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Abstract. We consider some nonlinear diffusion equation which consists of a degenerate
diffusion term and an absorption term. When the effect of the absorption is stronger than
that of the diffusion, there is a possibility of a support to split into several disjoint sets.
In this paper, we construct a finite difference scheme which can be applied to the problem
of support splitting. A condition under which the support begins to split into two disjoint
sets will be stated.
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1. Introduction.

Nonlinear diffusion equations with absorption are used to describe simple mathematical
models in several fields. The representative models appear in the flow through porous
medium and in the propagation of thermal wave. The volumetric absorption is caused by
evaporation in the former and by radiation in the latter. The most interesting phenomenon
is the appearance of the total extinction in a finite time, when the effect of absorption is
strong. To investigate such a phenomenon, Kalashinikov [3] considered the following initial
value problem:

$v_{t}=(v^{m})_{x}x-Cv^{p}$ , $t>0$ , $x\in R$ , (1.1)
$v(0, x)=v^{0}(x)$ , $x\in R$ , (1.2)

where $m>1,$ $c>0,$ $p>0$ and $m+p\geq 2$ , and $v^{0}(x)$ is bounded and nonnegative and
has compact support. He shows that the solution $v(t, x)$ of $(1.1)-(1.2)$ has the following
properties:

i) $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}v(t, \cdot)$ is compact in $R$ for each $t>0$ satisfying $v(t, x)\not\equiv 0$ ;
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ii) When $p\geq 1$ , the following inequality holds:

$v(t,\tilde{x})>0$ for $t>0$ , if $v(0,\tilde{x})>0$ , (1.3)

which implies that $v(t, x)$ never becomes extinct in a finite time;

iii) When $0<p<1$ , there exists a constant $T>0$ such that

$v(t, \cdot)\equiv 0$ for $t\geq T$ and $v(t, \cdot)\not\equiv 0$ for $t<T$ , (1.4)

which implies that $v(t, x)$ becomes extinct in a finite time.

The first property means the appearance of the interface curves between $v>0$ and $v=0$ ,
and the third one means that the fluid in the medium completely evaporates in a finite
time. By these properties we address ourselves to the following problem when the initial
value $v(0, x)$ has two local maxima and $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}v(0, \cdot)$ is connected: “Does $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}v(t, \cdot)$ split
into two disjoint sets at some time?”

Rosenau and Kamin [7] obtain the numerical solutions, which show that the support
splits into several disjoint sets in the case where $m+p=2$ . However, they do not dis-
cuss the theoretical results. In the same case, Nakaki [6] introduces a numerical scheme
to $(1.1)-(1.2)$ , and demonstrates some numerical simulations. Unfortunately, the stability
and convergence of the scheme is not proved when the initial function $v(0, x)$ is not con-
cave downward within its support. To exclude such a difficulty, Tomoeda and Nakaki [9]
improve his numerical scheme and prove the stability and convergence of the scheme. They
show some numerical simulations for the problem of support splitting, however, theoretical
discussion is not done.

In this paper, we treat this problem $(1.1)-(1.2)$ in the specific case where

$m+p=2$ $(m>1, 0<p<1)$ . (1.5)

The aim of this paper is to propose a numerical scheme which can be applied to the
problem of support splitting. For this end we establish the stability and convergence of our
scheme, and obtain a sufficient condition under which the initial support begins to split
into at least two disjoint sets. The theorems in this paper will be proved in [10].

2. Numerical Scheme.

We use the operator decomposition method, which is introduced by Graveleau and
Jamet [1] for the equation (1.1) with $c=0$ . This method is also used by Mimura, Nakaki
and Tomoeda [5] when $c>0$ and $p\geq m$ or $p=1$ . Put $u=v^{m-1}$ , then (1.1) and (1.2) can
be rewritten as

$u_{t}=Pu+Hu+Du$ , $t>0$ , $x\in R$ , (2.1)
$u(0, x)=u(0x)$ , $x\in R$ , (2.2)
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where
$Pu=muu_{xx}$ , $Hu=a(u_{x})^{2}$ , $Du–C’(m-1)$ , (2.3)

$u^{0}(x)=(v^{0}(X))^{m-1}$ , $a= \frac{m}{m-1}$ and $c’=c(m-1)$ . (2.4)

