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1 Introduction
Let us consider the following onephase Stefan problem $DP$ (resp. $NP$ ) with homogeneous
Dirichlet (resp. Neumann) boundary condition in one.dimensional space: The problem is
to find a curve $x=\ell(t)>0$ on $[0, T],$ $(0<T<\infty)$ , and a function $u=u(t, x)$ on
$Q_{\ell}(T):=\{(t, x);0<t<T, 0<x<P(t)\}$ satisfying that

$u_{t}=u_{xx}+u^{1+\alpha}$ in $Q_{\ell}(\tau)$ , (1.1)

$u(\mathrm{O}, x)=u_{0}(x)$ for $0\leq x\leq\ell_{0}$ , (1.2)

$u(t, 0)=0$ for $0<t<T$, (1.3)

(resp. $\frac{\partial}{\partial x}u(t,$ $0)=0$ for $0<t<T,$ ) (1.4)

$u(t, \ell(t))=0$ for $0<t<T$, (1.5)

$\frac{d}{dt}\ell(t)=-u_{x}(t, \ell(t))$ for $0<\mathrm{t}<T$, (1.6)

$\ell(0)=\ell 0$ (1.7)

where $\alpha$ and $l_{0}$ are given positive constants and $u_{0}$ is a given initial function on $[0, \ell_{0}]$ .
For the above problems $DP$ and $NP\mathrm{F}\mathrm{a}\mathrm{s}\mathrm{a}\mathrm{n}(\succ \mathrm{P}\mathrm{r}\mathrm{i}\mathrm{m}\mathrm{i}\mathrm{C}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{o}$ (cf. [6]) established the local

existence in time and the uniqueness for solutions to the above $DP$ and $NP$ in the classical
formulation (which means that $u_{t}$ and $u_{xx}$ are continuous functions). Besides, for solutions of
$DP$ and $NP$ in the distribution sense (which means that $u_{t}$ and $u_{xx}$ belong to $L^{2}$-class) the
existence, the comparison and the behavior were studied by Aiki-Kenmochi [1, 5, 10].

It is well known that there are blow-up solutions of the usual initial boundary value
problem for semilinear equation (1) in bounded domain, accordingly, by using comparison
principle it is clear that our problems $DP$ and $NP$ have blow-up solutions. Here, we note
the the following global existence result of a solution: Let $[0, T^{*})$ be the maximal interval of
existence of the solution to $DP$ and $NP$, we see (cf. [5]) that the following cases (a) or (b)
must occur:
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(a) $T^{*}=+\infty$ ;
(b) $\tau*<+\infty$ and $|u|_{L^{\infty}(Q_{l(t))}}arrow+\infty$ as $t\uparrow\tau*$ .

However, from the above result we can get no information for the behavior of hee boundary
$\ell$ at blow-up time. In the present paper we shall show the behavior of blow-up solutions to
$DP$ and $NP$ at finite blow-up time.

The first result concerned with the problem $NP$ is stated as follows (Theorem 2.2): Under
the suitable assumptions for the initial data $u_{0}$ if the blow-up time $\tau*$ is finite, then $u$ blows
up at only one point $x=0$ and $\ell(t)$ converges to some number $L$ as $t\uparrow\tau*$ where $\{u, l\}$ is a
solution to $NP$ . Our proof for this result is essentially due to papers by $\mathrm{R}\mathrm{i}\mathrm{e}\mathrm{d}\mathrm{m}\mathrm{a}\mathrm{n}- \mathrm{M}_{\mathrm{C}\mathrm{L}}\mathrm{e}\mathrm{o}\mathrm{d}$

[7] and Fujita-Chen [9]. In case homogeneous Neumann boundary condition and $u_{0,x}\leq 0$ , the
maximum point for $u$ is always the point $x=0$. But, in case Dirichlet boundary condition
the maximum point may move. By this difficulty we can not estimate the blow-up point.
So, we have obtained the following result (Theorem 2.3): We assume that $u_{0}$ satisfies some
conditions. If $\tau*$ is finite, then the cases (A) or (B) must occur:

(A) $u$ blows up at only one point and the free boundary $l$ converges.
(B) $p(t)$ tends to infinity as $t\uparrow\tau*$ and $u$ is locally bounded with respect to $x\geq 0$ .

