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Global structure of Brezis-Nirenberg type
equations on the unit ball
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1 Introduction

We consider the existence and uniqueness of radial solutions of

( Au+du+uD/=D =0 inB={zcR": |z| <1},
ﬁ u>0, in B, (1)
{ mg—u+u:0, on 0B,

v

where v is the outward unit normal vector on B, A < A? (A% is the first
eigenvalue of —A with 0-Dirichlet condition on B) and x > 0.

In the case k = 0, it is well-known that any solution of (1) is radially
symmetric by Gidas-Ni-Nirenberg [5]. Moreover, Brezis-Nirenberg [2] proved
that (1) with n = 3 has a solution if and only if A € (w%/4,7?) and that (1)



with n > 4 does if and only if A € (0, A?). Later, Kwong-Li [4] and Zhang
[15] proved that the solution obtained by [2] is unique.

Even though the 0-Dirichlet problem has no positive solution for the case
A < 0, the homogeneous Neumann problem has a positive one. There is also
a nonradial solution which has a peak on the boundary at least if A is near
—oo by Ni-Takagi [7] [9].

As for the third boundary conditions, X.-J. Wang [11] treated more gen-
eral problems than (1) under the “least energy” condition. Recently, X.-B.
Pan [10] treated the asymptotic behavior of solutions to (1) as A — —oo in
analogous to [7].

Though there seems to be no results similar to Gidas-Ni-Nirenberg [5] for
the third boundary conditions for small ||, we restrict our attention only to
radial solutions.

We consider the initial value problem

1 —1 n n—2
u,,+7———u,+/\u+u(++2)/(l 2):0, 0<r<l,
T

| (2)
u(0) =, u(0) =0
and seek a suitable number a > 0 satisfying u(r) > 0 on (0,1) and
ku,(1) +u(l) =0, (3)

where uy; = max{u,0}. Note that (2) has a solution (denoted by u(r; A, a))
for any « > 0 and .
The main purpose of this article is to make clear the range of A in which
(1) has a unique solution and find out the relation between A and .
Hereafter we restrict ourselves to the case n = 3.

2 Results

To state our theorems, we introduce four numbers. Let A, € (0, ] satisfy
tan A\, = kA/(k — 1) if kK # 1 and A\, = 7#/2 if Kk = 1. Define Ay by
tan(Ag — 7/2) = kAo/(k — 1) if 0 < k < 1. As we see in Theorem 2, X, is a
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blow-up point. Set Aztanh A3 = (k — 1)/x if k > 1. For x € [0,1), we define
Ay >0bytanh\j = kM if0O<k<land y=o0ifk=0.

Note that A2 is the first eigenvalue of —~A with the boundary condition
kOufOv + u = 0 on 0B. Our methods are based on Yotsutani [12] and
Yanagida-Yotsutani [13], [14]

Theorem 1 Letn = 3.
Case (I): 0 <k <1. IfA2 < X< A2, then (1) has a unique radial solution.

Case (II): 1 < k. If =A2 < A < A% then (1) has a unique radial solution.

Remark. If —A] < A < A% then (1) has no radial solution. Moreover, for
such A the inequality xu,(1; A, @) + u(1; A, @) > 0 holds for any o > 0. For
A < —Aq4, there may be at least two solutions, while A4 may not be sharp.

By this theorem, there is a one-to-one mapping from A to «, that is, o is a
function of A. So we can draw the graph of & = a(); k).
Let

C = {()\ a(N) ]« satisfies (2) — (3)},
Dc = {(\v)ly > (W)},

Ds={(\y)ly <a(N)}.

Note that for (A, &) € D¢, ku,(1; A, @) + u(1; A, @) < 0 or u(r; A, a) has a
zero in (0, 1). Similarly, for (A, @) € Dg, ku,(1; A, @) + u(1; ), @) > 0.

Theorem 2 a()) is a continuous function of A satisfying a(\) — 0 as A —
A2 — 0 and (X)) = 00 as A = A2 +0. More precisely, a()) satisfies

) 23724 (1 — k) sin Ay + KA
im (A = A2)a(\)? = i , Jsin Xz ko)
A—=A340 sin Ay
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Remark. As a matter of fact, the curve C must be a C! curve. As we see
from the standard bifurcation theory, (A%, 0) is a bifurcation point.

The blow-up rate of () as A — AZ + 0 is known by Brezis-Peletier [3]
for k = 0. We show the graph of a()) in Section 5.

3 Reduction to a Matukuma-type equation

Our idea for the proof of Theorem 1 is to reduce (2)-(3) to an exterior Neu-
mann problem of a Matukuma-type equation. For a solution ¢ to

2
Sorr+;§0r+/\(P:O, 0<’I"<1,

‘ (4)
©(0) =1, ¢,(0) =0,

let u = vp. Note that

_—S"“(/‘?T) if A >0,

Var
P = o ‘ ;
~ sinh(v/—\

sinh(v—Ar) : ") i a<o.

. VAT o
If u is a solution to (2)-(3), then v satisfies

( 2 h
Upp + (; + 2%)% +¢'® =0, 0<r<1,

v(0) =1, (5)

rp(1)
L (1) + rer(1)

0r(1) + (1) = 0.
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Next, let g(r) = r2p?. Then v satisfies
1 1

F(gv,)r +¢'® =0, 0<r<l,
¢ v(0)=1, (6)

Kkp(1)

| D mp @D ) =0

Finally, let

hr) = g(T)(/l ds k(1) ),

e 9) " g(p(D) + rpr (1))

= g(?“) v\Tr
w(T) T h(’l‘) ( ))

T = exp(/l h'cé_':))

T

and

Then w(7) satisfies the exterior Neumann problem

(

1
T—2(T2w1)7 + K('r)v5 =0, 7>1,

< w,(1) =0, (7)

| lim 00 Tw(7) > 0,

where hr)S
1 h(r
K(1):=— 4,
(T) 7_2 (T)4 (p(’l‘)
We can apply the modified version of [13] to obtain Theorem 1.
As for Theorem 2, we may follow the argument in [14]. To prove the

blow-up rate, we use the argument as in [3].
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4 Concluding remarks

So far, we do not pay much attention to the Neumann problem (k = 00).
However, there are many results on the radial solutions as well as non-radial
ones (least-energy solutions). See for instance, Adimurthi-Yadava [1], Ni-
Takagi [9] [10] or Ni-Pan-Takagi [7]. According to their results, nonconstant
radial solutions bifurcate from the constant solution at (—p;/4, (u;/4)4)
where p; the eigenvalues of —A subject to the homogeneous Neumann prob-
lem (0 = po < pg < po < ...). Moreover, the properties of the bifurcation
branch are known by [1], [9] etc. In view of the graphs in the case where
A < Oand k > 0 is sufficiently large, our results seems to be a “ homotopy
bridge” connecting the Dirichlet problem and the Neumann one. We may
regard the graph (x = 1000) as an imperfect bifurcation, though we do not
have any rigorous proofs. See for instance, Chapter 3 of Golubitsky and

Schaeffer [6].
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5 Graphs

These computations are due to Mr.

H. Morishita of Hyogo University.
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