Then our difference scheme is described as follows:
Find the $\mathrm{s}\mathrm{e}\mathrm{q}\dot{\mathrm{u}}$ ence $\{u_{h}^{n}\}_{n=}1,2,\cdots\subset V_{h}$ for each $u_{h}^{0}\in V_{h}$ such that

$u_{h}^{n+1}=(P_{h,\kappa}.)^{\mu} \cdot\prod_{1j=}H_{h_{\mathcal{T}_{J}h,kh}},D\nu\backslash \cdot un$ for $n=0,1,2,$ $\cdots$ . (2.5)

Here $k=k_{n+1}\overline{=}t_{n+1}-t_{n},$ $\tau_{j}=\tau_{n+1,j}$ and $\kappa=\kappa_{n+1}$ are variable time steps, $h$ is a space
mesh width, $\mu=\mu_{n+1}$ and $l\text{ノ}=\iota \text{ノ_{}n}+1$ are positive integers satisfying

$j=1 \sum^{\iota \text{ノ_{}n}}+1\tau+1,j=\mu_{n+1}nn+\kappa 1=k_{n+1}$ , (2.6)

$P_{h,\kappa},$ $H_{h,\tau_{j}}$ and $D_{h,k}$ are difference operators approximating $P,$ $H$ and $D$ , respectively,
and $V_{h}$ is the set of the nonnegative continuous functions $u_{h}=u_{h}(x)$ with the following
properties:

(i) $u_{h}$ has compact support with the left and right interfaces $l(u_{h})$ and $r(u_{h})$ , respectively,
which are defined by

$\ell(u_{h})=\sup$ { $\xi|u_{h}(x)=0$ on $(-\infty,$ $\xi]$ } (2.7)

and
$r(u_{h})= \inf$ { $\xi|u_{h}(x)=0$ on $[\xi,$ $\infty)$ }, (2.8)

respectively;

(ii) $u_{h}$ is linear on each interval $[x_{i}, x_{i}+1](i\in Z)$ , where $x_{i}=x_{i}(\ell, r)(i\in Z)$ ,

$x_{i}(l, r)=$

’

$ih$ for $i\in Z\backslash \{L-1, R+1\}$ ,
$p$ for $i=L-1$ , (2.9)
$r$ for $i=R+1$ ,

$L=L( \ell)\equiv\min\{i\in Z|ih>l\}$ , $p=\ell(u_{h})$ , (2.10)

$R=R(r) \equiv\max\{i\in Z|ih<r\}$ , $r=r(u_{h})$ . (2.11)

The variable time steps $k,$
$\tau_{j}$ and $\kappa$ are determined so that the stability conditions for $P_{h,\kappa}$ ,

$H_{h,\tau_{J}}$ and $D_{h,k}$ are satisfied. We note that the numerical interfaces $\ell(u_{h})$ and $r(u_{h})$ do not
always coincide with the regular mesh points. We put $X(\ell, r)=\{X_{i}(l, r) ; i\in Z\}$ and

$\ell_{n}=\ell(unh)$ , $r_{n}=\Gamma(u_{h})n$ , $L_{n}=L(P_{n})$ , $R_{n}=R(r_{n})$ $(n=0,1,2, \cdots)$ . (2.12)
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When $D_{h,k}u_{h}^{n^{*}}\equiv 0$ holds for some integer $n^{*}>0$ , we denote the numerical extinction time
by $T_{h}^{*}=t_{n^{\mathrm{s}}}+1\equiv t_{n}*+k_{n^{*}+1}$ , and stop the numerical computation. By putting

$h_{i}=x_{i1}+-Xi$ , $u_{i}=u_{h}(X_{i})$ ,
$\delta u_{i}=(u_{i+1}-u_{i})/h_{i}$ , $\delta^{2}u_{i}=2(\delta ui-\delta u_{i}-1)/(h_{i}+h_{i-1})$ ,

we describe the difference operators $P_{h,\kappa},$ $H_{h,\tau}$ and $D_{h,k}$ .