By the numerical experiments it seems that the case (B) does not occur (section 4). But we
can not prove it, theoretically.

Besides, we know the following result concerned with global existence for solutions of
Cauchy problem for equation (1.1) (cf. Fujita [8] and Levine [11]): In case $\alpha>2$ there are
global solutions in time for sufficiently small initial data; in case $0<\alpha\leq 2$ the non-trivial
solution always blows up at some finite time. Also, if a domain is bounded then for $\alpha>0$ the
problem has a global solutions. Hence, it follows from comparison principle that for $\alpha>2$

$NP(DP)$ has a global solution in time for a smali initial function $u_{0}$ . One of purposes of this
paper is to establish the global existence result for $NP$ (Theorem 3.1) with $\alpha>1$ .

In the final section we carried out the following numerical computations for the problem
$DP$ . We put $u_{0\lambda}--\lambda v_{0}$ for $\lambda>0$ and some non-negative function $v_{0}$ . . Let $\{u_{\lambda}, \ell_{\lambda}\}$ be a
solution to $DP$ with initial data $u_{0}=u_{0\lambda}$ . Then, in our computations for small $\lambda>0$

$\tau*=\infty$ and the free boundary $\ell_{\lambda}(t)$ converges to some number $\ell_{\infty\lambda}$ as $t\uparrow\tau*$ . Also, for large
$\lambda>0$ we obtain that $\tau*<\infty$ and $\ell_{\lambda}(t)$ converges to $\ell_{\infty,\lambda}$ as $t\uparrow\tau*$ . So, we shall show the
relationship between $\lambda$ and $\ell_{\infty\lambda}$ .

2 Blow-up points
In this section we discuss blow-up points for the solution to $NP$ and $DP$ . For the proof of
our results we shall use the storing maximum principle. Hence, we deal with the classical
solution.

Here, we give assumptions $(\mathrm{H}1)\sim$ (H4) for initial data $l_{0}$ and $u_{0}$ .
(H1) $\ell_{0}>0$ and $u_{0}\in C^{2}((0, l\mathrm{o}))\cap C^{1}([\mathrm{o}, \ell 0])$ and $u_{0}(x)>0$ for $x\in(\mathrm{O}, \ell_{0})$ ,
(H2) $u_{0,xx}(x)+u_{0^{+}}^{1\alpha}(x)\geq 0$ for $x\in(\mathrm{O}, \ell_{0})$ ,
(H3) $u_{0}(\ell_{0})=0,$ $u_{0,x}<0$ for $x\in(\mathrm{O}, \ell_{0})$ and $u_{0,x}(0)=0$ ,
(H4) $u_{0}(0)=u_{0}(\ell 0)=0,$ $u_{0},x>0$ on $[0, x_{0})$ and $u_{0,x}<0$ on $(x_{0}, \ell_{0}]$ for some $x_{0}\in(\dot{0},\ell_{0})$ .
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We begin with the precise definition of a solution to $DP$ and $NP$ . Let $C^{1,0}(\overline{Q_{t}(\tau)})$ be the
set of functions which are continuous on $\overline{Q_{\ell}(\tau)}$ with their $x$ -derivatives.
Definition A couple $\{u,\ell\}$ of functions $u=u(t, x)$ and $x=\ell(t)$ is said to be a solution of
$DP$ (resp. $NP$) on a compact interval $[0, T],$ $0<T<+\infty$ , if the following conditions (S1)
and (S2) are satisfied:

(S1) $\ell\in C^{1}([0, T])$ , and $u\in C^{1,0}(\overline{Qf(\tau)}),$ $u_{xx}$ and $u_{t}$ are continuous in $Q_{\ell}(T)$ ;
(S2) $(1.1)\sim(1.3)$ and $(1.5)\sim(1.7)$ (resp. $(1.1)\sim(1.2)$ and $(1.4)\sim(1.7)$ ) hold
in the classical sense.

Also, we call a couple $\{u, l\}$ is a solution of $DP(\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}. NP)$ on an interval $1^{\mathrm{o},T’}$ ), $0<T’\leq\infty$ ,
if it is a solution of $DP(\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}. NP)$ on $[0, T]$ in the above sense for any $0<T<T’$ .

