Ergodic control in a single product manufacturing system

徳大総科 大橋 守（Mamoru Ohashi）

Abstract

We study the ergodic control problem related to stochastic production plan－ ning in a single product manufacturing system with production constraints． The existence of a solution to the corresponding Bellman equation and the optimal control are shown．

1991 Mathematics Subject Classification．Primary 93E20，Secondary 93C40．

1 Introduction

This paper deals with the following $1^{\text {st }}$ order differential equation：

$$
\begin{equation*}
\lambda=F\left(\frac{\partial v}{\partial x}(x, i)\right)-i \frac{\partial v}{\partial x}(x, i)+A v(x, i)+h(x), \quad x \in R^{1}, i=1,2, \ldots, d \tag{1}
\end{equation*}
$$

Here λ is a constant，$F(x)=k x$ if $x<0,=0$ if $x \geq 0$ for some positive constant $k>0, h$ is convex function，and A denotes the infinitesimal generator of an irreducible Markov chain $(z(t), P)$ with state space $Z=\{1,2, \ldots, d\}$ ：

$$
\begin{equation*}
A v(x, i)=\sum_{j \neq i} q_{i j}[v(x, j)-v(x, i)], \tag{2}
\end{equation*}
$$

where $q_{i j}$ is the jump rate of $z(t)$ from i to j ．The unknown are the pair (v, λ) ，where $v(\cdot, i) \in C^{1}\left(R^{1}\right)$ for every $i \in Z$ ．

Equation（1）arises in the ergodic control problem of stochastic production plan－ ning in a single product manufacturing system and is called the Bellman equation． The inventory level $x(t)$ of stochastic production planning modeled by Sethi and Zhang［11］is governed by the differential equation

$$
\begin{equation*}
\frac{d x(t)}{d t}=p(t)-z(t), \quad x(0)=x, \quad z(0)=i, \quad \text { P-a.s. } \tag{3}
\end{equation*}
$$

for production rate $0 \leq p(t) \leq k$, in which $z(t)$ is interpreted as the demand rate. For ergodic control, the cost $J(p(\cdot): x, i)$ associated with $p(\cdot)$ is given by

$$
\begin{equation*}
J(p(\cdot): x, i)=\limsup _{T \rightarrow \infty} \frac{1}{T} E\left[\int_{0}^{T} h(x(t)) d t \mid x(0)=x, z(0)=i\right] \tag{4}
\end{equation*}
$$

where $h(x)$ represents the convex inventory cost.
The purpose of this paper is to show the existence of a solution of Bellman equation (1) and to present an optimal control minimizing the cost $J(p(\cdot): x, i)$ subject to (3). In the control problem of manufacturing systems [5], [12] with discounted rate $\alpha>0$, many authors have investigated the Bellman equation

$$
\begin{equation*}
\alpha u_{\alpha}(x, i)=F\left(\frac{\partial u_{\alpha}}{\partial x}(x, i)\right)-i \frac{\partial u_{\alpha}}{\partial x}(x, i)+A u_{\alpha}(x, i)+h(x) . \tag{5}
\end{equation*}
$$

Our method consists in studying the limit of (5) as α tends to 0 . This approach develops the technique of Bensoussan-Frehse [2] concerning non-degenerate $2^{\text {nd }}$ order partial differential equations to our degenerate case. We also refer to Ghosh et al. [7], [8] in the case that the Brownian motion is added to (3) as sales returns and a bounded restriction on production rate p is made.

Section 2 is devoted to the existence problem of (1) under the convexity assumption and others on h, and properties of the solution are shown in § 3. In § 4 an optimal control for the ergodic control problem and the value are given. In § 5 we present an example of the solution to (1).

