Sequential and Parallel Approximation of Maximum Induced－Subgraph Problems on Sparse Graphs

陳致中（Zhi－Zhong Chen）
Dept．of Math．Sci．，Tokyo Denki Univ．，Hatoyama，Saitama 350－03，Japan

Abstract

We show that for an integer $k \geq 2$ and an n－vertex graph G without a $K_{3,3}$（resp．， K_{5} ）minor，we can compute k induced sub－ graphs of G with treewidth $\leq 3 k-4$（resp．， $\leq 6 k-7)$ in $O(k n)$（resp．，$O\left(k n+n^{2}\right)$ ）time such that each vertex of G appears in exactly $k-1$ of these subgraphs．This leads to prac－ tical polynomial－time approximation schemes for various maximum induced－subgraph prob－ lems on graphs without a $K_{3,3}$ or K_{5} mi－ nor．The result extends a well－known result of Baker that there are practical polynomial－time approximation schemes for various maximum induced－subgraph problems on planar graphs．

1 Introduction

Let π be a property on graphs．π is heredi－ tary if，whenever a graph G satisfies π ，every induced subgraph of G also satisfies π ．Sup－ pose π is a hereditary property．The maxi－ mum induced subgraph problem associated with $\pi(\operatorname{MISP}(\pi))$ is the following：Given a graph $G=(V, E)$ ，find a maximum subset U of V that induces a subgraph satisfying π ．Yan－ nakakis showed that various natural MISP (π)＇s are $N P$－hard even if the input graph is re－ stricted to a planar graph［12］．Thus，it is of interest to design efficient approximation algo－ rithms for these $\operatorname{MISP}(\pi)$＇s．

An approximation algorithm A for a max－ imization problem Π achieves a performance ratio of ρ if for every instance I of Π ，the ratio of the optimal value for I to the solution value returned by A is at most ρ ．A polynomial－time approximation scheme（PTAS）for problem Π is an approximation algorithm which given an
instance I of Π and an $\epsilon>0$ ，returns a solu－ tion s within time polynomial in the size of I such that the ratio of the optimal value for I to the value of s is at most $(1+\epsilon)$ ．
Much work has been devoted to design－ ing PTASs for $\operatorname{MISP}(\pi)$＇s restricted to cer－ tain special instances $[1,4,10]$ ．Lipton and Tarjan were the first who proved that vari－ ous $\operatorname{MISP}(\pi)$＇s restricted to planar instances have PTASs［10］．In their approach，they ap－ plied their planar separator theorem．Unfortu－ nately，their schemes are known to be nonprac－ tical．That is，to achieve a reasonable perfor－ mance ratio（e．g．，2），the number of vertices in the input graph and／or the running time of the schemes has to be enormous（ $\approx 2^{2^{400}}$ ）．Later， Baker gave practical PTASs for the same prob－ lems using a different approach［4］．By ex－ tending Lipton \＆Tarjan＇s approach，Alon et al．［1］showed that various $\operatorname{MISP}(\pi)$＇s re－ stricted to graphs without an excluded minor have polynomial－time approximation schemes． Like Lipton and Tarjan＇s schemes，Alon et al．＇s schemes have the shortage of being very nonpractical．Very recently，Eppstein proved that if \mathcal{F} is a family of graphs without an ex－ cluded minor and does not contain all apex graphs，then there is a function f such that every graph in \mathcal{F} with diameter at most D has treewidth $f(D)$［5］．Combining this result to－ gether with Baker＇s approach leads to PTASs for $\operatorname{MISP}(\pi)$＇s restricted to graphs in such a family \mathcal{F} ．Unfortunately，Eppstein＇s proof is based on Robertson \＆Seymour＇s＂planar ob－ struction theorem＂and $f(D)$ is extremely large （even if D is small）［5］．Consequently，the re－ sulting PTASs are nonpractical．
Since neither Alon et al．＇s schemes nor the schemes implied by Eppstein＇s result above are
practical, it is natural to ask whether practical PTASs exist for $\operatorname{MISP}(\pi)$'s restricted to graphs without an excluded minor. In this paper, we give an affirmative answer to this question when the minor is $K_{3,3}$ or K_{5}. Since neither a $K_{3,3}$ minor nor a K_{5} minor can exist in a planar graph, our result extends Baker's result above. Our schemes can be viewed as a modification of Baker's schemes. Recall that Baker's schemes consist of three steps. First, decompose the input planar graph G into k ($k-1$)-outerplanar (induced) subgraphs G_{1}, \cdots, G_{k} such that each vertex of G appears in exactly $k-1$ of these subgraphs. Next, compute an optimal solution s_{i} in each G_{i} using dynamic programming. Finally, output the best one among s_{1}, \cdots, s_{k} as a (nearly optimal) solution in the original graph G. In [4], Baker shows that the output solution has size at least $(k-1) / k$ optimal. Our schemes differ from Baker's only in the first step. This difference is essential because it is impossible to perform the first step above when G is not planar. In our schemes, the input graph G without a $K_{3,3}$ (resp., K_{5}) minor is decomposed into k induced subgraphs with treewidth $\leq 3 k-4$ (resp., $\leq 6 k-7$) in $O(k n)$ (resp., $\left.O\left(k n+n^{2}\right)\right)$ time such that each vertex of G appears in exactly $k-1$ of these subgraphs. This decomposition is based on the nice structures of graphs without a $K_{3,3}$ or K_{5} minor that were developed in $[2,6,9]$. Roughly speaking, these nice structures say that a graph without a $K_{3,3}$ (resp., K_{5}) minor must have very special 3 -connected (resp., 4-connected) components each of which can easily be decomposed into induced subgraphs of bounded treewidth. The problem is how to combine the decompositions of these components into a (single) decomposition of the original graph G. We solve this problem by organizing these components into a suitable tree. The other two steps in our schemes are the same as those in Baker's, and therefore can be done in practical polynomial (often linear) time because various MISP (π) 's restricted to graphs of bounded treewidth can be computed in practical polynomial (often linear) time by dynamic programming [11]. Besides their practicality, our schemes also have
the advantage of being easy to parallelize.

