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Abstract: Pattern formation in parametrically excited gravity-capillary waves is studied

by a weakly nonlinear three-mode system. Coefficients of nonlinear interaction are obtained

by the average Lagrangian method. Stability and bifurcations are investigated in detail. It is

shown that, in capillary waves, supercritical bifurcation of a square pattern is stable to line-

type disturbances with an arbitrary intersecting angle and to intemal stability, patterns

of line and rhombus are stable in the confined subcritical branch and there is no stable

hexagonal pattern. On the other hand, a stable pattern is line in deep gravity waves. The

presented theory are compared with the experiments of capillary wave and interfacial wave

close to the critical point.

Pattern formation in fluids (e.g. B\’enard convection) is an interesting physical phe-

nomenon where nonlinearity plays a dominant role. Recent experimental investigations

have revealed that various patterns of line [2,5,7], square [1,2,8,5], hexagon [6,8,7], triangle

[8], rhombus [6] and quasi-periodicity [7] may be selected in parametrically excited (Fara-

day) surface waves with various fluids and forcing conditions. Tufillaro et al. [1] showed

capillary waves of $\mathrm{n}$-butyl alcohol driven by sinusoidal forcing prefer square pattern at the

onset of wave excitation. On the other hand, Fauve et al. [2] observed that the patterns

on the liquid-vapor interface of $\mathrm{C}\mathrm{O}_{2}$ change from squares to straight lines as the tempera-

ture approaches the critical value. Theoretical analyses were also given on this problem by

somewhat different methods and approximations [4]. In this paper, we derive a three-mode

system of Faraday surface waves, which can describe line, square, hexagonal and rhombic

patterns simultaneously, by using the average Lagrangian method. Coefficients of nonlinear
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interaction between lines intersecting at an arbitrary angle are calculated. One of them

takes values significantly different between in capillary and gravity waves on infinitely deep

fluid. The stability of various modes is examined to disturbances of the third line mode

with an arbitrary intersecting angle in addition to the stability in the two-mode system. It

is shown that a square pattern is stable in the supercritical bifurcation in capillary waves

and a branch of line is stable in gravity waves. Other patterns are unstable or stable only

in the subcritical branches.

The evolution of modes of standing surface waves with external acceleration $4a_{0}\omega^{2}\cos 2\omega t$

is well described by the following Hamiltonian system derived by the average Lagrangian

method:

$[ \frac{d}{d\tau}+\alpha](p_{i}, q_{i})=(-\frac{\partial}{\partial q_{i}},$ $\frac{\partial}{\partial p_{i}})H(p1, q_{1}, \cdots,pn’ qn)$ , $i=1,$ $\cdots,$ $n$ (1)

where $p_{i},$ $q_{i}$ are $i\mathrm{t}\mathrm{h}$ amplitudes of in- and out of phase, $\alpha$ is a linear damping coefficient,

$\tau=\epsilon^{2}\omega t$ is a slow time-variable and $H$ is a Hamiltonian function. The expression of $H$ is

given by

$H= \sum_{i}[\frac{1}{2}\beta_{i^{\Gamma_{i}+\frac{1}{2}}}2A0(pi-2q_{i})2\frac{1}{4}+Air^{4}i]+\sum[\frac{1}{2}c_{ij^{\Gamma_{ij}^{2_{\Gamma^{2}}}}}+\frac{1}{2}i<jD_{i}jM^{2}ij]$ ,

$r_{i}^{2}=p_{i}2+q_{i}^{2}$ , $M_{ij}=p_{i}qj-pjqi$ ,

$\beta_{i}=(1-\omega_{i}2/\omega^{2})/(2\epsilon)$ ,

$A_{0}=a_{0}\kappa_{1}\tanh\kappa_{1}d/\epsilon^{2}$ ,

where $\kappa_{i}$ and $\omega_{i}$ are the wavenumber and angular frequency of the $i\mathrm{t}\mathrm{h}$ mode, $d$ the depth of

the fluid, $\epsilon$ a small expansion parameter. The surface displacement is expressed as

$\eta(t, x)=\sum.,$
$\eta_{i}(t)\psi i(x)$ ,

where $\psi_{i}$ is an eigenmode, $x=(x, y)$ and the amplitude $\eta_{i}$ is given by

$\eta_{i}(t)=\epsilon(\kappa_{i}\tanh\kappa id)-1(pi\cos\omega t+q_{i}\sin\omega t)+O(\epsilon^{2})$
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In the following, we consider cases of degenerate three modes. We put $\beta_{1}=\beta_{2}=\beta_{3}\equiv\beta$

and use convenient notation $C_{ij}=C_{k},$ $D_{ij}=D_{k}$ for $(i,j, k)=(1,2,3),$ $(2,3,1)$ and (3,1,2).

