is a distance function on H, which we shall call the *pseudohyperbolic* distance. See [7] for the case of the upper half-plane. Note that ρ is horizontal translation invariant and dilation invariant. In particular,

$$\rho(z,w) = \rho(\phi_a(z),\phi_a(w)) \qquad (z,w \in H)$$
(2.1)

where ϕ_a $(a \in H)$ denotes the function defined by

$$\phi_a(z) = \left(rac{z'-a'}{a_n},rac{z_n}{a_n}
ight)$$

for $z = (z', z_n) \in H$.

For $z \in H$ and $0 < \delta < 1$, let $E_{\delta}(z)$ denote the pseudohyperbolic ball centered at z with radius δ . Note that $\phi_z(E_{\delta}(z)) = E_{\delta}(z_0)$ by the invariance property (2.1). Here and later, $z_0 = (0,1) \in H$ is a fixed reference point. Also, a straightforward calculation shows that

$$E_{\delta}(z) = B\left(\left(z', \frac{1+\delta^2}{1-\delta^2}z_n\right), \frac{2\delta}{1-\delta^2}z_n\right)$$

so that $B(z, \delta z_n) \subset E_{\delta}(z) \subset B(z, 2\delta(1-\delta)^{-1}z_n)$ where B(z, r) denotes the euclidean ball centered at z with radius r.

Let $\{z_m\}$ be a sequence in H and $0 < \delta < 1$. We say that $\{z_m\}$ is δ -separated if the balls $E_{\delta}(z_m)$ are pairwise disjoint or simply say that $\{z_m\}$ is separated if it is δ -separated for some δ . Pseudohyperbolic balls (with the same radii) centered along a separated sequence cannot intersect too often in the following sense.

Lemma 2.1. Let $\alpha > 0$ and assume $0 < (1 + \alpha)\eta < 1$. If $\{z_m\}$ is an η -separated sequence, then there is a constant $M = M(n, \alpha, \eta)$ such that more than M of the balls $E_{\alpha\eta}(z_m)$ contain no point in common.

Also, we say that $\{z_m\}$ is a δ -lattice if it is $\delta/2$ -separated and $H = \bigcup E_{\delta}(z_m)$. Note that any "maximal" $\delta/2$ -separated sequence is a δ -lattice. The following covering lemma is the main tool in proving our results.

Lemma 2.2. Fix a 1/2-lattice $\{a_m\}$ and let $0 < \delta < 1/8$. If $\{z_m\}$ is a δ -lattice, then we can find a rearrangement $\{z_{ij}|i=1,2,\ldots,j=1,2,\ldots,N_i\}$ of $\{z_m\}$ and a pairwise disjoint covering $\{D_{ij}\}$ of H with the following properties:

 $(a) \quad E_{\delta/2}(z_{ij}) \subset D_{ij} \subset E_{\delta}(z_{ij})$

$$(b) \quad E_{1/4}(a_i) \subset \bigcup_{i=1}^{N_i} D_{ij} \subset E_{5/8}(a_i)$$

(c) $z_{ij} \in E_{1/2}(a_i)$

for all $i = 1, 2, \dots, and j = 1, 2, \dots, N_i$.

Note. By property (c) of the above lemma and Lemma 2.1, the sequnce N_i cannot grow arbitrarily. In fact, we have $N_i = O(\delta^{-n})$.

3. Representing Sequence

For a motivation, consider a sequence $\{z_m\}$ of distinct points in H with $z_m \to \partial H \cup \{\infty\}$ and pick a pairwise disjoint covering $\{E_m\}$ of H such that $z_m \in E_m$. For an integer $k \ge 0$ and $u \in b^p$, we see from the reproducing property (1.1)

$$u(z) = \sum \int_{E_m} u(w) R_k(z, w) \, dw.$$

Let q be the conjugate exponent of p. Then, the series

$$\sum u(z_m) |E_m|^{1/p} \cdot |E_m|^{1/q} R_k(z, z_m)$$
(3.1)

can be considered as an approximating Riemann sum of the above integral. Here, we use the notation |E| for the volume of a Borel set $E \subset H$. Note that the sum

 $\sum |u(z_m)|^p |E_m|$

can be viewed as an approximating Riemann sum of $||u||_{n}^{p}$.

Let $\{z_m\}$ be a sequence in H. Let $1 \leq p < \infty$ and $k \geq 0$ be an integer. For $(\lambda_m) \in \ell^p$, let $Q_k(\lambda_m)$ denote the series defined by

$$Q_k(\lambda_m)(z) = \sum \lambda_m z_{mn}^{n(1-1/p)} R_k(z, z_m) \qquad (z \in H).$$
(3.2)

Here, we restrict $k \ge 1$ for p = 1. For a sequence $\{z_m\}$ good enough, $Q_k(\lambda_m)$ will be harmonic on H. We say that $\{z_m\}$ is a b^p -representing sequence of order k if $Q_k(\ell^p) = b^p$.