2 Preliminaries

Throughout this paper, a graph is always connected. Unless stated explicitly, a graph is always simple, i.e., has neither multiple edges nor self-loops. Let $G=(V, E)$ be a graph. For convenience, we allow $V=\emptyset$. If $V=\emptyset$, then we call G an empty graph. We sometimes write $V(G)$ instead of V and $E(G)$ instead of E. The neighborhood of a vertex v in G is the set of vertices in G adjacent to v. For $U \subseteq V$, the subgraph of G induced by U is the graph (U, F) with $F=\{\{u, v\} \in E: u, v \in U\}$ and is denoted by $G[U]$. When $U \subseteq V$, we sometimes write $G-U$ instead of $G[V-U]$.

A contraction of an edge $\{u, v\}$ in G is made by identifying u and v with a new vertex whose neighborhood is the union of the neighborhoods of u and v (resulting multiple edges and self-loops are deleted). A contraction of G is a graph obtained from G by a sequence of edge contractions. A graph H is a minor of G if H is the contraction of a subgraph of $G . G$ is H free if G has no minor isomorphic to H. In this paper, we deal with $K_{3,3}$-free graphs and $K_{5^{-}}$ free graphs. Recall that a planar graph must be both $K_{3,3}$-free and K_{5}-free by Kuratowski's Theorem.

A tree-decomposition of G is a pair ($\left\{X_{i}: \quad i \in I\right\}, T$), where $\left\{X_{i} \quad: \quad i \in I\right\}$ is a family of subsets of V and T is a tree with $V(T)=I$ such that the following hold:
(a) $\cup_{i \in I} X_{i}=V$.
(b) For every edge $\{v, w\} \in E$, there is a subset $X_{i}, i \in I$ with $v \in X_{i}$ and $w \in X_{i}$.
(c) For all $i, j, k \in I$, if j lies on the path from i to k in T, then $X_{i} \cap X_{k} \subseteq X_{j}$.

The treewidth of a tree-decomposition $\left(\left\{X_{i}: i \in I\right\}, T\right)$ is $\max \left\{\left|X_{i}\right|-1: i \in I\right\}$. The treewidth of G, denoted by $\operatorname{tw}(G)$, is the minimum treewidth of a tree-decomposition of G, taken over all possible tree-decompositions of G. The treewidth of an empty graph is defined to be 0 .

Lemma 2.1 [Robertson \& Seymour] Let $G=$ (V, E) be a graph, and R_{1} and R_{2} be two subsets of V such that (i) $R_{1} \cap R_{2}=\emptyset$ or $G\left[R_{1} \cap R_{2}\right]$
is a clique and (ii) there is no $\left\{u_{1}, u_{2}\right\} \in E$ with $u_{1} \in R_{1}-R_{2}$ and $u_{2} \in R_{2}-R_{1}$. Then, $\operatorname{tw}\left(G\left[R_{1} \cup R_{2}\right]\right) \leq \max \left\{\operatorname{tw}\left(G\left[R_{1}\right]\right), \operatorname{tw}\left(G\left[R_{2}\right]\right)\right\}$.

A set $S \subseteq V$ is a cutset if $G-S$ is disconnected. A cutset S is a k-cut if $|S|=k$. A k-cut is strong if $G-S$ has at least three connected components. A graph with at least k vertices is k-connected if it has no $(k-1)$-cut. A biconnected component of G is a maximal 2-connected subgraph of G.

Let C be a cutset of G, and G_{1}, \ldots, G_{p} be the connected components of $G-C$. For $1 \leq$ $i \leq p$, let $G_{i} \cup K(C)$ be the graph obtained from $G\left[V\left(G_{i}\right) \cup C\right]$ by adding an edge between every pair of non-adjacent vertices in C. The graphs $G_{1} \cup K(C), \ldots, G_{p} \cup K(C)$ are called the augmented components induced by C. Clearly, if G is k-connected and C is a k-cut of G, then all the augmented components induced by C are also k-connected.

It is well known that the biconnected components of a graph are unique. Let \mathcal{C}^{1} be the set of all 1 -cuts of G, and \mathcal{B} be the set of all biconnected components of G. Consider the bipartite graph $H=\left(\mathcal{C}^{1} \cup \mathcal{B}, F\right)$, where $F=\left\{\{C, B\}: C \in \mathcal{C}^{1}, B \in \mathcal{B}\right.$, and $C \subseteq V(B)\}$. It is known that H is a tree. Suppose that $\mathcal{B}=\left\{B_{1}, \ldots, B_{q}\right\}$. Let $I=\{1, \ldots, q\}$. Root the tree H at B_{1} and define $\mathcal{T}^{1}(G)$ to be the tree whose vertex set is I and edge set is $\left\{\left\{i, i^{\prime}\right\}: B_{i}\right.$ is the grandparent of $B_{i^{\prime}}$ in the rooted tree $H\}$. (Note that $\mathcal{T}^{1}(G)$ is undirected.) The following fact is easy to prove.