Various patterns are described by superposition of line modes $\psi^{\theta}(x)=\sqrt{2}\cos k\cdot x,$ $\theta=$

$\tan^{-1}(k_{y}/k_{x})$ with different directions of wavevector $k$ . Alternatively, an expression of or-

thonormal eigenmodes $(m, n)=\psi_{mn}(x)=[(2-\delta_{m\mathrm{o})(}2-\delta n\mathrm{o})]^{1}/2\cos kx\cos xkyy$ in a square

container of length $l$ is invoked, where $(k_{x}, k_{y})=(m/l, n/l)$ , in order to use the previous

result of two-mode competitions. Line and rhombic modes may be expressed as $(m, 0)$ [or

$(0, m)]$ and $(m_{1}, n_{1})=(m/2, \sqrt{3}m/2)$ . Square and hexagon are mixed states of $(m, 0),$ $(0, m)$

and $(m, 0),$ $(m_{1}, n_{1})$ , respectively.

Fixed points of the dynamical system (1) can be classified as single-mode (denoted by

$\mathrm{S}_{i})$ , double-mode $(\mathrm{D}_{ij})$ and triple-mode states (T), respectively. A double-mode state is

subdivided into $M_{ij}=0$ (denoted by $\mathrm{D}_{ij}^{\mathrm{a}}$ ) and $M_{ij}\neq 0(\mathrm{D}_{ij}^{\mathrm{b}})$ . Similarly, A triple-mode has

substates $\mathrm{T}^{\mathrm{a}}$ with all vanishing $M_{ij},$
$\mathrm{T}^{\mathrm{b}}$ where one of $M_{i\mathrm{j}}$ vanishes and $\mathrm{T}^{\mathrm{c}}$ with all nonzero

$M_{i\mathrm{j}}$ .

Linear analysis shows that the stability boundary of $\mathrm{S}_{i}$ lies on the hyperbola

$A_{0}=A_{0} \equiv \mathrm{s}i,j[\alpha^{2}+(\frac{A_{i}-C_{ij}-D_{ij}}{A_{i}+cij+D_{ij}}\beta)^{2}]1/2$ ,

which denotes a bifurcation to $\mathrm{D}_{ij}^{\mathrm{b}}$ . The stability curves of $\mathrm{D}_{ij}^{\mathrm{a}}$ are given by

$A0=A_{0}^{\mathrm{M}i}j \mathrm{a},k\equiv[\alpha^{2}+(\frac{E_{ijk}}{F_{ijk}}\beta)^{2}]1/2$ , (2)

$E_{ijk}=A_{i}Aj-Aici-A_{j}C_{j}+C_{i}C_{k}+C_{j}C_{k}-C_{k}^{2}-A_{i}D_{i}+C_{k}D_{i}-A_{j}D_{j}+C_{k}D_{j}$

$F_{ijk}=A_{i}Aj+A_{i}C_{i}+A_{j}C_{j}-c_{i}Ck-Cjck-c_{k}^{2}+A_{i}D_{i}-ckD_{i}+A_{j}D_{j}-C_{k}D_{j}$

and

$A_{0}=A_{0}^{\mathrm{M}} \equiv ij\mathrm{a},\mathrm{b}[\alpha^{2}+(\frac{-D_{k}(A_{i}+Aj-2ck)}{D_{k}(A_{i}+Aj-2c_{k})+2(A_{i}A_{j}-C^{2}k)}\beta)^{2}]1/2$ (3)

Eq. (2) shows the bifurcation to the $\mathrm{T}$ state, and eq. (3) is where $\mathrm{D}_{ij}^{\mathrm{b}}$ coincides with $\mathrm{D}_{ij}^{\mathrm{a}}$ .

The explicit expressions of the nonlinear coefficients $A_{i},$ $C_{i},$ $D_{i}$ derived by using Umeki’s

previous result [3] will be published separately [9]. They can be calculated by two coefficients
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$C(\theta)$ and $D(\theta)$ which describe interaction between two line modes intersecting at an angle

$\theta$ . In capillary waves on infinitely deep fluid, they reduce to

$C_{c}( \theta)=\frac{1}{16}+\frac{3}{8}\cos^{2}\theta+\frac{1}{2}(\cos^{3}\frac{\theta}{2}+\sin\frac{\theta}{2}3)-\frac{\cos\theta/2}{2(1-2\cos^{3}\theta/2)}(1-\cos\frac{\theta}{2}-\frac{1}{2}\cos^{2}\frac{\theta}{2})2$

$- \frac{\sin\theta/2}{2(1-2\sin\theta 3/2)}(1-\sin\frac{\theta}{2}-\frac{1}{2}\sin)^{2}2_{\frac{\theta}{2}}$,

$D_{c}( \theta)=-\frac{1}{4}(3+\cos^{2}\theta)$ .

and gravity waves on infinitely deep fluid lead to

$C_{g}( \theta)=-\frac{1}{4}+\frac{1}{2}(\cos^{4_{\frac{\theta}{2}+}}\sin\frac{\theta}{2}4)+\frac{1}{2}(\cos^{3}\frac{\theta}{2}+\sin\frac{\theta}{2}3)$

$- \frac{\sin\theta/2}{2-\sin\theta/2}(1-\sin\frac{\theta}{2}-\frac{1}{2}\sin^{2}\frac{\theta}{2})^{2}-\frac{\cos\theta/2}{2-\cos\theta/2}(1-\cos\frac{\theta}{2}-\frac{1}{2}\cos)^{2}2_{\frac{\theta}{2}}$ ,

$D_{g}(\theta)=D_{c}(\theta)$ .