Of course, the motivation for the series (3.2) is the approximating Riemann sum (3.1) where E_m is pretended to be the ball $E_{\delta}(z_m)$ for some fixed δ . However, it might not be clear from the very definition that the series (3.2) defines a b^p -function under the separation condition. The following proposition makes this clear.

Proposition 3.1. Let $1 \leq p < \infty$ and $k \geq 0$ be an integer. Suppose $\{z_m\}$ is a δ -separated sequence. Let Q_k be the associated operator as in (3.2). Then, for $1 is bounded for each <math>k \geq 0$. Also, $Q_k : \ell^1 \to b^1$ is bounded for each $k \geq 1$.

We now state our b^p -representation result under the lattice density condition. We first consider the case 1 .

Theorem 3.2. Let $1 and let <math>k \ge 0$ be an integer. Then there exists a positive number δ_0 with the following property: Let $\{z_m\}$ be a δ -lattice with $\delta < \delta_0$ and let $Q_k : \ell^p \to b^p$ be the associated linear operator as in (3.2). Then there is a bounded linear operator $P_k : b^p \to \ell^p$ such that $Q_k P_k$ is the identity on b^p . In particular, $\{z_m\}$ is a b^p -representing sequence of order k.

The b^1 -representation theorem takes exactly the same form as the above b^p -representation theorem except for the restriction $k \geq 1$. This restriction is caused by the fact that the operator R is not L^1 -bounded.

Theorem 3.3. Let $k \ge 1$ be an integer. Then there exists a positive number δ_0 with the following property: Let $\{z_m\}$ be a δ -lattice with $\delta < \delta_0$ and let $Q_k : \ell^1 \to b^1$ be the associated linear operator as in (3.2). Then there is a bounded linear operator $P_k : b^1 \to \ell^1$ such that $Q_k P_k$ is the identity on b^1 . In particular, $\{z_m\}$ is a b^1 representing sequence of order k.

4. INTERPOLATING SEQUENCE

We have seen that the representation property amounts to the "onto" property of the operator Q_k . Considering their adjoint operators we are led to the interpolation property. For example, consider a δ -separated sequence $\{z_m\}$ and let k = 0 for simplicity. The associated operator Q_0 is then bounded from ℓ^p into b^p for 1by Proposition 3.1. Let <math>q be the conjugate exponent of $p \in (0,\infty)$. Using the duality $(b^p)^* = b^q$ ([9]) under the standard integral pairing, one can check that the adjoint operator of $Q_0 : \ell^p \to b^p$ can be identified with $T_0 : b^q \to \ell^q$ defined by $T_0 u = \left(z_{mn}^{n/q} u(z_m)\right)$.

Let $\{z_m\}$ be a sequence in H. Let $k \ge 0$ be an integer and $1 \le p < \infty$. Associated with the sequence $\{z_m\}$ is the operator T_k taking a b^p -function u into the sequence $T_k u$ of complex numbers defined by

$$T_k u = \left(z_{mn}^{n/p+k} D^k u(z_m)\right) \tag{4.1}$$

where D denotes the differentiation with respect to the last component. We say that $\{z_m\}$ is a b^p -interpolating sequence of order k if $T_k(b^p) = \ell^p$.

Separation is necessary for b^p -interpolation.

Proposition 4.1. Every b^p -interpolating sequence of order k is separated.

On the other hand, separation ensures the boundedness of the operator T_k .

Proposition 4.2. Let $1 \leq p < \infty$ and $k \geq 0$ be an integer. Suppose $\{z_m\}$ is a δ -separated sequence. Let T_k be the associated operator as in (4.1). Then, for $1 \leq p < \infty$, $T_k : b^p \to \ell^p$ is bounded.

Instead of the lattice density condition for representation, we need the sufficient separation condition for interpolation.

Theorem 4.3. Let $1 \leq p < \infty$ and $k \geq 0$ be an integer. Then there exists a positive number δ_0 with the following property: Let $\{z_m\}$ be a δ -separated sequence with $\delta > \delta_0$ and let $T_k : b^p \to \ell^p$ be the associated linear operator as in (4.1). Then there is a bounded linear operator $S_k : \ell^p \to b^p$ such that $T_k S_k$ is the identity on ℓ^p . In particular, $\{z_m\}$ is a b^p -interpolating sequence of order k.