Difference operator $P_{h,\kappa}$

For $u_{h}\in V_{h}$ we define $P_{h,\kappa}u_{h}$ by the usual explicit difference operator:

$P_{h,\kappa}u_{h}(x_{i})’=u_{i}+\kappa mu_{i}\delta 2u_{i}$ for all $x_{i}’\in X(P(P_{h,\kappa h}u), r(P_{h},u_{h})\kappa)$ , (2.13)
$p(P_{h,\kappa h}u)=P(u_{h})$ , $r(P_{h,\kappa}u_{h})=r(u_{h})$ . (2.14)

To prove the convergence of numerical solutions and numerical interfaces we have to impose
the following stability condition on $\kappa$ .

Stability Condition for $P_{h,\kappa}$ . The time step $\kappa$ satisfies the following inequalities:

$m||u_{h}||_{\infty} \kappa\{_{\frac{1}{h^{2}}}+\frac{2}{h(h+h_{j})}\}\leq 1$ for $j\in\{L-1, R\}$ , (2.15)

$\frac{4m||(u_{h})x||_{\infty}\mathcal{K}}{h_{j-1}+h_{j}}\leq 1$ for $j\in\{L, R\}$ . (2.16)

where $||\cdot||_{\infty}$ denotes the $L^{\infty}(R)$ norm.

Difference operator $H_{h,\tau}$

For $u_{h}\in V_{h}$ let $\overline{u}(\tau, x)$ be the exact solution of

$\{$

$\tilde{u}_{t}=H\tilde{u}$ , $t>0$ , $x\in R$ ,
$\tilde{u}(0, x)=u_{h}(x)$ , $x\in R$ . (2.17)

The solution $\tilde{u}$ is easily solved, because $\tilde{u}$ can be obtained by integrating the solution $w$ of
the following initial value problem for the Burgers equation:

$\{$

$w_{t}=a(w^{2})_{x}$ , $t>0$ , $x\in R$ ,
(2.18)

$w(0, x)=(u_{h}(x))_{x}$ , $x\in R$ ,

which is derived from $u_{t}=Hu$ by putting $w=u_{x}$ . Here we note that the initial function
$w(0, x)$ is piecewisely constant. Using the solution $\overline{u}$ , we define $H_{h,\kappa}u_{h}$ by

$H_{h,\tau}u_{h}(x_{i}’)=\tilde{u}(\tau, x_{i})’$ for all $x_{i}’\in X(P(Hh,\tau uh),$ $r(H_{h_{\mathcal{T}}},u_{h}))$ , (2.19)

$P(H_{h,\tau h}u)=\ell(\tilde{u}(\mathcal{T}, \cdot))$ , $r(H_{h_{\mathcal{T}}},u_{h})=r(\tilde{u}(\tau, \cdot))$ . (2.20)

This difference operator is first proposed by Tomoeda and Mimura [8], where numerical
interfaces with good approximations are obtained.
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Stability Condition for $H_{h,\tau}$ . The time step $\tau$ satisfies the following inequalities:

$a||(u_{h})x|| \infty\tau\leq\min\{\frac{h}{4}, Lh-P(u_{h}), r(u_{h})-Rh\}$, (2.21)

Difference operator $D_{h,k}$

For $u_{h}\in V_{h}$ we define $D_{h,k}u_{h}$ by

$(D_{h,k}u_{h})(X_{i}’)=u(k, x_{i}’)$ for all $x_{i}’\in X(\ell(D_{h},kuh),$ $r(D_{h,k}u_{h}))$ , (2.22)

$P(D_{h,k}uh)= \max\{P(u_{h}), (L’-1)h\}$ , $r(D_{h,k}u_{h})= \min\{r(u_{h}), (R’+1)h\}$ , (2.23)

where
$L’=L(P(u(k, \cdot)))$ , $R’=R(r(u(k, \cdot)))$ , (2.24)

$u(k, x)= \max\{u_{h}(X)-c’k, 0\}$ for $x\in R$ . (2.25)

Stability Condition for $D_{h,k}$ . The time step $k$ is taken so that either

$k= \frac{1}{c’}\max(u_{L}, u_{L+1})$ , (2.26)

or
$k= \frac{1}{c’}\max(u_{R}, u_{R-1})$ . (2.27)

Here the stability condition (2.26) (resp. (2.27)) is used for the approximation to the left
(resp. right) interface.