2 Existence

We are concerned with the equation

$$
\begin{equation*}
\alpha u_{\alpha}(x, i)=F\left(\frac{\partial u_{\alpha}}{\partial x}(x, i)\right)-i \frac{\partial u_{\alpha}}{\partial x}(x, i)+A u_{\alpha}(x, i)+h(x) \quad x \in R^{1}, i \in Z \tag{6}
\end{equation*}
$$

and make the following assumptions:

$$
\begin{align*}
& h(x) \text { is nonnegative and convex on } R^{1}, \tag{7}\\
& \exists C>0 ; 0 \leq h(x) \leq C\left(1+|x|^{\kappa}\right) \text { for some positive integer } \kappa \text {, } \tag{8}\\
& k-d>0 . \tag{9}
\end{align*}
$$

Theorem 2.1 We assume (7), (8) and (9). Then there exists a unique convex solution $u_{\alpha}(\cdot, i) \in C^{1}\left(R^{1}\right), i \in Z$ of equation (6) such that

$$
\begin{align*}
\alpha\left\|u_{\alpha}(\cdot, i)\right\|_{L^{\infty}\left(I_{r}\right)} & \leq K_{r}, \tag{10}\\
\left\|\frac{\partial u_{\alpha}}{\partial x}(\cdot, i)\right\|_{L^{\infty}\left(I_{r}\right)} & \leq K_{r}, \tag{11}\\
\left\|A u_{\alpha}(\cdot, i)\right\|_{L^{\infty}\left(I_{r}\right)} & \leq K_{r}, \quad i \in Z \tag{12}
\end{align*}
$$

where K_{r} is a positive constant depending only on r of $I_{r}=(-r, r)$.
Proof. According to [11, Theorem 3.1], equation (6) has a viscosity solution [6] given by

$$
u_{\alpha}(x, i)=\inf _{p(\cdot) \in \mathcal{P}(x, i)}\left\{E\left[\int_{0}^{\infty} e^{-\alpha t} h(x(t)) d t \mid x(0)=x, z(0)=i\right]\right\}
$$

where $x(t)$ is as in (3), and the infimum is taken over the class $\mathcal{P}(x, i)$ of control processes $p(\cdot)$ such that $0 \leq p(t) \leq k$ and $p(t)$ is adapted to $\mathcal{F}_{\boldsymbol{t}}=\sigma(z(s), s \leq t)$. Moreover, $u_{\alpha}(x, i)$ is convex and hence a classical solution of (6) in $C^{1}\left(R^{1}\right)$. As is wellknown [9], for the irreducible Markov chain $(z(t), P)$ there exists a unique equilibrium distribution $\pi=\left(\pi_{1}, \pi_{2}, \cdots, \pi_{d}\right)>0$ such that

$$
\begin{equation*}
\pi A=0 \quad \text { and } \quad \sum_{i \in Z} \pi_{i}=1 \tag{13}
\end{equation*}
$$

Now, multiplying (6) by π_{i} and summing up, we have

$$
\begin{equation*}
\alpha \sum_{i} \pi_{i} u_{\alpha}(x, i)=\sum_{i} \pi_{i}\left\{F\left(\frac{\partial u_{\alpha}}{\partial x}(x, i)\right)-i \frac{\partial u_{\alpha}}{\partial x}(x, i)\right\}+h(x) . \tag{14}
\end{equation*}
$$

Since $F(x)-i x \leq 0$ under (9), we have

$$
\begin{aligned}
\alpha \sum_{i} \pi_{i} u_{\alpha}(x, i) & \leq h(x) \\
& \leq K_{r} \text { on } I_{r} .
\end{aligned}
$$

Thus we can obtain (10) by $u_{\alpha}(x, i) \geq 0$.
Next, note that

$$
\begin{equation*}
F(x)-i x \leq-a|x| \tag{15}
\end{equation*}
$$

where $a=\min \{k-d, 1\}>0$. Hence, we have by (14)

$$
a \sum_{i} \pi_{i}\left|\frac{\partial u_{\alpha}}{\partial x}(x, i)\right| \leq h(x)-\alpha \sum_{i} \pi_{i} u_{\alpha}(x, i) .
$$

Thus we deduce $\left|\frac{\partial u_{\alpha}}{\partial x}(x, i)\right| \leq K_{r}$ on I_{r} by (10) and then (11). Finally, (12) follows from (6), (10) and (11) immediately.