Fact $1\left(\left\{V\left(B_{i}\right): \quad i \in I\right\}, \mathcal{T}^{1}(G)\right)$ is a treedecomposition of G and can be computed from G in $O(|V|)$ time.

Suppose that G is 2 -connected. Further suppose that G contains a 2 -cut. Replacing G by the augmented components induced by a 2 -cut is called splitting G. Suppose G is split, the augmented components are split, and so on, until no more splits are possible. The graphs constructed in this way are 3 connected and the set of the graphs are called a 2-decomposition of G. Each element of a 2-decomposition of G is called a split component of G. It is possible for G to have two or
more 2-decompositions. A split component of G must be either a triangle or a 3 -connected graph with at least 4 vertices. Let \mathcal{D} be a 2 decomposition of G. We use $\mathcal{C}^{2}(\mathcal{D})$ to denote the set of the 2 -cuts used to split G into the split components in \mathcal{D}. Consider the bipartite graph $H=\left(\mathcal{C}^{2}(\mathcal{D}) \cup \mathcal{D}, F\right)$, where $F=\{\{C, D\}$ $: C \in \mathcal{C}^{2}(\mathcal{D}), D \in \mathcal{D}$, and $\left.C \subseteq V(D)\right\}$. It is known that H is a tree. Suppose that $\mathcal{D}=\left\{D_{1}, \ldots, D_{q}\right\}$. Let $I=\{1, \ldots, q\}$. Root the tree H at D_{1} and define $\mathcal{T}^{2}(G, \mathcal{D})$ to be the tree whose vertex set is I and edge set is $\left\{\left\{i, i^{\prime}\right\}\right.$: D_{i} is the grandparent of $D_{i^{\prime}}$ in the rooted tree $H\}$. (Note that $\mathcal{T}^{2}(G, \mathcal{D})$ is undirected.) Construct a supergraph $G^{2}(\mathcal{D})$ of G as follows: For each $\{u, v\} \in \mathcal{C}^{2}(\mathcal{D})$ with $\{u, v\} \notin E$, add the edge $\{u, v\}$ to G. Then, we have the following fact:

Fact $2\left(\left\{V\left(D_{i}\right): i \in I\right\}, \mathcal{T}^{2}(G, \mathcal{D})\right)$ is a treedecomposition of $G^{2}(\mathcal{D})$.

3 A technical lemma

Let S be a set. For an integer $k \geq 2$, a k cover of S is a list of k subsets of S such that each element of S is contained in exactly $k-1$ subsets in the list.

Lemma 3.1 Let $G=(V, E)$ be a graph. Let k and b be two integers with $k \geq 2$, and τ be a property on k-covers of subsets of V. Suppose that G has a tree-decomposition $\left(\left\{X_{j}: j \in\right.\right.$ $I\}, T)$ and T has a rooted version such that the following three conditions are satisfied:
(1) For every $j^{\prime} \in I$ and every child j of j^{\prime} in $T, G\left[X_{j^{\prime}} \cap X_{j}\right]$ is a clique.
(2) For the root $r \in I$ of T, we can compute a k-cover $\left\langle R_{1}, \ldots, R_{k}\right\rangle$ of X_{r} in $f\left(k,\left|X_{r}\right|\right)$ time such that
(2a) for every $1 \leq l \leq k, \operatorname{tw}\left(G\left[R_{l}\right]\right) \leq b$ and
(2b) for every child $j^{\prime \prime}$ of r in $T,\left\langle R_{1} \cap\right.$ $\left.X_{j^{\prime \prime}}, \ldots, R_{k} \cap X_{j^{\prime \prime}}\right\rangle$ is a k-cover of $X_{r} \cap X_{j^{\prime \prime}}$ satisfying τ.
(3) For every $j^{\prime} \in I$ and every child j of j^{\prime} in T and every k-cover $\left\langle Y_{1}, \ldots, Y_{k}\right\rangle$ of $X_{j^{\prime}} \cap X_{j}$ satisfying τ, we can compute a k-cover $\left\langle Z_{1}, \ldots, Z_{k}\right\rangle$ of X_{j} in $f\left(k,\left|X_{j}\right|\right)$ time such that
(3a) for every $1 \leq l \leq k, Y_{l}=Z_{l} \cap X_{j^{\prime}}$,
(3b) for every $1 \leq l \leq k, \operatorname{tw}\left(G\left[Z_{l}\right]\right) \leq b$, and
(3c) for every child $j^{\prime \prime}$ of $j,\left\langle Z_{1} \cap X_{j^{\prime \prime}}, \ldots, Z_{k} \cap\right.$ $\left.X_{j^{\prime \prime}}\right\rangle$ is a k-cover of $X_{j} \cap X_{j^{\prime \prime}}$ satisfying τ. Then, we can compute a k-cover $\left\langle V_{1}, \ldots, V_{k}\right\rangle$ of V in $O\left(\sum_{j \in I} f\left(k,\left|X_{j}\right|\right)\right)$ time such that for each $1 \leq l \leq k, \operatorname{tw}\left(G\left[V_{l}\right]\right) \leq b$ and $V_{l} \cap X_{r}=R_{l}$.