3. Stability and Convergence.

First, we show the stabilities of the numerical solution $u_{h}$ and the numerical interfaces
$\ell_{h}$ and $r_{h}$ .

Theorem 1 (Stability of (2.5)). Assume $u_{h}^{0}\in V_{h}$ . Then $u_{h}^{n}$ either becomes extin $ct$ or
belongs to $V_{h}$ for each $n\geq 0$ , and the following estimates hold for all $n\geq 0$ :

$P_{0-}a||(u_{h})0|x|_{\infty^{t_{n}}}\leq\ell_{n}$ $\leq$ $r_{n}\leq r_{0}+a||(u_{h})0|x|_{\infty^{t_{n}}}$ , if $u_{h}^{n}\not\equiv 0$ , (3.1)

$0\leq u_{h}^{n}(x)$ $\leq\max(||u_{h}|0|_{\infty n}-c’t, 0)$ on $R$, (3.2)
$||(u_{h}^{n})_{x}||\infty$ $\leq$ $||(u^{0}h)_{x}||_{\infty}$ , (3.3)

$||(u^{n}h)_{x}||_{1}$ $\leq$ $TV(\prime u_{h})0$ , (3.4)

$TV((u_{h}^{n})_{x})$ $\leq$ $TV((u_{h}^{0})_{x})$ , (3.5)

$||(u_{h}^{n+1}-u_{h})n/k_{n+1}||_{1}$ $\leq$ $(m+a)||u_{h}|0|_{\infty^{TV(}}(u_{h}^{0})_{x})$ (3.6)
$+c’\{r_{0}-l_{0}+2a||(u^{0})_{x}h||\infty t_{n}\}$ ,

$\inf_{i\in Z}\delta 2u_{i}^{0}$ $\leq\inf_{i\in Z}\delta 2nu_{i}$ , (3.7)
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where $||\cdot||_{1}$ denotes the $L^{1}(R)\mathrm{n}o\mathrm{r}\mathrm{m},$ $TV(\cdot)$ the total variation on $R$ .

To state the convergence of numerical solutions we introduce the following condition
imposed on $v^{0}(x)$ .

Condition A. $u^{0}\equiv(v^{01})^{m-}\in c^{0}(R)\cap BV(R)$ is a nonnegative function with compact
support $[\ell(u^{0}), r(u^{0})]$ and $u_{x}^{0}\in L^{\infty}(R)\cap BV(R)$ .

From the stability of the difference solutions we have the following

Theorem 2 (Convergence of numerical solutions). Suppose $v^{0}$ satisfies Condition $A$

and let $\{h\}$ be an arbitrary sequence which tends to zero. Then

$||v_{h}-v||L^{\infty}(\mathcal{H})arrow 0$ as $harrow \mathrm{O}$ , (3.8)

where $v_{h}=(u_{h}(t, X))^{\frac{1}{m-1}},$ $v$ is the unique weak solution of (1.1) and (1.2), and $\mathcal{H}=$

$[0, \infty)\mathrm{X}R$ .

Remark 1. The existence and uniqueness of the weak solution is established by Herrero
and V\’azquez [2] under the assumption that $v^{0}(x)\in C^{0}(R)\cap L^{\infty}(R)$ is a nonnegative
function, $m>1,$ $p>0$ and $m+p\geq 2$ .

Finally, we state the convergence of numerical interfaces and show the interface equation.
For this end we introduce

Condition B. $u^{0}\equiv(v^{01})^{m-}$ is absolutely continuous on $I=[l(u^{0}), r(u)0]$ and
$\mathrm{e}\mathrm{s}\mathrm{s}.\inf_{I}(u^{0})_{x}x(x)$ is finite.