Next we show the behavior of a solution to equation(6) as $\alpha \rightarrow 0$.
Theorem 2.2 Under the assumptions of Theorem 2. 1, there exists a subsequence $\alpha \rightarrow 0$ such that

$$
\begin{aligned}
v_{\alpha}(x, i) & :=u_{\alpha}(x, i)-u_{\alpha}(0, i) \quad \rightarrow \quad v_{0}(x, i) \in C^{1}\left(R^{1}\right), \\
\mu(\alpha) & :=\alpha u_{\alpha}(0, i)-A u_{\alpha}(0, i) \quad \rightarrow \quad \mu_{i} \in R^{1}
\end{aligned}
$$

uniformly on each \bar{I}_{r}. The limit $\left(v_{0}(\cdot, i), \mu_{i}\right), i \in Z$, satisfies

$$
\begin{equation*}
\mu_{i}=F\left(\frac{\partial v_{0}}{\partial x}(x, i)\right)-i \frac{\partial v_{0}}{\partial x}(x, i)+A v_{0}(x, i)+h(x), \quad x \in R^{1} . \tag{16}
\end{equation*}
$$

Proof. Let us note that ($v_{\alpha}(\cdot, i), \mu(\alpha)$) satisfies

$$
\begin{equation*}
\alpha v_{\alpha}(x, i)+\mu(\alpha)=F\left(\frac{\partial v_{\alpha}}{\partial x}(x, i)\right)-i \frac{\partial v_{\alpha}}{\partial x}(x, i)+A v_{\alpha}(x, i)+h(x) . \tag{17}
\end{equation*}
$$

By (11) it is obvious that

$$
\begin{equation*}
\left\|v_{\alpha}(\cdot, i)\right\|_{L^{\infty}\left(I_{r}\right)}+\left\|\frac{\partial v_{\alpha}}{\partial x}(\cdot, i)\right\|_{L^{\infty}\left(I_{r}\right)} \leq K_{r}, \quad i \in Z \tag{18}
\end{equation*}
$$

Hence $\left\{v_{\alpha}(\cdot, i)\right\}$ is equicontinuous on \bar{I}_{r}.
Let us define

$$
B_{\alpha}(x)=\alpha v_{\alpha}(x, i)+\mu(\alpha)-A v_{\alpha}(x, i)-h(x) .
$$

We recall that, by assumption, $h(x)$ is Lipschitz continuous on \bar{I}_{r}. Then, by (18)

$$
\left|B_{\alpha}(x)-B_{\alpha}(y)\right| \leq C|x-y|, \quad(C>0: \text { indep. of } \alpha)
$$

From (17) it follows that

$$
B_{\alpha}(x)=F\left(\frac{\partial v_{\alpha}}{\partial x}(x, i)\right)-i \frac{\partial v_{\alpha}}{\partial x}(x, i)
$$

Then we have

$$
\frac{\partial v_{\alpha}}{\partial x}= \begin{cases}\frac{B_{\alpha}(x)}{k-i} & \text { if } \frac{\partial v_{\alpha}}{\partial x}<0 \\ -\frac{B_{\alpha}(x)}{i} & \text { if } \frac{\partial v_{\alpha}}{\partial x} \geq 0\end{cases}
$$

Since $\frac{\partial v_{\alpha}}{\partial x}$ is nondecreasing, we can see

$$
\left|\frac{\partial v_{\alpha}}{\partial x}(x, i)-\frac{\partial v_{\alpha}}{\partial x}(y, i)\right| \leq C|x-y|
$$

Thus $\left\{\frac{\partial v_{\alpha}}{\partial x}(\cdot, i)\right\}$ is also equicontinuous on \bar{I}_{r}. By the Ascoli-Arzelà theorem, there exists a subsequence $\alpha \rightarrow 0$ such that

$$
\begin{align*}
v_{\alpha}(x, i) & \rightarrow v_{0}(x, i) \tag{19}\\
\frac{\partial v_{\alpha}}{\partial x}(x, i) & \rightarrow \frac{\partial v_{0}}{\partial x}(x, i), \quad \text { uniformly on } \bar{I}_{r} . \tag{20}
\end{align*}
$$

By a standard argument, we can choose a subsequence $\alpha \rightarrow 0$, independent of r, such that (19) and (20) are fulfilled on every \bar{I}_{r}. Further, by (10) and (12)

$$
\mu(\alpha) \quad \rightarrow \quad \mu_{i} .
$$

Letting $\alpha \rightarrow 0$ in (17), we deduce (16). The proof is complete.
Now let us show the existence of a solution to equation (1).