Proof. Consider the following algorithm for computing $\left\langle V_{1}, \ldots, V_{k}\right\rangle$:

Algorithm 1

1. Set V_{1}, \ldots, V_{k} to be the empty set.
2. While traversing T (starting at its root r) in a breadth-first manner, perform the following steps:
2.1. If the current vertex j is r, then compute a k-cover $\left\langle R_{1}, \ldots, R_{k}\right\rangle$ of X_{r} satisfying the two conditions (2a) and (2b) above, and further add the vertices in each $R_{l}, 1 \leq l \leq k$, to V_{l}.
2.2. If the current vertex j is not r, then find the parent j^{\prime} of j in T, set $\left\langle Y_{1}, \ldots, Y_{k}\right\rangle=\left\langle V_{1} \cap\left(X_{j^{\prime}} \cap\right.\right.$ $\left.\left.X_{j}\right), \ldots, V_{k} \cap\left(X_{j^{\prime}} \cap X_{j}\right)\right\rangle$, compute a k-cover $\left\langle Z_{1}, \ldots, Z_{k}\right\rangle$ of X_{j} satisfying the conditions (3a), (3b), and (3c) above, and add the vertices in each $Z_{l}, 1 \leq l \leq k$, to V_{l}.
3. Output $\left\langle V_{1}, \ldots, V_{k}\right\rangle$.

Next, we prove that the output $\left\langle V_{1}, \ldots, V_{k}\right\rangle$ of Algorithm 1 satisfies that $\operatorname{tw}\left(G\left[V_{l}\right]\right) \leq b$ and $V_{l} \cap X_{r}=R_{l}$ for each $1 \leq l \leq k$. First note that the while-loop in Algorithm 1 is executed $|I|$ times. W.l.o.g., we may assume that $I=\{1, \ldots,|I|\}$ and that $j+1$ is traversed by Algorithm 1 right after j for each $1 \leq j \leq|I|-1$. Then, $r=1$. For each $1 \leq j \leq|I|$ and each $1 \leq l \leq k$, let V_{l}^{j} be the content of the variable V_{l} right after the j th iteration of the whileloop. We claim that for each $1 \leq j \leq|I|$, $\left\langle V_{1}^{j}, \ldots, V_{k}^{j}\right\rangle$ is a k-cover of $\cup_{1 \leq i \leq j} X_{i}$ satisfying the following three conditions:
(C1) $\operatorname{tw}\left(G\left[V_{l}^{j}\right]\right) \leq b$ and $V_{l}^{j} \cap X_{1}=R_{l}$ for each $1 \leq l \leq k$.
(C2) For each son $j^{\prime \prime}$ of j in $T,\left\langle V_{1}^{j} \cap\left(X_{j} \cap\right.\right.$ $\left.\left.X_{j^{\prime \prime}}\right), \ldots, V_{k}^{j} \cap\left(X_{j} \cap X_{j^{\prime \prime}}\right)\right\rangle$ is a k-cover of $X_{j} \cap$ $X_{j^{\prime \prime}}$ satisfying τ.
(C3) For each $1 \leq i \leq j$ and each child i^{\prime} of i in $T,\left\langle V_{1}^{j} \cap\left(X_{i} \cap X_{i^{\prime}}\right), \ldots, V_{k}^{j} \cap\left(X_{i} \cap X_{i^{\prime}}\right)\right\rangle=$ $\left\langle V_{1}^{i} \cap\left(X_{i} \cap X_{i^{\prime}}\right), \ldots, V_{k}^{i} \cap\left(X_{i} \cap X_{i^{\prime}}\right)\right\rangle$.

The lemma follows from the claim. We can prove the claim by induction on j.

Let $G=(V, E)$ be a graph, and U be a subset of V. A k-cover L of U is completely unbalanced if exactly one set in L is empty and the others are equal to U. A k-cover L of U is weakly unbalanced if there are one vertex $u \in U$ and two sets U_{1} and U_{2} in L such that $U_{1}=\{u\}, U_{2}=U-\{u\}$, and all the sets in L except U_{1} and U_{2} are equal to U. A k-cover of U is unbalanced if it is either completely unbalanced or weakly unbalanced. Note that if $|U| \leq 2$, then every k-cover of U must be unbalanced. Hereafter, the property τ in Lemma 3.1 means "unbalanced", i.e., a k-cover L of U satisfies τ if and only if L is unbalanced.

4 Approximating MISP (π)'s on $K_{3,3}$-free graphs

Lemma 4.1 Let $G=(V, E)$ be a connected planar graph, and k be an integer ≥ 2. Suppose that s_{1} and s_{2} are two adjacent vertices in G and $\left\langle Y_{1}, \ldots, Y_{k}\right\rangle$ is an unbalanced k-cover of $\left\{s_{1}, s_{2}\right\}$. Then, we can compute a k-cover $\left\langle Z_{1}, \ldots, Z_{k}\right\rangle$ of V in $O(k|V|)$ time such that $\operatorname{tw}\left(G\left[Z_{l}\right]\right) \leq 3 k-4$ and $Z_{l} \cap\left\{s_{1}, s_{2}\right\}=Y_{l}$ for each $1 \leq l \leq k$.