In the case of infinitely deep fluid, $A_{1}$ of the line mode can be calculated as

$A_{1}=\mathrm{l}\mathrm{i}\mathrm{m}\underline{1}C(\theta)$ . (4)
2 $\thetaarrow 0$

It is shown that the experimental data of Tufillaro et al. leads to values of nonlinear

coefficients very close to those for capillary waves on infinitely deep fluid.

In order to analyze the stability of various patterns, the following three cases are worth

studying. First, a system of three symmetric line modes, which intersect at the angle of

$\pi/3$ , is considered. It can describe patterns of line by $\mathrm{S}$ , rhombus by $\mathrm{D}^{\mathrm{a}}$ and hexagon by

$\mathrm{T}^{\mathrm{a}}$ . Nonlinear coefficients are symmetric, i.e. $A_{1}=A_{2}=A_{3}$ given by (4), $C_{1}=C_{2}=C_{3}=$

$C(\pi/3)$ and $D_{1}=D_{2}=D_{3}=D(\pi/3)$ .

Second, we consider the linear stability of line and square patterns to line-type dis-

turbance with an arbitrary intersecting angle $\theta$ . We take modes as 1 $=\psi^{0}=(m, 0)$ ,

$2=\psi^{\pi/2}=(0, m)$ and $3=\psi^{\theta}$ . The coefficients are given by $A_{1}=A_{2}=A_{3}$ in (4),

$C_{3}=C(\pi/2),$ $D_{3}=D(T/2),$ $C_{2}=C(\theta),$ $D_{2}=D(\theta),$ $C_{1}=C(\pi/2-\theta)$ and $D_{1}=D(\pi/2-\theta)$ .

Third, modes are taken as $1=(m, 0),$ $3=(m_{3}, n_{3})$ and $2=\psi^{\theta}$ . Nonlinear coefficients are

$A_{1}=A_{2}$ given by (4), $C_{3}=C(\theta),$ $D_{3}=D(\theta),$ $A_{3}=[A_{1}+C(2\varphi)]/2$ , where $\varphi=\tan^{-1}m_{3}/n_{3}$ ,
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$C_{2}=C(\varphi),$ $D_{2}=D(\varphi),$ $C_{1}=[C(\theta-\varphi)+C(\theta+\varphi)]/2$ , and $D_{1}=[D(\theta-\varphi)+D(\theta+\varphi)]/2$ .

If $\theta=\pi/2$ and $\varphi=\pi/3$ are substituted in the third case, line (corresponding to $\mathrm{S}_{1},$ $\mathrm{S}_{2}$ ),

square $(\mathrm{D}_{12}^{\mathrm{a}})$ , hexagon $(\mathrm{D}_{31}^{\mathrm{a}})$ and rhombic patterns $(\mathrm{S}_{3})$ can be treated with simultaneously

in the three-mode system.

Eigenvalues of the Jacobi matrix of (1) for the various patterns are computed while

changing $\theta$ of the mode $\psi^{\theta}$ . The second case is used for the line and square patterns, and

the third case with $\varphi=\pi/3$ for the rhombus and hexagon. For the rhombus, instability

in the direction of two superposed line modes, which can be obtained by the first case, is

also considered. This instability is called internal. Figure 1 shows stable regions of various

modes in the parameter space $(\beta, A_{0})$ for capillary waves (a) and gravity waves (b). In

capillary waves, the square pattern is stable on the supercritical branch $\beta>0$ , the line

and rhombic patterns are stable only on the confined subcritical branches $\beta<0$ and the

hexagon is unstable everywhere. In contrast with it, the line mode is the only stable pattern

in gravity waves.

Computed bifurcation diagrams of the fixed points of the third case with $\theta=\pi/2$ and

$\varphi=\pi/3$ in capillary waves are shown in detail in figure 2. It is shown that a square pattern

is the only supercritically stable branch. The structure in the subcritical branch, which

includes $\mathrm{T}^{\mathrm{c}}$ and $\mathrm{D}_{ij}^{\mathrm{b}}$ states, is more complicated than that in the supercritical branch.

This result explains well the observation of square patterns in the capillary-wave exper-

iment [1]. In addition, the transition from square to line patterns found in the liquid-vapor

interface of $\mathrm{C}\mathrm{O}_{2}$ near the critical point [2] matches with the change of selected patterns in

capillary and gravity waves in the present analysis, since the surface tension decreases as

$T$ approaches $T_{c}$ . A quantitative measurement of dependence of density difference and the

surface tension on $T-T_{c}$ will be necessary in order to confirm this conjecture.
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Figure captions
Figure 1. Stable regions of various patterns in the parameter space $(\beta, A_{0})$ in capillary

waves (a) and gravity waves (b).

Figure 2. Bifurcations of the three-mode system including patterns of line, square,

rhombus and hexagon for $\beta<0$ (a) and $\beta>0$ (b). Stable branches are denoted by thick

curves.
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