Theorem 2. 3 We assume (7), (8) and (9). Then there exists a solution (v, λ) of equation (1) such that $v(x, i)$ is convex on R^{1} and $v(\cdot, i) \in C^{1}\left(R^{1}\right)$.

Proof. Let us define

$$
\begin{aligned}
& v(x, i)=v_{0}(x, i)+f(i) \\
& \lambda=\sum_{i} \pi_{i} \mu_{i}
\end{aligned}
$$

where $\left(v_{0}(\cdot, i), \mu_{i}\right)$ is as in (16) and $f(i)$ is a solution of

$$
\begin{equation*}
A f(i)=-\mu_{i}+\lambda, \quad i \in Z \tag{21}
\end{equation*}
$$

Then it is easily seen that (v, λ) satisfies (1). The convexity of $v(x, i)$ and $v(\cdot, i) \in$ $C^{1}\left(R^{1}\right)$ are immediate from Theorems 2.1 and 2.2.

To complete the proof, it is sufficient to check the existence of $f(i)$. By the irreducible Markov chain $(z(t), P)$ it follows that for any $g \in R^{d}$

$$
E[g(z(s / \alpha))] \rightarrow \sum_{i} \pi_{i} g(i) \quad \text { as } \quad \alpha \rightarrow 0
$$

Hence

$$
\begin{aligned}
\alpha G_{\alpha} g(i) & =\alpha E\left[\int_{0}^{\infty} e^{-\alpha t} g(z(t)) d t\right] \\
& =\int_{0}^{\infty} e^{-s} E[g(z(s / \alpha))] d s \\
& \rightarrow \sum_{i} \pi_{i} g(i)=\pi g
\end{aligned}
$$

where G_{α} denotes the resolvent operator of the Markov chain $(z(t), P)$. According to [4, Lemma 7.3(c,d), p.39], we can obtain the relation:

$$
\left\{g \in R^{d} \mid \pi g=0\right\}=\left\{A g \in R^{d} \mid g \in R^{d}\right\}
$$

We notice by (13) that

$$
\pi(-\mu .+\lambda)=0 .
$$

Therefore we conclude that equation (21) admits a solution $f(i)$.

3 Properties

We investigate properties of a solution to the Bellman equation (1). Now we make the assumption:

$$
\begin{equation*}
h(x) /|x| \quad \rightarrow \quad \infty \quad \text { as }|x| \rightarrow \infty . \tag{22}
\end{equation*}
$$

Lemma 3. 1 Under (22), the convex solution $v(\cdot, i) \in C^{1}\left(R^{1}\right)$ of equation (1) satisfies

$$
\begin{equation*}
\left|\frac{\partial v}{\partial x}(x, i)\right| \quad \rightarrow \quad \infty \quad \text { as }|x| \rightarrow \infty \tag{23}
\end{equation*}
$$

Proof. It is sufficient to show (23) in the case $x \rightarrow-\infty$. By the convexity of $v(x, i)$, we can define M_{i} by

$$
M_{i}=-\lim _{x \rightarrow-\infty} \frac{\partial v}{\partial x}(x, i)
$$

For any sequence $x_{n} \rightarrow-\infty$, we can easily see

$$
\frac{v\left(x_{n}, i\right)}{\left|x_{n}\right|} \rightarrow M_{i}
$$

Suppose that $M_{i}<\infty$ for some $i \in Z$. Then, dividing (1) by $\left|x_{n}\right|$ and passing to the limit, we have by (22)