Lemma 4.2 [2, 6]. Each split component of a 2-connected $K_{3,3}$-free graph is either isomorphic to K_{5} or planar.

Lemma 4.3 Let $G=(V, E)$ be a 2 -connected $K_{3,3}$-free graph. Then, for any $k \geq 2$, we can compute a k-cover $\left\langle V_{1}, \ldots, V_{k}\right\rangle$ of V in $O(k|V|)$ time such that $\operatorname{tw}\left(G\left[V_{l}\right]\right) \leq 3 k-4$ for each $1 \leq l \leq k$.

Proof. Let $\mathcal{D}=\left\{D_{1}, \ldots, D_{q}\right\}$ be a 2 decomposition of G, and let $I=\{1, \ldots, q\}$. It is known that \mathcal{D} can be computed in $O(|V|)$ time [7]. Moreover, $\sum_{i \in I}\left|V\left(D_{i}\right)\right|=O(|V|)$ [7]. W.l.o.g., we may assume that $G^{2}(\mathcal{D})=G$ because a k-cover $\left\langle V_{1}, \ldots, V_{k}\right\rangle$ of V such that
the subgraph of $G^{2}(\mathcal{D})$ induced by V_{l} has treewidth $\leq 3 k-4$ for each $1 \leq l \leq k$ is also a k-cover $\left\langle V_{1}, \ldots, V_{k}\right\rangle$ of V such that $\operatorname{tw}\left(G\left[V_{l}\right]\right) \leq 3 k-4$ for each $1 \leq l \leq k$. Then, by Fact $2,\left(\left\{V\left(D_{j}\right): j \in I\right\}, \mathcal{T}^{2}(G, \mathcal{D})\right)$ is a tree-decomposition of G. For convenience, let $\left.T=\mathcal{T}^{2}(G, \mathcal{D})\right), b=3 k-4$, and $X_{j}=V\left(D_{j}\right)$ and $f\left(k,\left|X_{j}\right|\right)=O\left(k\left|X_{j}\right|\right)$ for each $j \in I$. We want to apply Lemma 3.1 to the graph G and the tree-decomposition $\left(\left\{X_{j}: j \in I\right\}, T\right)$. To this end, we first (arbitrarily) choose an $r \in I$ and root T at r.

Clearly, the condition (1) in Lemma 3.1 is satisfied by G and $\left(\left\{X_{j}: j \in I\right\}, T\right)$. By Lemma 4.2, $G\left[X_{r}\right]=D_{r}$ is either isomorphic to K_{5} or planar. Let us first suppose that $G\left[X_{r}\right]$ is isomorphic to K_{5}. Then, we set $R_{1}=\emptyset$ and $R_{2}=\cdots=R_{k}=X_{r}$ if $k \geq 3$; otherwise ($k=2$), we arbitrarily choose two vertices v_{1} and v_{2} in X_{r} and set $R_{1}=\left\{v_{1}, v_{2}\right\}$ and $R_{2}=$ $X_{r}-R_{1}$. Obviously, $\left\langle R_{1}, \ldots, R_{k}\right\rangle$ is a k-cover of X_{r} satisfying the condition (2a) in Lemma 3.1. $\left\langle R_{1}, \ldots, R_{k}\right\rangle$ also satisfies the condition (2b) in Lemma 3.1 since $\left|X_{r} \cap X_{j^{\prime \prime}}\right|=2$ for every child $j^{\prime \prime}$ of r in T. Next, suppose that $G\left[X_{r}\right]$ is a planar graph. Then, we arbitrarily choose an edge $\left\{s_{1}, s_{2}\right\}$ in $G\left[X_{r}\right]$, set $Y_{1}=\emptyset$ and $Y_{2}=\cdots=Y_{k}=\left\{s_{1}, s_{2}\right\}$, and use Lemma 4.1 to compute a k-cover $\left\langle R_{1}, \ldots, R_{k}\right\rangle$ of X_{r} in $O\left(k\left|X_{r}\right|\right)$ time such that $\mathrm{tw}\left(G\left[R_{l}\right]\right) \leq 3 k-4$ for each $1 \leq l \leq k$. Clearly, $\left\langle R_{1}, \ldots, R_{k}\right\rangle$ satisfies the condition (2a) in Lemma 3.1. $\left\langle R_{1}, \ldots, R_{k}\right\rangle$ also satisfies the condition (2b) in Lemma 3.1 since $\left|X_{r} \cap X_{j^{\prime \prime}}\right|=2$ for every child $j^{\prime \prime}$ of r in T.

