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REPRESENTING AND INTERPOLATING SEQUENCES FOR
HARMONIC BERGMAN FUNCTIONS ON THE UPPER
HALF-SPACES

BOO RIM CHOE

1. INTRODUCTION
The upper half-space H = H,, is the open subset of R™ given by
H={(z,2)eR": 2 e R", z, > 0},

where we have written a typical point z € R" as z = (2, 2,). For 1 < p < o0, we
will write b for the harmonic Bergman space consisting of all harmonic functions
u on H such that

il = { ()P dw} <o

Being closed subspaces of LP = LP(H), the spaces b are Banach spaces. There is a
reproducing kernel R(z,w) such that

u(z) = /Hu(w)R(z,w) dw
for all u € B* and z € H. The explicit formula for R(z,w) is given by (see [3])

4 n(zy, +w,)? — |z —w|?

no, |z — w|n+2

R(z,w) =

Here, we use the notation W = (w’, —w,) for w € H and o0, denotes the volume of
the unit ball of R™. The kernel R(z,w) has the following properties:

e R(z,w) = R(w, z)
e R(z,-) is a bounded harmonic function on H.
e R(z,-)e b’ iff 1 < p< oo.

Associated with the kernel R(z,w) is the integral operator
R = R d
f(2) = [ fw)R(z,w) du

which takes LP-functions into harmonic functions on H. In fact, R : L? — b? is the
Hilbert space orthogonal projection and R : L? — b” is a bounded projection for
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1 <p < oo. See [9]. Ramey and Yi [9] have also shown that there are many other
nonorthogonal bounded projections. To be more explicit, put

ok
Rk(zaw) = '(.'_I_jlw:Dﬁ;,.R(zaw) (k = 0,1,2,"')

where D,,, denotes the differentiation with respect to the last component of w. Note
that Ro(2,w) = R(z,w). This kernel Ri(z,w) also has the following reproducing
property as does R(z,w): If 1 < p < oo and u € ¥”, then

u(z) = /H w(w)Ru(z, w) dw (1.1)

for every z € H. Associated with the kernel Ri(z,w) is the integral operator Ry
defined by the formula

Rif(z) = [ f(w)Ri(z,w) dw

whenever the above integral makes sense. For k > 1, the kernel Ry(z,w) behaves
better than the kernel R(z,w) in the sense that Ry : LP — V” is a bounded projection
for every 1 < p < oo (see [9]).

The purpose of this lecture is to announce recent joint work [5] with Yi concerning
the following properties of b*-functions:
1. The property of o*-functions that can be represented as sums based on reproduc-
ing kernels along a sequence with weighted #P-coefficients, which can be viewed as
discrete versions of the reproducing formula (1.1).
2. The “dual” property of the above d?-representation property. This property is
the interpolation perperty of bP-functions.
3. The limiting cases of the above two properties of bP-functions. These are the
representation and interpolation properties of harmonic (little) Bloch functions.

2. SOME GEOMETRY

In the hyperbolic geometry of H, the arclength element is |dZ|/z, and geodesics
are (i) vertical lines and (ii) semi-circles centered on and orthogonal to R™*!. Thus,

one can verify that the hyperbolic distance between two points z, w € H is
1 ;

log - p(z, w)

1— p(z,w)

where
2 = ul

p(z,w) = Z—w|

It turns out that this p itself is a distance function on H, which we shall call the

pseudohyperbolic distance. See [7] for the case of the upper half-plane. Note that p
is horizontal translation invariant and dilation invariant. In particular,

p(z,w) = p(9a(2), #a(w)) (2,0 € H) (21)



where ¢, (a € H) denotes the function defined by

$a(2) = (z'_“' Z—“)

)
a’n a’n

for z = (2',2,) € H.

For z € H and 0 < § < 1, let E5(z) denote the pseudohyperbolic ball centered
at z with radius §. Note that ¢, (Eg(z)) = Fs(z0) by the invariance property (2.1).
Here and later, z5 = (0,1) € H is a fixed reference point. Also, a straightfoward
calculation shows that

14 62 26
Es(z) =B ((Zla 1= 52'211), 1- 52271)

so that B(z,6z,) C Es(z) C B(z,28(1—6)'2,) where B(z,r) denotes the euclidean
ball centered at z with radius r.

Let {2z} be a sequence in H and 0 < § < 1. We say that {z,,} is §-separated
if the balls Es(z,) are pairwise disjoint or simply say that {z,,} is separated if it
is d-separated for some . Pseudohyperbolic balls (with the same radii) centered
along a separated sequence cannot intersect too often in the following sense.

Lemma 2.1. Let o > 0 and assume 0 < (14 a)p < 1. If {2z} is an n-separated
sequence, then there is a constant M = M(n,a,n) such that more than M of the
balls E,,(zm) contain no point in common.

Also, we say that {z,,} is a d-lattice if it is 6 /2-separated and H = UFEs(z,,). Note
that any “maximal” §/2-separated sequence is a d-lattice. The following covering
lemma is the main tool in proving our results.