$$
\begin{aligned}
\lambda /\left|x_{n}\right|=\left[F \left(\frac{\partial v}{\partial x}\right.\right. & \left.\left(x_{n}, i\right)\right)-i \frac{\partial v}{\partial x}\left(x_{n}, i\right)+\sum_{j \neq i} q_{i j} v\left(x_{n}, j\right) \\
& \left.-\sum_{j \neq i} q_{i j} v\left(x_{n}, i\right)+h\left(x_{n}\right)\right] /\left|x_{n}\right| \quad \rightarrow \infty
\end{aligned}
$$

since $v(x, j) \geq a x+b$ for some constants a and b. This is a contradiction. Hence $M_{i}=\infty$ for all $i \in Z$, and thus the assertion follows.

Lemma 3. 2 For the convex solution $v(\cdot, i) \in C^{1}\left(R^{1}\right)$ of equation (1), there is a constant $C>0$ such that

$$
\begin{equation*}
|v(x, i)| \leq C\left(1+|x|^{\kappa+1}\right) \tag{24}
\end{equation*}
$$

Proof. From (1) and (15) it follows that

$$
\lambda \leq-a\left|\frac{\partial v}{\partial x}(x, i)\right|+A v(x, i)+h(x)
$$

If $\frac{\partial v}{\partial x}(x, i)<0$ on some interval $\left(-\infty, x_{1}\right)$ with $x_{1}<0$, then by (8)

$$
\begin{equation*}
-\frac{\partial v}{\partial x}(x, i) \leq \frac{1}{a} A v(x, i)+C\left(1+|x|^{\kappa}\right) \tag{25}
\end{equation*}
$$

Multiplying (25) by π_{i} and summing up, we get by (13)

$$
-\sum_{i} \pi_{i} \frac{\partial v}{\partial x}(x, i) \leq C\left(1+|x|^{\kappa}\right)
$$

Integrating over (x, x_{1}), we have

$$
\sum_{i} \pi_{i}\left(v(x, i)-v\left(x_{1}, i\right)\right) \leq C\left(1+|x|^{k+1}\right)
$$

This relation can be obtained in the case that $\frac{\partial v}{\partial x} \geq 0$ on some interval $\left(x_{2}, \infty\right)$ with $x_{2}>0$. Therefore we can obtain the desired result by $\pi>0$.

Next, we consider the equation

$$
\begin{equation*}
\frac{d x^{*}(t)}{d t}=p^{*}\left(x^{*}(t), z(t)\right)-z(t), \quad x^{*}(0)=x, \quad z(0)=i, \quad P-a . s . \tag{26}
\end{equation*}
$$

where

$$
p^{*}(x, i)=\left\{\begin{array}{cl}
k & \text { if } \frac{\partial v}{\partial x}(x, i)<0 \tag{27}\\
i & \text { if } \\
\frac{\partial v}{\partial x}(x, i)=0 \\
0 & \text { if } \frac{\partial v}{\partial x}(x, i)>0
\end{array}\right.
$$

Lemma 3. 3 Equation (26) admits a unique solution $x^{*}(t)$, which satisfies

$$
\sup _{t}\left\|x^{*}(t)\right\|_{L^{\infty}}<\infty
$$

Proof. Since $p^{*}(x, i)$ is nonincreasing in x, the differential equation (26) has a unique solution by [6, Theorem 6.2].

To complete the proof, let $\bar{x}=\sup \left\{x \in R^{1}: p^{*}(x, i) \geq i\right.$ for some $\left.i \in Z\right\}$. Obviously, \bar{x} is finite, because $p^{*}(x, i)$ is nonnegative. Similarly, let $\tilde{x}=\inf \left\{x \in R^{1}\right.$: $p^{*}(x, i) \leq i$ for some $\left.i \in Z\right\}$. Suppose that \tilde{x} is not finite. Then there exists $i \in \mathrm{Z}$ such that $\frac{\partial v}{\partial x}(x, i) \geq-2 i$ for all $x \in R^{1}$. On the other hand, by Lemma 3.1, $\frac{\partial v}{\partial x}(x, i) \rightarrow-\infty$ as $x \rightarrow-\infty$. This is a contradiction.