Fix a $j^{\prime} \in I$ and a child j of j^{\prime} in T. Let $\left\langle Y_{1}, \ldots, Y_{k}\right\rangle$ be an unbalanced k-cover of $X_{j^{\prime}} \cap$ X_{j}. W.l.o.g., we may assume that $\left|Y_{l}\right| \leq\left|Y_{l+1}\right|$ for each $1 \leq l \leq k-1$. By Lemma 4.2, $G\left[X_{j}\right]=$ D_{j} is either isomorphic to K_{5} or planar. Let us first suppose that $G\left[X_{j}\right]$ is isomorphic to K_{5}. If $k \geq 3$, then we set $Z_{1}=Y_{1}$ and $Z_{l}=Y_{l} \cup\left(X_{j}-\right.$ $X_{j^{\prime}}$) for each $2 \leq l \leq k$. Otherwise ($k=2$), we arbitrarily choose a vertex $v \in X_{j}-X_{j^{\prime}}$ and set $Z_{1}=Y_{1} \cup\left(X_{j}-\left(X_{j^{\prime}} \cup\{v\}\right)\right)$ and $Z_{2}=Y_{2} \cup\{v\}$. Then, no matter what k is, $\left\langle Z_{1}, \ldots, Z_{k}\right\rangle$ is a k-cover of X_{j} satisfying the conditions (3a), (3b), and (3c) in Lemma 3.1. Next, suppose that $G\left[X_{j}\right]$ is planar. Let $X_{j^{\prime}} \cap X_{j}=\left\{s_{1}, s_{2}\right\}$.

Note that s_{1} and s_{2} are adjacent in G. We use Lemma 4.1 to compute a k-cover $\left\langle Z_{1}, \ldots, Z_{k}\right\rangle$ of X_{j}. It should be easy to see that $\left\langle Z_{1}, \ldots, Z_{k}\right\rangle$ is a k-cover of X_{j} satisfying the conditions (3a), (3b), and (3c) in Lemma 3.1.

Theorem 4.4 Let $G=(V, E)$ be a $K_{3,3}$-free graph. Then, for any $k \geq 2$, we can compute a k-cover $\left\langle V_{1}, \ldots, V_{k}\right\rangle$ of V in $O(k|V|)$ time such that $\operatorname{tw}\left(G\left[V_{l}\right]\right) \leq 3 k-4$ for $1 \leq l \leq k$.

Corollary 4.5 Let π be a hereditary property on graphs. Suppose that $\operatorname{MISP}(\pi)$ restricted to n-vertex graphs of treewidth $\leq k$ can be solved in $T_{\pi}(k, n)$ time. Then, given an integer $k \geq 2$ and a $K_{3,3}$-free graph $G=(V, E)$, we can compute a subset U of V in $O\left(k|V|+T_{\pi}(3 k-\right.$ $4,|V|))$ time such that $G[U]$ satisfies π and $|U|$ is at least $(k-1) / k$ optimal.

For various properties $\pi, \quad T_{\pi}(k, n)=$ $2^{p(k)} q(n)$ where p and q are polynomials of low degree (often, of degree 1) [11]. Hence, for such properties $\pi, \operatorname{MISP}(\pi)$ restricted to $K_{3,3^{-}}$ free graphs has a practical polynomial-time approximation scheme by Corollary 4.5.

5 Approximating $\operatorname{MISP}(\pi)$'s on K_{5}-free graphs

We start by giving several definitions. Suppose that G is 3 -connected. Further suppose that G contains a strong 3 -cut. Replacing G by the augmented components induced by a strong 3 cut is called strongly splitting G. Suppose G is strongly split, the augmented components are strongly split, and so on, until no more strong splits are possible. The set of the graphs constructed in this way are called a strong 3decomposition of G.

Definition 5.1 We define W to be the graph obtained from a 8 -cycle by adding 4 crossing edges. More precisely, $W=\left(\{1, \ldots, 8\}, E_{1} \cup\right.$ $\left.E_{2}\right)$, where $E_{1}=\{\{i, i+1\}: 1 \leq i \leq 7\} \cup$ $\{\{8,1\}\}$ and $E_{2}=\{\{i, i+4\}: 1 \leq i \leq 4\}$. A K_{5}-free graph G is said to be nice if G is 3 -connected, nonplanar, and is not isomorphic to $K_{3,3}$ or W.

Fact 3 [9] Suppose that G is a nice K_{5}-free graph. Let C be a strong 3 -cut in G. Then, the augmented components induced by C are also nice K_{5}-free graphs. Moreover, G has another strong 3 -cut C^{\prime} if and only if C^{\prime} is a strong 3 -cut of some augmented component of G induced by C.

Fact 4 [9] A nice K_{5}-free graph has a unique strong 3 -decomposition. Moreover, each graph in the strong 3 -decomposition is planar.

Suppose that $G=(V, E)$ is a nice $K_{5^{-}}$ free graph. Let $\mathcal{D}^{3}(G)$ be the strong 3decomposition of G, and $\mathcal{C}^{3}(G)$ be the set of all strong 3 -cuts in G. Define $H(G)$ to be the bipartite graph $\left(\mathcal{D}^{3}(G) \cup \mathcal{C}^{3}(G), F\right)$, where $F=\left\{\{D, C\}: D \in \mathcal{D}^{3}(G), C \in \mathcal{C}^{3}(G)\right.$, and $C \subseteq V(D)\}$.