5. The Limiting Case $p \to \infty$

When one tries to describe the dual of b^1 , one may expect that the dual of b^1 would be the Bergman projections of L^{∞} -functions. However, the Bergman integral is not even defined on L^{∞} , simply because the kernel $R(z, \cdot)$ is not integrable. Overcoming this difficulty, Ramey and Yi [9] have shown that the dual of b^1 is identified with the "modified" Bergman projections of L^{∞} . They consider the integral operator

$$\widetilde{R}f(z) = \int_{H} f(w)\widetilde{R}(z,w) \, dw,$$

where

$$\tilde{R}(z,w) = R(z,w) - R(z_0,w)$$

is a kernel which is an integrable function of w for each fixed z, and prove the duality $(b^1)^* = \tilde{R}(L^{\infty})$. Ramey and Yi [9] also give an intrinsic description of the space $\tilde{R}(L^{\infty})$ by means of the growth restriction of derivatives. To be more precise, let u be a harmonic function on H. We shall say $u \in \tilde{\mathcal{B}}$, the harmonic Bloch space, if $u(z_0) = 0$ and if

$$||u||_{\widetilde{\mathcal{B}}} = \sup_{w \in H} w_n |\nabla u(w)| < \infty.$$

It then turns out that $\widetilde{R}(L^{\infty}) = \widetilde{\mathcal{B}}$. We also say that $u \in \widetilde{\mathcal{B}}_0$, the harmonic little Bloch space, if $u \in \widetilde{\mathcal{B}}$ satisfies the additional boundary vanishing condition

$$\lim w_n |\nabla u(w)| = 0$$

where the limit is taken as $w \to \partial H \cup \{\infty\}$. It is not hard to verify that $\tilde{\mathcal{B}}$ is a Banach space and $\tilde{\mathcal{B}}_0$ is a closed subspace of $\tilde{\mathcal{B}}$. Also, $\tilde{\mathcal{B}}_0$ is identified with the predual of b^1 in [11].

More generally, for an integer $k \ge 0$, consider the modified kernel

$$R_k(z, w) = R_k(z, w) - R_k(z_0, w).$$

Then $\widetilde{R}_k(z, w)$ has the following reproducing property for harmonic Bloch functions: If $u \in \widetilde{\mathcal{B}}$, then

$$u(z) = \int_{H} u(w) \widetilde{R}_{k}(z, w) \, dw \tag{5.1}$$

for all $z \in H$. The associated integral operator \tilde{R}_k defined by the formula

$$\widetilde{R}_k f(z) = \int_H f(w) \widetilde{R}_k(z, w) \, dw$$

takes L^{∞} onto $\tilde{\mathcal{B}}$ boundedly. A consideration of approximating Riemann sum of the reproducing formula (5.1) leads us to a similar definition of representing sequences for the spaces $\tilde{\mathcal{B}}$ and $\tilde{\mathcal{B}}_{0}$.

Let $\{z_m\}$ be a sequence in H and $k \ge 0$ be an integer. For $(\lambda_m) \in \ell^{\infty}$, let

$$\widetilde{Q}_k(\lambda_m)(z) = \sum \lambda_m z_{mn}^n \widetilde{R}_k(z, z_m) \qquad (z \in H).$$
(5.2)

We say that $\{z_m\}$ is a $\tilde{\mathcal{B}}$ -representing sequence of order k if $\tilde{Q}_k(\ell^{\infty}) = \tilde{\mathcal{B}}$. We also say that $\{z_m\}$ is a $\tilde{\mathcal{B}}_0$ -representing sequence of order k if $\tilde{Q}_k(c_0) = \tilde{\mathcal{B}}_0$.

As in the case of b^p -representation, separation implies boundedness of the operator \tilde{Q}_k .

Proposition 5.1. Let $k \geq 0$ be an integer and suppose $\{z_m\}$ is a δ -separated sequence. Let \tilde{Q}_k be the associated operator as in (5.2). Then, $\tilde{Q}_k : \ell^{\infty} \to \tilde{\mathcal{B}}$ is bounded. In addition, \tilde{Q}_k maps c_0 into $\tilde{\mathcal{B}}_0$.

The following is the limiting version of the b^p -representation theorem (Theorem 3.2).

Theorem 5.2. Let $k \geq 0$ be an integer. Then there exists a positive number δ_0 with the following property: Let $\{z_m\}$ be a δ -lattice with $\delta < \delta_0$ and let $\tilde{Q}_k : \ell^{\infty} \to \tilde{\mathcal{B}}$ be the associated linear operator as in (5.2). Then there exists a bounded linear operator $\tilde{P}_k : \tilde{\mathcal{B}} \to \ell^{\infty}$ such that $\tilde{Q}_k \tilde{P}_k$ is the identity on $\tilde{\mathcal{B}}$. Moreover, \tilde{P}_k maps $\tilde{\mathcal{B}}_0$ into c_0 . In particular, $\{z_m\}$ is a both $\tilde{\mathcal{B}}$ -representing and $\tilde{\mathcal{B}}_0$ -representing sequence of order k.