Now, if $x^{*}(t)>\bar{x}\left(\right.$ resp. $\left.x^{*}(t)<\tilde{x}\right)$, then $\frac{d x^{*}}{d t}(t)<0\left(\right.$ resp. $\left.\frac{d x^{*}}{d t}(t)>0\right)$. Hence the interval $[\tilde{x}, \bar{x}]$ is an attracting set for (26). Thus the boundedness of $x^{*}(t)$ is immediate.

Lemma 3.4 The constant solution λ of equation (1) satisfies

$$
\begin{equation*}
\lambda=\inf _{p(\cdot) \in \mathcal{P}(x, i)} \limsup _{\alpha \rightarrow 0} \alpha E\left[\int_{0}^{\infty} e^{-\alpha t} h(x(t)) d t \mid x(0)=x, z(0)=i\right] . \tag{28}
\end{equation*}
$$

Proof. For the convex solution $v(\cdot, i) \in C^{1}\left(R^{1}\right)$, let us apply an elementary rule and Dynkin's formula to the first and the second variables of $v(x(t), z(t))$ respectively. Then we have the relation:

$$
\begin{align*}
& E\left[e^{-\alpha t} v(x(t), z(t)) \mid x(0)=x, z(0)=i\right] \\
&= v(x, i)-\alpha E\left[\int_{0}^{t} e^{-\alpha s} v(x(s), z(s)) d s \mid x(0)=x, z(0)=i\right] \\
&+E\left[\left.\int_{0}^{t} e^{-\alpha s} \frac{\partial v}{\partial x}(x(s), z(s)) d x(s) \right\rvert\, x(0)=x, z(0)=i\right] \tag{29}\\
&+E\left[\int_{0}^{t} e^{-\alpha s} A v(x(s), z(s)) d s \mid x(0)=x, z(0)=i\right]
\end{align*}
$$

We notice that the minimum of

$$
\min _{0 \leq p \leq k} p \frac{\partial v}{\partial x}=F\left(\frac{\partial v}{\partial x}\right)
$$

is attained by $p^{*}(x, i)$. By (1), we have

$$
\begin{equation*}
\lambda \leq \frac{\partial v}{\partial x}(x, i)(p-i)+A v(x, i)+h(x) \tag{30}
\end{equation*}
$$

and the equality holds for $p=p^{*}(x, i)$. Clearly, by (3)

$$
|x(t)| \leq C(t+1) \quad \text { for all } \quad p(\cdot) \in \mathcal{P}(x, i)
$$

By Lemma 3.2

$$
\begin{aligned}
E\left[e^{-\alpha t}|v(x(t), z(t))| \mid x(0)\right. & =x, z(0)=i] \\
\leq & C E\left[e^{-\alpha t}\left(1+|x(t)|^{\kappa+1}\right) \mid x(0)=x, z(0)=i\right] \\
\leq & C e^{-\alpha t}\left(1+(t+1)^{\kappa+1}\right) \rightarrow 0 \text { as } t \rightarrow \infty
\end{aligned}
$$

Hence, substituting (30) into (29), we get

$$
\begin{aligned}
\frac{\lambda}{\alpha} \leq & -v(x, i)+\alpha E\left[\int_{0}^{\infty} e^{-\alpha s} v(x(s), z(s)) d s \mid x(0)=x, z(0)=i\right] \\
& +E\left[\int_{0}^{\infty} e^{-\alpha s} h(x(s)) d s \mid x(0)=x, z(0)=i\right]
\end{aligned}
$$

We note that by Lemma 3.2 and 3.3

$$
\begin{aligned}
\alpha^{2} E\left[\int_{0}^{\infty} e^{-\alpha s}|v(x(s), z(s))| d s \mid x(0)=x, z(0)=i\right] \\
\quad \leq \alpha^{2} C \int_{0}^{\infty} e^{-\alpha s}\left(1+\left|x^{*}(s)\right|^{\kappa+1}\right) d s \rightarrow 0 \text { as } \alpha \rightarrow 0 .
\end{aligned}
$$

Thus we deduce

$$
\lambda \leq \inf _{p(\cdot) \in \mathcal{P}(x, i)} \limsup _{\alpha \rightarrow 0} \alpha E\left[\int_{0}^{\infty} e^{-\alpha s} h(x(s)) d s \mid x(0)=x, z(0)=i\right]
$$

and the equality holds for $p(t)=p^{*}\left(x^{*}(t), z(t)\right)$ of (27).