Assume that the initial function $u^{0}$ satisfies Conditions A and $\mathrm{B}$ , and we put

$C_{0}=||u^{0}||_{\infty}$ , $C_{1}=||u_{x}^{0}||_{\infty}$ , $C_{2}=- \mathrm{e}\mathrm{s}\mathrm{s}.\inf_{I}u_{x}^{0}(xx)$ . (3.9)

Since $u^{0}(x)$ has compact support, $C_{2}>0$ holds. We define the left (resp. right) numerical
interface $p_{h}(t)$ (resp. $r_{h}(t)$ ) by piecewise-linearly interpolating $(t_{n}, p_{n})(\mathrm{r}\mathrm{e}\mathrm{s}_{\mathrm{P}\cdot(\Gamma}t_{n’ n}))(0\leq$

$n\leq n^{*})$ . Then we have

Theorem 3 (Convergence of the left numerical interface). Under $Co\mathrm{n}$ditions $A$ and $B$ ,
assume that $M$ and $\epsilon$ are positive $co\mathrm{n}$stants satisfying

$u_{x}^{0}(x)\geq M$ for $x\in[\ell(u^{0}),$ $\ell(u^{0})+\epsilon)$ . (3.10)

Let the stability condition (2.26) be satisfied. Then the left numerical interface $p_{h}(t)$

converges uniformly to the exact interface $p(t)$ on $[0,\tilde{T}]$ , where $\overline{T}=,\frac{(M-M’)M^{J}}{6cC_{2}+2(2a+m)c1C2M}$,

and $M’$ is an arbitrary positive constant satisfying $M’<M$ .

Theorem 4 (Left interface equation). Under the sam$e$ assumptions as stated in The-
orem 3, the left interface $\ell(t)$ satisfies the following equation:

$\frac{d}{dt}p(t)=-\frac{m}{m-1}(v^{m}-1)_{x}(t,\ell(t)+0)+\frac{c(m-1)}{(v^{m-1})_{x}(t,\ell(t)+0)}$ on $[0,\tilde{T}]$ , (3.11)
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where $\tilde{T}$ is given in Theorem 3.

The convergence of the right numerical interface and the right interface equation are
similarly obtained under the assumptions (2.27) and

$u_{x}^{0}(x)\leq-M$ for $x\in(r(u^{0})-\mathcal{E}, r(u^{0})]$ . (3.12)

4. Problems of Support Splitting.

In this section, we show a sufficient condition under which the initial support begins to
split into at least two disjoint sets. We introduce Condition C.

Condition C. $u^{0}\equiv(v^{0})^{m-1}\in C^{0}(R)$ has compact support $[\alpha_{1}, \alpha_{2}]$ and satisfies

$u^{0}(x)>0$ on $(\alpha_{1}, \alpha_{2})$ . (4.1)

Then we have

Theorem 5. Assume that the initi$\mathrm{a}l$ function satisfies Conditions $A,$ $B$ and $C$, and
that there exist constants $\beta_{j}$ and $\gamma_{j}(j=1,2)$ satisfying $\alpha_{1}<\beta_{1}<\gamma_{1}<\gamma_{2}<\beta_{2}<\alpha_{2}$ and

$\frac{u^{0}(\beta_{j})}{c’+mC_{0}c_{2}}>\frac{||u^{0}||_{L^{1}}[\gamma 1\gamma_{2}]}{c’(\gamma 2-\gamma 1)-(m+a)c_{0}\tau V(u^{0})x},>0$, $(j=1,2)$ , (4.2)

where $C_{j}(j=0,2)$ are constants given by (3.9). Then there exist $t\sim>0$ and $\tilde{x}\in[\gamma_{1}, \gamma_{2}]$

such that $v(^{\sim}t, x)\sim=0$ and $v(t\beta_{j})\sim,>0(j=1,2)$ .

The proof of the theorem is done by using the uniform convergence and the estimates
$(3.2)-(3.5)$ and (3.7). The detailed proof will be shown in [10].

5. Numerical Simulations.

In this section, we demonstrate some numerical simulations. Let $m=1.5$ and $h=0.\mathrm{O}1$ .
We use the following initial function.

$u^{0_{(X)}}=(v^{0}(_{X}))^{m-1}=\{$
$\frac{4}{169}(1-x^{2})(0.3+x^{2})$ , if $-1<x<1$ ,
$0$ , otherwise,

(5.1)

which satisfies $||u^{0}||_{\infty}=u^{0}(\pm\sqrt{\frac{7}{20}})=0.01$ . When $c=1$ , it is easily to verify that the

inequality (4.2) holds with $-\beta_{1}=\beta_{2}=\sqrt{\frac{7}{20}}$ and $-\gamma_{1}=\gamma_{2}=0.55$ ; By Theorem 5 the
initial support begins to split at some time. Figures 1 and 2 show the numerical solutions
$u_{h}$ and the numerical interfaces, respectively. We observe that the numerical support begins
to split at $t=0.0967\cdots$ and the numerical solution becomes extinct at $t=0.1274\cdots$ .
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$\mathrm{r}\mathrm{l}\mathrm{g}$ . $\perp$ . $\perp\tau$ umerlcal soluuons wnen $c=\perp$

at $t=0,0.02,$ $\ldots,$
$0.12$ .