Lemma 5.2 (1) Every edge of G is contained in some graph in $\mathcal{D}^{3}(G)$.
(2) If a subset S of V induces a triangle but $S \notin \mathcal{C}^{3}(G)$, then exactly one graph in $\mathcal{D}^{3}(G)$ contains the three vertices in S.
(3) $H(G)$ is a tree. Moreover, if some vertex $u \in V$ is contained in two graphs D and D^{\prime} in $\mathcal{D}^{3}(G)$, then u is contained in every graph on the path between D and D^{\prime} in $H(G)$.
Suppose that $\mathcal{D}^{3}(G)=\left\{D_{1}, \ldots, D_{q}\right\}$. Let $I=\{1, \ldots, q\}$. Root the tree $H(G)$ at D_{1} and define $\mathcal{T}^{3}(G)$ to be the tree whose vertex set is I and edge set is $\left\{\left\{i, i^{\prime}\right\}: D_{i}\right.$ is the grandparent of $D_{i^{\prime}}$ in the rooted tree $\left.H(G)\right\}$. (Note that $\mathcal{T}^{3}(G)$ is undirected.) Construct a supergraph G^{3} of G as follows: For each strong 3 -cut C and each pair of nonadjacent vertices u and v in C, add the edge $\{u, v\}$ to G.
Corollary $5.3\left(\left\{V\left(D_{i}\right): i \in I\right\}, \mathcal{T}^{3}(G)\right)$ is a tree-decomposition of G^{3}.
Lemma 5.4 Let $G=(V, E)$ be a connected planar graph, and k be an integer ≥ 2. Suppose that S is a subset of V such that $G[S]$ is a triangle, and $\left\langle Y_{1}, \ldots, Y_{k}\right\rangle$ is an unbalanced k-cover of S. Then, we can compute a k-cover $\left\langle Z_{1}, \ldots, Z_{k}\right\rangle$ of V in $O(k|V|)$ time such that $\operatorname{tw}\left(G\left[Z_{l}\right]\right) \leq 6 k-7$ and $Z_{l} \cap S=Y_{l}$ for each $1 \leq l \leq k$, and $\left\langle Z_{1} \cap S^{\prime}, \ldots, Z_{k} \cap S^{\prime}\right\rangle$ is an unbalanced k-cover of S^{\prime} for all subsets S^{\prime} of V with $G\left[S^{\prime}\right]$ being a triangle.

Lemma 5.5 Let $G=(V, E)$ be a nice K_{5} free graph, and k be an integer ≥ 2. Suppose that s_{1} and s_{2} are two adjacent vertices in G and $\left\langle U_{1}, \ldots, U_{k}\right\rangle$ is an unbalanced k-cover of $\left\{s_{1}, s_{2}\right\}$. Then, we can compute a k-cover $\left\langle V_{1}, \ldots, V_{k}\right\rangle$ of V in $O\left(k|V|+|V|^{2}\right)$ time such that $\operatorname{tw}\left(G\left[V_{l}\right]\right) \leq 6 k-7$ and $V_{l} \cap\left\{s_{1}, s_{2}\right\}=U_{l}$ for each $1 \leq l \leq k$.
Lemma 5.6 Let $G=(V, E)$ be a 2 -connected K_{5}-free graph. Then, for any $k \geq 2$, we can compute a k-cover $\left\langle V_{1}, \ldots, V_{k}\right\rangle$ of V in $O(k|V|+$ $|V|^{2}$) time such that $\operatorname{tw}\left(G\left[V_{l}\right]\right) \leq 6 k-7$ for each $1 \leq l \leq k$.
Proof. Let $\mathcal{D}=\left\{D_{1}, \ldots, D_{q}\right\}$ be a 2 decomposition of G, and let $I=\{1, \ldots, q\}$. It is known that \mathcal{D} can be computed in $O(|V|)$ time [7]. W.l.o.g., we may assume that $G^{2}(\mathcal{D})=G$ because a k-cover $\left\langle V_{1}, \ldots, V_{k}\right\rangle$ of V such that the subgraph of $G^{2}(\mathcal{D})$ induced by V_{l} has treewidth $\leq 6 k-7$ for each $1 \leq l \leq k$ is also a k-cover $\left\langle V_{1}, \ldots, V_{k}\right\rangle$ of V such that $\operatorname{tw}\left(G\left[V_{l}\right]\right) \leq 6 k-7$ for each $1 \leq l \leq k$. Then, by Fact 2 , $\left(\left\{V\left(D_{j}\right): j \in I\right\}, \mathcal{T}^{2}(G, \mathcal{D})\right)$ is a treedecomposition of G. For convenience, let $T=$ $\mathcal{T}^{2}(G, \mathcal{D}), b=6 k-7$, and $X_{j}=V\left(D_{j}\right)$ and $f\left(k,\left|X_{j}\right|\right)=O\left(k\left|X_{j}\right|+\left|X_{j}\right|^{2}\right)$ for each $j \in I$. We want to apply Lemma 3.1 to the graph G and the tree-decomposition ($\left\{X_{j}: j \in I\right\}, T$). To this end, we first (arbitrarily) choose an $r \in I$ and root T at r.

We only prove that the condition (3) in Lemma 3.1 is satisfied by G and ($\left\{X_{j}: j \in\right.$ $I\}, T$). Fix a $j^{\prime} \in I$ and a child j of j^{\prime} in T. Let $\left\langle Y_{1}, \ldots, Y_{k}\right\rangle$ be an unbalanced k-cover of $X_{j^{\prime}} \cap X_{j}$, and let $X_{j^{\prime}} \cap X_{j}=\left\{s_{1}, s_{2}\right\}$. Recall that $\left\{s_{1}, s_{2}\right\}$ is an edge in both $G\left[X_{j^{\prime}}\right]$ and $G\left[X_{j}\right]$. Moreover, by symmetry, we may assume that $\left|Y_{l}\right| \leq\left|Y_{l+1}\right|$ for all $1 \leq l \leq k-1$. We distinguish four cases as follows:

Case 1': $G\left[X_{j}\right]$ is planar. Then, as stated in the proof of Lemma 4.3, we can compute a k-cover $\left\langle Z_{1}, \ldots, Z_{k}\right\rangle$ of X_{j} in $O\left(k\left|X_{j}\right|\right)$ time satisfying the conditions (3a), (3b), and (3c) in Lemma 3.1.