4 An application to ergodic control

We shall study the ergodic control problem to minimize the cost:

$$
J(p(\cdot): x, i)=\underset{T \rightarrow \infty}{\limsup } \frac{1}{T} E\left[\int_{0}^{T} h(x(t)) d t \mid x(0)=x, z(0)=i\right]
$$

over all $p(\cdot) \in U$ subject to

$$
\frac{d x(t)}{d t}=p(t)-z(t), \quad x(0)=x, \quad z(0)=i, \quad \text { P-a.s. }
$$

where U is the set of all nonnegative progressively measurable processes $p(t)$ such that

$$
\begin{aligned}
& p(t) \text { is adapted to } \mathcal{F}_{t}, \\
& 0 \leq p(t) \leq k \\
& \sup _{\boldsymbol{t}} E\left[|x(t)|^{\kappa+1} \mid x(0)=x, z(0)=i\right]<\infty \quad \text { for } \kappa \text { in }(8) .
\end{aligned}
$$

Theorem 4. 1 We assume (7), (8), (9) and (22). Then the optimal control $p^{*}(t)$ is given by

$$
p^{*}(t)=p^{*}\left(x^{*}(t), z(t)\right)
$$

and the value by

$$
J\left(p^{*}(\cdot): x, i\right)=\lambda,
$$

where $p^{*}\left(x^{*}(t), z(t)\right)$ is as in (27).
Proof. From the same formula as (29) it follows that

$$
\begin{aligned}
& E[v(x(T), z(T)) \mid x(0)=x, z(0)=i] \\
& =\quad v(x, i)+E\left[\left.\int_{0}^{T} \frac{\partial v}{\partial x}(x(s), z(s)) d x(s) \right\rvert\, x(0)=x, z(0)=i\right] \\
& \quad+E\left[\int_{0}^{T} A v(x(s), z(s)) d s \mid x(0)=x, z(0)=i\right] .
\end{aligned}
$$

We recall (30) to obtain

$$
\begin{aligned}
& E[v(x(T), z(T)) \mid x(0)=x, z(0)=i] \\
& \quad \geq v(x, i)+E\left[\int_{0}^{T}(\lambda-h(x(s))) d s \mid x(0)=x, z(0)=i\right]
\end{aligned}
$$

where the equality holds for $x=x^{*}$ and $p=p^{*}$ of (27). By Lemma 3.2 and the definition of U

$$
\begin{aligned}
& \frac{1}{T} E[|v(x(T), z(T))| \mid x(0)=x, z(0)=i] \\
& \quad \leq \frac{C}{T} E\left[1+|x(T)|^{k+1} \mid x(0)=x, z(0)=i\right] \quad \rightarrow \quad 0 \quad \text { as } T \rightarrow \infty
\end{aligned}
$$

Also, by Lemma 3. $3, p^{*}(t)$ belongs to U. Thus we deduce

$$
\begin{aligned}
J(p(\cdot): x, i) & =\limsup _{T \rightarrow \infty} \frac{1}{T} E\left[\int_{0}^{T} h(x(s)) d s \mid x(0)=x, z(0)=i\right] \\
& \geq \lambda=J\left(p^{*}(\cdot): x, i\right) .
\end{aligned}
$$

The proof is complete.