$\mathrm{I}\mathrm{l}\mathrm{g}$ . $z$ . $\perp\backslash \mathrm{u}\mathrm{m}\mathrm{e}\mathrm{r}\mathrm{l}\mathrm{C}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{m}\mathrm{e}\mathrm{r}\mathrm{I}\mathrm{a}\mathrm{C}\mathrm{e}\mathrm{s}\ln \mathrm{r}_{\mathrm{l}}\mathrm{g}$. $\perp$ .

If $c=0.1,$ $(4.2)$ does not hold for any $\beta_{j}$ and $\gamma_{j}(j=1,2)$ . In this case, our numerical
simulation suggests that the initial support is connected for $t>0$ (see Figures 3 and 4).

$\mathit{1}\mathrm{i}\mathrm{l}\mathrm{g}$ . $s$ . $1^{\backslash }\{\mathrm{u}\mathrm{m}\mathrm{e}\mathrm{r}\mathrm{l}\mathrm{c}\mathrm{a}\mathrm{l}$ solutlons wnen $\Lambda \mathrm{l}\mathrm{g}$ . $4$ . $1\tau_{\mathrm{U}\mathrm{m}}\mathrm{e}\mathrm{r}\mathrm{l}\mathrm{C}\mathrm{a}11\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{I}\mathrm{a}\mathrm{C}\mathrm{e}\mathrm{S}\ln \mathrm{r}\mathrm{l}\mathrm{g}$. $s$ .
$c=0.1$ at $t=0,0.2,$ $\ldots,$

$1.2$ .

The inequality (4.2) does not hold when $c=0.9$ . However, our numerical simulation shows
that the numerical support begins to split at $t=0.1639\cdots$ . We verify whether or not the
inequality (4.2) holds for another value of $c$ , and continue the computation of the numerical
support. We have the following results.

At last we try to compute numerical solution of the following two-dimensional version of
(1.1) and (1.2).

$v_{t}=\nabla^{2}(v^{m})-cvp$ , $t>0$ , $(x, y)\in R^{2}$ , (5.2)
$v(x, y, 0)=v^{0}(\sqrt{x^{2}+y^{2}})$ , $(x, y)\in R^{2}$ . (5.3)
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We use some numerical method similar to (2.5). Unfortunately, theoretical results on the
scheme are not obtained yet. We take $m=1.5,$ $p=0.5$ and

$v^{0}(r)=\{$

0.1, if $r<0.5$ ,
$\alpha(r-0.5)^{4}+\beta(r-0.5)^{2}+0.1$ , if $0.5\leq r<1$ ,
$0$ , otherwise,

(5.4)

where $\alpha$ and $\beta$ are some constants satisfying $v^{0}\in C^{0}(0, \infty)\cap C^{1}(0,1)$ and $||v^{0}||_{\infty}=1$ .
Figure 5 displays the profile of $v(x, y, 0)m-1$ on $|x|<1.5$ and $y>0$ . When $c=15$ , Figure 6
shows that $v_{h}(\cdot, \cdot, t)\not\equiv 0$ and $v_{h}(0,0, t)=0$ hold at $t=0.04$ , where $v_{h}$ is the numerical
solution. The support of $v_{h}$ has a hole at $(x, y)=(0,0)$ . When $c=1.5$ , the numerical
solution becomes concave on its support, and a hole in the support of $v_{h}$ never appears for
all $t>0$ (see Figure 7).

Fig. 5. The initial Fig. 6. The numerical Fig. 7. The numerical
function solution $v_{h}^{m-1}$ with solution $v_{h}^{m-1}$ with

on $|x|<1.5$ and $y>0$ . $c=15$ $c=1.5$

at $t=0.04$ . at $t=0.25$ .
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