First, we recall the theorem concerned with local existence of solutions to the above $DP$

and $NP$ .
Theorem 2.1. (cf. [6, Theorem 1]) We assume that $u_{0}\in C^{1}([0, l_{0}])_{\mathrm{Z}}u_{0}\geq 0$ on
$[0, \ell_{0}],$ $u_{0}(\ell_{0})=0$ and $u_{0}(0)=0(resp.$ $(u_{0,x}(0)=0)$ . Then there exists a positive number

$T_{0}$ depending only on $|u_{0}|c1(\iota 0,t\mathrm{o}1),$ $l_{0}$ and $\alpha$ such that problem $DP(resp. NP)$ has a unique
solution $\{u, \ell\}$ on $1^{\mathrm{o},\tau_{0}}$ ].

For the problems $DP$ and $NP$, we say that $[0, T),$ $0<T\leq+\infty$ , is the maximal interval
of existence of the solution, if the problem has a solution on time-interval $[0, T’]$ , for every $T’$

with $0<T’<T$ and the solution can not be extended in time beyond $T$ .

Theorem 2.2. (cf. [2]) Assume that $(Hl)\sim(H\mathit{3})$ hold. Let $\{u, l\}$ be a solution of
$NP$ and $[0, T^{*})$ be the maximal interval of existence of solutions to $NP$ . If $\tau*<\infty$ , then
$\ell(t)\uparrow L<+\infty$ as $t\uparrow\tau*,$ $u(t, 0)arrow+\infty$ as $t\uparrow\tau*$ , and for any $x\in(0, L)$ there exists a
positive number $M(x)$ such that

$|u(t, X)|\leq M(x)$ for any $t$ with $(t, x)\in Q_{\ell}(\tau)$ .

In [9] Fujita and Chen studied the following initial boundary value problem.

$u_{t}=u_{xx}+u^{1+\alpha}$ in $(0,T)\cross(\mathrm{O}, 1)$ ,

$u_{x}(t, 0)=0$ for $t\in(\mathrm{O}, T]$ ,

$u(t, 1)=0$ for $t\in(\mathrm{O}, T]$ ,

$u(0, x)=u\mathrm{o}(x)$ for $x\in[0,1]$ .

They showed that under $\mathrm{t}_{\lrcorner}\mathrm{h}\mathrm{e}$ similar assumptions for $u_{0}$ to $(\mathrm{H}1)\sim(\mathrm{H}3)$ if the solution $u$ blows
up then blow-up point is one and only one point $x=0$ . In the proof of Theorem 2.2 we done
with help of the idea in [9].

Theorem 2.3. (cf. [3]) Assume that $(Hl),(H\mathit{2})$ and $(H\mathit{4})$ hold. Let $[0, T^{*})$ be the
maximal interval of existence of the solution $\{u, \ell\}$ to $DP$ . If $\tau*$ is finite, then either the
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following cases $(A)$ or $(B)$ always happens:
$(A)\ell(t)arrow\ell_{\infty}$ as $t\uparrow\tau*$ where $l_{\infty}$ is $\mathit{8}ome$ positive number, there exists one and only one
point $x^{*}\in(\mathrm{O},\ell_{\infty})$ such that $u(t, x)arrow+\infty$ as $t\uparrow\tau*$ and for $x\in(\mathrm{O}, l_{\infty})$ with $x\neq x^{*}$ there is
a positive constant $M_{1}(x)$ such that $|u(t, X)|\leq M_{1}(x)$ for $t$ with $(t, x)\in Q_{\ell}(T*),\cdot$

$(B)l(t)arrow+\infty$ as $t\uparrow\tau*$ and for any $x>0$ there is a positive number $M_{2}(x)$ satisfying that
$|u(t,\xi)|\leq M_{2}(X)$ for $(t,\xi)\in Q_{l}(T^{*})\cap\{\xi<x\}$ .