Lemma 2.2. Fiz a 1/2-lattice {an} and let 0 < § < 1/8. If {z,} is a é-lattice,
then we can find a rearrangement {z;;|i = 1,2,...,5 = 1,2,...,N;} of {zm} and @
pairwise disjoint covering {D;;} of H with the following properties:

(a)  Es/a(zij) C Dij C Es(2i;)
(b) E1/4(a4) C U;\;"lD,'j C Es/s(a,‘)
(c) 2 € E1/2(a,~)

foralli=1,2,---, and j = 1,2,...,N;.

Note. By property (c) of the above lemma and Lemma 2.1, the sequnce N; cannot
grow arbitrarily. In fact, we have N; = O(67").
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3. REPRESENTING SEQUENCE

For a motivation, consider a sequence {z,,} of distinct points in H with z,, —
OH U {00} and pick a pairwise disjoint covering {E,,} of H such that z,, € E,,. For
an integer k > 0 and u € b?, we see from the reproducing property (1.1)

u(z) = Z/E u(w)Ry(z,w) dw.
Let ¢ be the conjugate exponent of p. Then, the series
5 w(em) B - | B[P0 Re 2, 2) (3.1)

can be considered as an approximating Riemann sum of the above integral. Here,
we use the notation |E| for the volume of a Borel set E C H. Note that the sum

> [u(zm) | En]
can be viewed as an approximating Riemann sum of [[u]|?.

Let {2} be a sequence in H. Let 1 < p < oo and k > 0 be an integer. For
(Am) € £, let Qx(A) denote the series defined by

QOm)(2) = 2 A2y Rz, 2m) (2 € H). (3-2)

Here, we restrict k > 1 for p = 1. For a sequence {z,,} good enough, Qx()\,,) will
be harmonic on H. We say that {z,,} is a bP-representing sequence of order k if

Qu(f?) = .

Of course, the motivation for the series (3.2) is the approximating Riemann sum
(3.1) where E,, is pretended to be the ball Ej(z,,) for some fixed §. However, it
might not be clear from the very definition that the series (3.2) defines a b*-function
under the separation condition. The following proposition makes this clear.

Proposition 3.1. Let 1 < p < oo and k > 0 be an integer. Suppose {z,,} is
a d-separated sequence. Let Qi be the associated operator as in (3.2). Then, for
1 <p<oo, Q: P — b is bounded for each k > 0. Also, Q : £* — b' is bounded
for each k > 1.

We now state our dP-representation result under the lattice density condition. We
first consider the case 1 < p < oo.

Theorem 3.2. Let 1 < p < oo and let k > 0 be an integer. Then there exists a
positive number & with the following property: Let {z,} be a §-lattice with § < &
and let Q : £7 — WP be the associated linear operator as in (3.2). Then there is
a bounded linear operator Py : b* — (P such that QyP; is the identity on . In
particular, {z,} is a bP-representing sequence of order k.

The b'-representation theorem takes exactly the same form as the above bP-
representation theorem except for the restriction k > 1. This restriction is caused
by the fact that the operator R is not L'-bounded.



Theorem 3.3. Let k > 1 be an integer. Then there exists a positive number 8y with
the following property: Let {z,} be a d-lattice with § < &y and let Q. : £* — b' be
the associated linear operator as in (3.2). Then there is a bounded linear operator
P : bt — 0! such that QP is the identity on b'. In particular, {z,} is a b!-
representing sequence of order k.

4. INTERPOLATING SEQUENCE

We have seen that the representation property amounts to the “onto” property of
the operator ;. Considering their adjoint operators we are led to the interpolation
property. For example, consider a J-separated sequence {z,} and let & = 0 for
simplicity. The associated operator Qg is then bounded from #? into b” for 1 < p < oo
by Proposition 3.1. Let g be the conjugate exponent of p € (0,00). Using the
duality (b°)* = b? ([9]) under the standard integral pairing, one can check that the
adjoint operator of (Jy : /¢ — bP can be identified with T : 7 — £? defined by

Tou = (zﬁfgu(zm)) .

Let {2, } be a sequence in H. Let k > 0 be an integer and 1 < p < oo. Associated
with the sequence {z,} is the operator T} taking a b’-function u into the sequence
Tiu of complex numbers defined by

Tiu = (z,’,‘l/,f'Fkau(zm)) (4.1)

where D denotes the differentiation with respect to the last component. We say
that {z,,} is a bP-interpolating sequence of order k if Tj(bP) = £7.

Separation is necessary for bP-interpolation.
Proposition 4.1. Fvery bP-interpolating sequence of order k is separated.
On the other hand, separation ensures the boundedness of the operator T.

Proposition 4.2. Let 1 < p < oo and k > 0 be an integer. Suppose {z,} is
a 6-separated sequence. Let Ty be the associated operator as in (4.1). Then, for
1<p<oo, Tj : b¥ — £P 1s bounded.

Instead of the lattice density condition for representation, we need the sufficient
separation condition for interpolation.