5 An Example

In this section we present the example of an solution to the Bellman equation:

$$
\begin{equation*}
\lambda=F\left(\frac{\partial v}{\partial x}(x, i)\right)-i \frac{\partial v}{\partial x}(x, i)+A v(x, i)+h(x), \quad x \in R^{1}, i \in Z \tag{31}
\end{equation*}
$$

in the case that

$$
\begin{align*}
& h(x)=x^{2}, k=3 \tag{32}\\
& Z=\{1,2\}, q_{12}=q_{21}=1 \tag{33}
\end{align*}
$$

Figure Solution $v(x, i)$, $i=1,2$, to the Bellman Equation(31)

We remark that the matrix induced by A is given by

$$
A=\left[\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right]
$$

and the equilibrium distribution π is

$$
\pi=\left(\frac{1}{2}, \frac{1}{2}\right)
$$

Therefore the assumptions of Theorem 4.1 are fulfilled.
Now, recalling the form of optimal control p^{*} and solving the Bellman equation (31) with (32) and (33), we have

$$
\begin{aligned}
& \lambda=0, \\
& v(x, 1)= \begin{cases}\frac{1}{81}\left(18 x^{3}+18 x^{2}-24 x+16-16 e^{-\frac{3}{2} x}\right) & \text { if } x \geq 0 \\
-\frac{1}{81}\left(18 x^{3}+9 x^{2}+12 x+8-8 e^{\frac{3}{2} x}\right) & \text { if } x<0\end{cases} \\
& v(x, 2)= \begin{cases}\frac{1}{81}\left(18 x^{3}-9 x^{2}+12 x-8+8 e^{-\frac{3}{2} x}\right) & \text { if } x \geq 0 \\
-\frac{1}{81}\left(18 x^{3}-18 x^{2}-24 x-16+16 e^{\frac{3}{2} x}\right) & \text { if } x<0\end{cases}
\end{aligned}
$$

Then the optimal control p^{*} is given by

$$
p^{*}(x, i)=\left\{\begin{array}{lll}
0 & \text { if } & x>0 \\
i & \text { if } & x=0 \\
3 & \text { if } & x<0
\end{array}\right.
$$

The solution $v(x, i)$ with (23)-(24), $\mathrm{i}=1,2$ can be shown in Figure.

References

[1] A. Bensoussan, S.P. Sethi, R. Vickson and N. Derzko, Stochastic production planning with production constraints, SIAM J. Control and Optim., 22 (1984), pp. 920-935.
[2] A. Bensoussan and J. Frehse, On Bellman equations of ergodic control in R^{n}, J. reine angew. Math., 429 (1992), pp. 125-160.
[3] E.B. Dynkin, Markov Processes, vols.I,II, Springer-Verlag, Berlin, 1965.
[4] S.N. Ethier and T.G. Kurtz, Markov Processes: Characterization and Convergence, John Wiley \& Sons, New York, 1986.
[5] W.H. Fleming, S.P. Sethi and H.M. Soner, An optimal stochastic production planning problem with randomly fluctuating demand, SIAM J. Control and Optim., 25 (1987), pp. 1494-1502.
[6] W.H. Fleming and H.M. Soner, Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, Berlin, 1993.
[7] M.K. Ghosh, A. Arapostathis and S.I. Marcus, Optimal control of switching diffusions with application to flexible manufacturing systems, SIAM J. Control and Optim., 31 (1993), pp. 1183-1204.
[8] M.K. Ghosh, A. Arapostathis and S.I. Marcus, Optimal control of a hybrid system with pathwise average cost, Proceedings of the 31st CDC, (1992), pp. 1061-1066.
[9] P. Hartman, Ordinary Differential Equations, Birkhäuser, Boston, 1982.
[10] J. Lamperti, Stochastic Processes, Appl. Math. Sci. 23, Springer-Verlag, Berlin, 1977.
[11] S.P. Sethi and Q. Zhang, Hierarchical Decision Making in Stochastic Manufacturing Systems, Birkhäuser, Boston, 1994.
[12] S.P. Sethi, H.M. Soner, Q. Zhang and J. Jiang, Turnpike Sets and their Analysis in Stochastic Production Planning Problems, Mathematics of Operations Research. 17(1992), pp.932-950.