The proof of Theorem 2.3 is done in the following way.
First, we shall show continuation of solutions of our problem $DP$ . Precisely speaking, for

$0<T_{0}<\infty$ if a solution $\{u, l\}$ to $SP$ on $[0, T_{0})$ satisfies that

$|u(t,x)|\leq K$ for $(t,x)\in\overline{Q_{\ell}(T\mathrm{o})}\cap\{t<T_{0}\}$

where $K$ is a positive constant, then the solution $\{u, l\}$ is extended in time beyond $T_{0}$ .
Next, we assume that (B) in the assertion of Theorem 3 does not hold, that is, (A1) or

(A2) is valid:
(A1) There is a number $x_{1}\in(0, \infty)$ satisfying that for some sequence $\{(t_{n},\xi_{n})\}\subset Q_{t}(T^{*})$

$t_{n}\uparrow T^{*},$ $\xi_{n}arrow x_{1}$ and $u(t_{n}, \xi_{n})arrow\infty$ as $narrow\infty$ ;
(A2) there exists a positive constant $L_{0}$ such that $\ell(\mathrm{t})\leq L_{0}$ for any $t\in[0, T^{*})$ .

Therefore, it is sufficient to show that (A1) is a sufficient condition for (A) in the statement
of Theorem 3 and (A2) is, too.

Under the condition (A1) by the similar argument to those of $\mathrm{R}\mathrm{i}\mathrm{e}\mathrm{d}’ \mathrm{m}\mathrm{a}\mathrm{n}- \mathrm{M}_{\mathrm{C}\mathrm{L}}\mathrm{e}\mathrm{o}\mathrm{d}[7]$ we infer
that the set of blow-up points consists of only one point $x_{1}\in(0, \infty)$ . Clearly, $u(t, X_{1})arrow+\infty$

as $\mathrm{t}\uparrow\tau*$ and for any $x_{2}>x_{1}$ there is a positive constant $M_{3}(x_{2})$ such that

$|u(t, X)|\leq M_{3,-}(x_{2})$ for any $(t,x)\in Q_{\ell}(T^{*})\cap\{x>x_{2}\}$ .

By using the above estimate and a comparison theorem for solutions to one-phase Stefan
problems we conclude that (A) holds. Similarly, we can prove that (A2) implies (A).

3 Global existence
The purpose of this section is to show that in case $\alpha>1$ there is a global solution $\{u, \ell\}$

of $NP(u_{0}, l_{0})$ for a sufficiently small initial function $u_{0}$ , which satisfies that the set $\{\ell(t)\}_{t}\geq 0$

is bounded and $|u(t)|L^{\infty}(0,\ell(t))$ decays in exponential order. We can get no results concerned
with the global existence to our problem in case $0<\alpha\leq 1$ .

In this section we consider a solution to $NP$ in the distribution sense. Here, we give
a definition of a solution. We say that a pair $\{u, \ell\}$ is a solution of $NP(u_{0},.\ell 0)$ on $[0, T]$ ,
$0<T<\infty$ , if the following properties are fulfilled:

(S1) $u\in W^{1,2}(0, \tau;L2(0.’ P(t)))\cap L^{\infty}(0, T;W1,2(0, \ell(t)))$ , and $l\in W^{1,2}(0, T)$ with $0<l$ on
$[0, T]$ . .

(S2) (1.1) holds in the sense of $D’(Q_{\ell())}T$ and $(1.2)\sim(1.7)$ are satisfied.
Also, we call a couple $\{u, \ell\}$ is a solution of $NP$ on an interval $[\mathrm{o}, \tau’),$ $0<T’\leq\infty$ , if it

is a solution of $NP$ on $[0, T]$ in the above sense for any $0<T<T’$ .
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Theorem 3.1. (cf. [4]) We assume that $\alpha>1,$ $\ell_{0}>0,$ $u_{0}\in W^{1,2}(0, l\mathrm{o})$ with $u_{0}\geq 0$ and
$u_{0}(\ell_{0})--0$ . Then, there exist $p_{\mathit{0}\mathit{8}iti}venumber\mathit{8}\delta>0$ and $p_{0}>1$ such that if $\int_{0^{\mathrm{O}}}^{\ell+}u_{0}d1\alpha X\leq\delta$ ,
$\int_{0^{02}}^{l}u_{0}dx\leq\delta,$ $\int_{\mathrm{o}^{\mathrm{o}}0^{d}}^{\ell}u^{p_{\mathrm{O}}}x\leq 1$ and $\int^{\ell}\mathrm{o}^{02}ud_{X}0,x\leq 1$ , then the problem $NP$ with initial condition $u_{0}$

and $\ell_{0}$ has a $\mathit{8}olution\{u, \ell\}$ on $[0, \infty)$ satisfying that

$\int_{0}^{\ell(t)}u(t, X)dx+\ell(t)\leq C$ for $t>0$ ,

$\frac{d}{dt}|u_{x}(t)|_{L^{2}}^{2}(0,\ell(t))\leq 0$ for a. $e$ . $t>0$ ,

$|u(t)|_{L^{\infty}(t(}0,t))\leq C\exp(-\mu t)$ for $t>0$

where $C$ and $\mu$ are some positive constants.