Let $k \geq 1$ be an integer and let $\{z_m\}$ be a sequence in H. For $u \in \tilde{\mathcal{B}}$, let $\tilde{T}_k u$ denote the sequence of complex numbers defined by

$$\widetilde{T}_k u = \left(z_{mn}^k D^k u(z_m) \right). \tag{5.3}$$

We say that $\{z_m\}$ is a $\tilde{\mathcal{B}}$ -interpolating sequence of order k if $\tilde{T}_k(\tilde{\mathcal{B}}) = \ell^{\infty}$. We also say that $\{z_m\}$ is a $\tilde{\mathcal{B}}_0$ -interpolating sequence of order k if $\tilde{T}_k(\tilde{\mathcal{B}}_0) = c_0$.

Note that $\widetilde{T}_k : \widetilde{\mathcal{B}} \to \ell^{\infty}$ is clearly bounded. Also, if $\{z_m\}$ is separated, then $z_m \to \partial H \cup \{\infty\}$ and therefore T_k maps $\widetilde{\mathcal{B}}_0$ into c_0 . As in the case of b^p -interpolation, separation turns out to be necessary for $\widetilde{\mathcal{B}}$ -interpolation or $\widetilde{\mathcal{B}}_0$ -interpolation.

Proposition 5.3. Every $\tilde{\mathcal{B}}$ -interpolating sequence of order k is separated. Also, every $\tilde{\mathcal{B}}_0$ -interpolating sequence of order k is separated.

The following theorem shows that "sufficient separation" is also sufficient for $\tilde{\mathcal{B}}_{0}$ -interpolation or $\tilde{\mathcal{B}}_{0}$ -interpolation.

Theorem 5.4. Let $k \geq 1$ be an integer. Then there exists a positive number δ_0 with the following property: Let $\{z_m\}$ be a δ -separated sequence with $\delta > \delta_0$ and let \tilde{T}_k : $\tilde{\mathcal{B}} \to \ell^{\infty}$ be the associated linear operator as in (5.3). Then there exists a bounded linear operator $\tilde{S}_k : \ell^{\infty} \to \tilde{\mathcal{B}}$ such that $\tilde{T}_k \tilde{S}_k$ is the identity on ℓ^{∞} . Moreover, \tilde{S}_k maps c_0 into $\tilde{\mathcal{B}}_0$. In particular, $\{z_m\}$ is a both $\tilde{\mathcal{B}}$ -interpolating and $\tilde{\mathcal{B}}_0$ -interpolating sequence of order k.

6. Remarks

In the holomorphic case representation and interpolation properties of Bergman functions have been studied by several authors on various domains. For representation theorems, see [6], [8]. For interpolation theorems, see [1], [10] for Bergman functions and [2], [4] for Bloch functions.

In the harmonic case, representation theorems for harmonic Bergman functions on the ball are proved in [6]. Theorem 3.2 should be compared with Theorem 3 of Coifman and Rochberg [6]. While their theorem has the advantage of being valid for p < 1, it contains the restriction $k \ge 1$ for 1 .

Proofs of the results stated above can be found in [5] which will appear elsewhere. In [5] our argument takes a more constructive idea of [6] rather than duality argument of [8]. In [5] one can find some other related results and applications.

REFERENCES

- 1. E. Amar, Suites d'interpolation pour les classes de Bergman de la boule du polydisque de \mathbb{C}^n , Canadian J. Math. **30**(1978), 711-737.
- 2. K. R. M. Attle, Interpolating sequences for the derivatives of Bloch functions, Glasgow Math. J. 34(1992), 35-41.
- 3. S. Axler, P. Bourdon and W. Ramey, *Harmonic Function Theory*, Springer-Verlag, New York, 1992.
- 4. B. R. Choe and K. Rim, Fractional derivatives of Bloch functions, growth rate, and interpolation, Acta Math. Hungarica, to appear.
- 5. B. R. Choe and H. Yi, Represention and interpolations of harmonic Bergman functions on half-spaces, preprint.
- 6. R. R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in L^p, Astérisque 77(1980), 11-66.
- 7. J. B. Garnett, Bounded analytic functions, Academic, New York, 1981.
- 8. D. H. Luecking, Representation and duality in weighted spaces of analytic functions, Indiana Univ. Math. J. 2(1985), 319-336.
- 9. W. Ramey and H. Yi, Harmonic Bergman functions on half-spaces, Trans. Amer. math. Soc., to appear.
- R. Rochberg, Interpolation by functions in Bergman spaces, Michigan Math. J. 29(1982), 229-236.
- 11. H. Yi, Harmonic little Bloch functions on half-spaces, preprint.

DEPARTMENT OF MATHEMATICS, KOREA UNIVERSITY, SEOUL 136-701, KOREA *E-mail address*: choebr@semi.korea.ac.kr