Theorem 4.3. Let 1 < p < oo and k > 0 be an integer. Then there exists a
positive number &, with the following property: Let {z,,} be a §-separated sequence
with § > dp and let T, : b® — £P be the associated linear operator as in (4.1). Then
there 1s a bounded linear operator Sy : 7 — b® such that T}Sy is the identity on £P.
In particular, {z,} 1s a bP-interpolating sequence of order k.
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5. THE LIMITING CASE p — oo

When one tries to describe the dual of b', one may expect that the dual of ' would
be the Bergman projections of L™-functions. However, the Bergman integral is not
even defined on L, simply because the kernel R(z, -) is not integrable. Overcoming
this difficulty, Ramey and Yi [9] have shown that the dual of b! is identified with

the “modified” Bergman projections of L™. They consider the integral operator

RBf() = [ f(w)B(zw) dw,

where

R(z,w) = R(z,w) — R(20,w)

is a kernel which is an integrable function of w for each fixed z, and prove the

~

duality (b')* = R(L*). Ramey and Yi [9] also give an intrinsic description of the
space R(L*) by means of the growth restriction of derivatives. To be more precise,

let u be a harmonic function on H. We shall say u € B , the harmonic Bloch space,
if u(29) = 0 and if
lJullz = sup wa|Vu(w)| < oco.
weH

It then turns out that R(L*) = B. We also say that u € Bg, the harmonic little
Bloch space, if u € B satisfies the additional boundary vanishing condition
lim w,,|Vu(w)| =0

where the limit is taken as w — OH U {oco}. It is not hard to verify that B is

a Banach space and By is a closed subspace of B. Also, By is identified with the
predual of b! in [11].
More generally, for an integer & > 0, consider the modified kernel

Ri(z,w) = Ri(z,w) — Ri(zo0,w).

Then I@c(z, w) has the following reproducing property for harmonic Bloch functions:
If u € B, then

u(z) = Au(w)ﬁk(z,w) dw (5.1)
for all z € H. The associated integral operator Ry defined by the formula
Rof(z) = [ f(w)Ru(z0) dw

takes L onto B boundedly. A consideration of approximating Riemann sum of the
reproducing formula (5.1) leads us to a similar definition of representing sequences
for the spaces B and By.

Let {2} be a sequence in H and k > 0 be an integer. For (),,) € £, let
BeOm)(2) = St Frlerom) (= € H). 52)



We say that {z,,} is a B-representing sequence of order k if Qk(ﬂ"") = B. We also
say that {z,,} is a Bo-representing sequence of order k if Qx(co) = Bo.

As in the case of bP-representation, separation implies boundedness of the operator

Qx-

Proposition 5.1. Let k > 0 be an integer and suppose {z,} is a - separated se-
quence. Let Qi be the associated operator as in (5.2). Then, Qr: 0> = B is
bounded. In addition, Qk maps co nto Bo.

The following is the limiting version of the b-representation theorem (Theorem

3.2).

Theorem 5.2. Let k > 0 be an integer. Then there exists a positive number &g
with the following property: Let {2y} be a &-lattice with § < 8 and let Qi : £ — B
be the associated linear operator as in (5.2). Then there exists a bounded linear
operator Py : B — £ such that QiP; i the identity on B. Moreover, P, maps By
into co. In particular, {z,,} is a both B- -representing and Bo-representing sequence

of order k.

Let £ > 1 be an integer and let {zm} be a sequence in H. For u € g, let Tyu
denote the sequence of complex numbers defined by

Thu = (zﬁkau(zm)). (5.3)

We say that {z,} is a B-interpolating sequence of order k if fk(g) = £*°. We also
say that {z,} is a Bo-interpolating sequence of order k if Ti,(Bo) = co.

Note that Ty : B — £ is clearly bounded. Also, if {zm} is separated, then
zZm — OHU{oo} and therefore T}, maps By into ¢p. As in the case of bP-interpolation,
separation turns out to be necessary for B-interpolation or By-interpolation.

Proposition 5.3. Every B-interpolating sequence of order k is separated. Also,
every By-interpolating sequence of order k is separated.

The following theorem shows that “sufficient separation” is also sufficient for
B-inter polation or Bo-lntelpolatlon

Theorem 5.4. Let k > 1 be an integer. Then there exists a positive number &g with
the following property: Let {z.,} be a §-separated sequence with § > &y and let T} :
B — £ be the associated linear operator as in (5.3). Then there ezists a bounded
linear operator Sy 1 £° — B such that T}, S, is_the identity on £>°. Moreover, S’k
maps co into By. In particular, {zm} is a both B-interpolating and Bo- interpolating
sequence of order k.
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6. REMARKS

In the holomorphic case representation and interpolation properties of Bergman
functions have been studied by several authors on various domains. For represen-
tation theorems, see [6], [8]. For interpolation theorems, see [1], [10] for Bergman
functions and [2], [4] for Bloch functions.

In the harmonic case, representation theorems for harmonic Bergman functions
on the ball are proved in [6]. Theorem 3.2 should be compared with Theorem 3 of
Coifman and Rochberg [6]. While their theorem has the advantage of being valid
for p < 1, it contains the restriction k > 1 for 1 < p < co.

Proofs of the results stated above can be found in [5] which will appear else-
where. In [5] our argument takes a more constructive idea of [6] rather than duality
argument of [8]. In [5] one can find some other related results and applications.
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