Here, we note Gagliardo.Nirenberg inequalities.
Lemma 3.1. (1) For $p\geq 2$ and $\alpha\geq 0$ we put $q=2(p+\alpha)/p$ and $r\in(0, q)$ . Then we
have

$\int_{0}^{d}u^{p+\alpha}dx\leq(\frac{q+2}{2})^{\frac{2(q-\mathrm{r})}{r+2}}|(u^{2}2)x|^{\frac{2(q-\tau)}{L^{2}(0\mathrm{r}+2}},d)(\int_{0}^{d}u^{\mathrm{g}_{2^{;}}}dx)^{L}f++\frac{2}{2}$

for $u\in W^{1,2}(0, d)$ with $u(d)=0$ .
(2) For $q\geq 1$ we have

$|u|_{L(0,d} \infty)\leq(\frac{q+2}{2})^{\frac{2}{q+2}}|u_{x}|^{\frac{2}{L^{2}(q+2}}0,d)|u|Lq\overline{q}+\overline{2}s(0,d)$ for $u\in W^{1,2}(0, d)$ with $u(d)=0$.

In order to prove Theorem 3.1 we prepare the following energy estimates.
Lemma 3.2. We suppose that $\alpha>0_{f}\ell_{0}>0$ and $u_{0}\in W^{1,2}(0, \ell 0)$ such that $u_{0}\geq 0$ on
$[0, \ell_{0}]$ and $u_{0}(\ell_{0})=0$ . Let $\{u, \ell\}$ be a $\mathit{8}olution$ of $NP$ on $[0, T],$ $0<T<\infty$ . Then we have:

(1) For each $p>1$

$\frac{d}{d\mathrm{t}}\int_{0}^{l(t)}u(p\iota, X)d_{X}$

$\leq$ $\{-\frac{4(p-1)}{p}+p(2+\frac{\alpha}{p})2(\int^{\ell(}0\mathrm{I}t)\frac{\alpha}{1+a}l(t)^{2\frac{1}{1+a}}-|(u^{\frac{\mathrm{p}}{2}}u^{1}+\alpha(\mathrm{t}, x)dx)(t))_{x}|2L^{2}(0,\ell(t))$

for any $t\in(\mathrm{O}, T]$ .

(2) $\frac{d}{dt}\{\int_{0}^{\ell(}t)u(t, X)d_{X}+l(t)\}=\int_{0}^{\ell(t)}u(t, X)1+\alpha dX$ for $t\in(\mathrm{O}, T]$ .
(3) For a. $e$ . $t\in[0, T]$

$|u_{t}(t)|_{L}2 \frac{1}{2}2(0,\ell(t))|+\ell’(t)|3\frac{1}{2}+\frac{d}{dt}|u_{x}(t)|_{L}^{2}2(0,\ell(t))\frac{1}{2+\alpha}=\frac{d}{dt}|u(t)|_{L^{+}(}2\alpha 2+\alpha 0,\ell(t))$ .

Applying Gagliard($\succ \mathrm{N}\mathrm{i}\mathrm{r}\mathrm{e}\mathrm{n}\mathrm{b}\mathrm{e}\mathrm{r}\mathrm{g}$ inequalities to the above inequalities we can prove Theorem
3.1.
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4 Numerical experiments

We carried out numerical computations to $DP$ with $\alpha=1,$ $\ell_{0}=1$ and $u_{0}(x)=\lambda v_{0}(x),$ $\lambda>0$ ,

where $v_{0}(x)=X^{2}(X-1)2$ .

$A$

$\gamma_{\sim}$

$)_{\backslash }$ –/ca. $\gamma$

$\gamma$.
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The follwing figure discribes the relatiOnSh.i.p between $\lambda$ and $\ell_{\infty}$ .
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