Case 2': $G\left[X_{j}\right]$ is isomorphic to $K_{3,3}$. Then, we set $Z_{1}=Y_{1}$ and $Z_{l}=Y_{l} \cup\left(X_{j}-X_{j^{\prime}}\right)$ for each $2 \leq l \leq k$. Clearly, $\left\langle Z_{1}, \ldots, Z_{k}\right\rangle$ is a k cover of X_{j} satisfying the conditions (3a), (3b), and (3c) in Lemma 3.1.

Case 3': $G\left[X_{j}\right]$ is isomorphic to the graph W (see Definition 5.1). If $k \geq 3$, then we set $Z_{1}=Y_{1}$ and $Z_{l}=Y_{l} \cup\left(X_{j}-X_{j^{\prime}}\right)$ for each $2 \leq l \leq k$; otherwise ($k=2$), we (arbitrarily) choose a subset A of $X_{j}-X_{j^{\prime}}$ with $|A|=3$ and set $Z_{1}=Y_{1} \cup A$ and $Z_{2}=X_{j}-Z_{1}$. Then, it is easy to verify that $\left\langle Z_{1}, \ldots, Z_{k}\right\rangle$ is a k-cover of X_{j} satisfying the conditions (3a), (3b), and (3c) in Lemma 3.1.
Case 4': $G\left[X_{j}\right]$ is a nice K_{5}-free graph. Then, by Lemma 5.5 , we can compute a k $\operatorname{cover}\left\langle Z_{1}, \ldots, Z_{k}\right\rangle$ of X_{j} in $O\left(k\left|X_{j}\right|+\left|X_{j}\right|^{2}\right)$ time such that $\operatorname{tw}\left(G\left[Z_{l}\right]\right) \leq 6 k-7$ and $Z_{l} \cap\left\{s_{1}, s_{2}\right\}=$ Y_{l} for each $1 \leq l \leq k$. From this, it should be clear that $\left\langle Z_{1}, \ldots, Z_{k}\right\rangle$ satisfies the conditions. (3a), (3b), and (3c) in Lemma 3.1.
Note that one of the four cases must occur. Thus, by the discussions above and Lemma 3.1, we have the lemma.

Theorem 5.7 Let $G=(V, E)$ be a K_{5}-free graph. Then, for any $k \geq 2$, we can compute a k-cover $\left\langle V_{1}, \ldots, V_{k}\right\rangle$ of V in $O\left(k|V|+|V|^{2}\right)$ time such that $\operatorname{tw}\left(G\left[V_{l}\right]\right) \leq 6 k-7$ for each $1 \leq l \leq k$.

Corollary 5.8 Let π be a hereditary property on graphs. Suppose that $\operatorname{MISP}(\pi)$ restricted to n-vertex graphs of treewidth $\leq k$ can be solved in $T_{\pi}(k, n)$ time. Then, given an integer $k \geq 2$ and a K_{5}-free graph $G=(V, E)$, we can compute a subset U of V in $O\left(k|V|+|V|^{2}+\right.$ $\left.T_{\pi}(6 k-7,|V|)\right)$ time such that $G[U]$ satisfies π and $|U|$ is at least $(k-1) / k$ optimal.

For various properties $\pi, \quad T_{\pi}(k, n)=$ $2^{p(k)} q(n)$ where p and q are polynomials of low degree (often, of degree 1) [11]. Hence, for such properties $\pi, \operatorname{MISP}(\pi)$ restricted to K_{5}-free graphs has a practical polynomial-time approximation scheme by Corollary 5.8.

References

[1] N. Alon, P. Seymour, and R. Thomas, A separator theorem for graphs without an excluded minor and its applications, STOC'90.
[2] T. Asano, An approach to the subgraph homeomorphism problem, TCS 38 (1985).
[3] H.L. Bodlaender, Planar graphs with bounded treewidth, Technical Report.
[4] B.S. Baker, Approximation algorithms for NP-complete problems on planar graphs, J. ACM 41 (1994).
[5] D. Eppstein, Subgraph isomorphism in planar graphs and related problems, SODA '95.
[6] D.W. Hall, A note on primitive skew curves, Bull. Amer. Math. Soc. 49 (1943).
[7] J.E. Hopcroft and R.E. Tarjan, Dividing a graph into triconnected components, SIAM-JC 2 (1973), 135-158.
[8] A. Kanevsky and V. Ramachandran, Improved algorithms for graph fourconnectivity, FOCS'87.
[9] A. Kézdy and P. McGuinness, Sequential and parallel algorithms to find a $K_{5} \mathrm{mi}$ nor, SODA'92.
[10] R.J. Lipton and R.E. Tarjan, Applications of a planar separator theorem, SIAM-JC 9 (1980), 615-627.
[11] J.A. Telle and A. Proskurowski, Practical algorithms on partial k-trees with an application to domination-like problems, WADS'93, LNCS 709.
[12] M. Yannakakis, Node- and edge-deletion NP-complete problems, STOC'78.

