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SINGULARITIES FOR PROJECTIONS OF
CONTOUR LINES OF SURFACES ONTO PLANES
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Department of Mathematics, Faculty of Science:
Hokkaido University, Sapporo 060 JAPAN

ABSTRACT. We study the visions for contour lines of surfaces when one looks at it
from a distant view in some direction. The study of such a landscape (i.e.so-called
“topography”) is reduced to the study of a certain divergent diagram of the smooth
‘mappings R — M — R?, where M is a smooth surface. We give a generic semi-local
classification of such divergent diagrams. '

1. FORMULATIONS AND RESULTS

In this paper we give a generic semi-local classification for the singularities of
orthogonal projections of_ contour lines of surfaces onto planes.

Let M be é.surféce in R® \: {(z,y,2)} and let E4 be a hyperplane in R® with the
normal direction d such that E;AM = ¢. We denote by Emb(M, R3) the space of all
embeddings M — R® endowed with the Whitney C®°-topology. Let 74 : R? — Ey4
be a orthogonal projection along the direction d. Then consider a level set of the
height function z : (M) — R, that is {(M)N{z=constant} for « € Emb(M,R3).
We call the set a contour line on z"(M). If one looks at a contour line on #(M) from
a distant view in some direction d, then one will get 74(:(M) N {z = c}) as the
viewing image. We study such a landscape as one of the problems in the vision
theory. That is, our subject is a semi-local classification of singularities for one
parameter families {m4(i(M) N {2z = c})}.er Which is called a topography 6f (M)
wifh respect to a direction d.

Let us formulate our theorems. Throughout this paper we shall suppose that all

mappings, map germs and manifolds are of class C*° unless otherwise stated. Now,
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without loss of generality we can suppose that d = (0,cos&,sin¢) € .S? N {z = 0}
where 0 < ¢ < - For a direction d, by the transformation of 7 — ¢ rotation around
z-axis in R?, we choose a new coordinate (z’,’, z'). Then the direction d becomes
(0,0,1) and the height function z is expressed by ' sin(Z —&)+2' cos(§ —€) in the
new coordinate. Let 7 : R® — R? be a projection defined by 7 (u, v, w) = (u,v). We
call the following divergent diagram of mappings a topographic diagram of i(M),

which is denoted by (u:,9) :

R 2y —2 . R?

where ;= ~izsin6 +izcos§(0S 0 < F),g=rmosi.

Since our concern is to describe the discriminant set of T o i (the outline of
i(M)) and the bifurcation of 7 o i(u;'(c)) along the parameter ¢ € R in semi-
local situation, we introduce the following definitions. Let 7 € Emb(M, R3) and let
{p1,... ,pr} be a subset of M whose elements are all distinct pointsin M such that
moi(py) =--- = woi(p,), where r is a positive integer. Then the multigerm o"fv a

topographic diagram at {p;,...,p.} which is denoted by T}

(R,0) 2~ (RZ,0) —2— (R2,0)
(R,0) 22— (R2,0) g;

(R,0) —— (R?,0)

where pg, gr are germs of p;,m o1 at pr respectively (k = 1,...,7), is called a
topographic multigerm of i. Let .T; and T be topographic multigerms. Then T}
and T3 are said to be equivalent if there exist diffeomorphism germs X; : (R, 0) —
(R,0), ¢ : (R%,0) — (R%,0), where £ = 1,...,r, and ¢ : (R?,0) — (R?,0) such
that Ao e = iy o fhu, o ge = ¢’y 0 thr.

We shall state a genericity theorem for topographic multigerms.
Theorem A. There ezists a residual subset (hence dense) O in Emb(M,R?)
such that for any i € ;O the topographic multigerms T; (1 < r < 3) is one of the

following types:

In the case r = 1.
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(I) w1 ts a submersion and gy is regular.

(II) py is a Morse type and g, s regular.

(III) py is a submersion, g1 is a fold, uy restricted to the singular set of g1 is
reqular and (p1,g1) : (R%,0) — (R3,0) is regular.

(IV) wy ts a submersion, g1 is a fold, pq restricted to the singular set of g1 15 a
Morse type and (p1,91) : (R%,0) — (R®,0) is reqular.

(V) w1 is a submersion, g1 is a fold, (u1,91) : (R%,0) — (R3,0) is a Whitney’s
umbrella such that the line of double points of which is transversal at 0 to the
direction {0} x R? in R3.

(VI) w1 is a submersion, g1 is a cusp and (u1,91) : (R?,0) — (R3,0) is regular.

In the caser = 2.

(Ia I)O :
(#1,91), (p2,g2) are both of type (I)
and (g1 0 g1~ 1, w2 0g27) : (R?%,0) — (R?,0) is regular.
(I, I)l
(11, 91), (n2, g2) are both of type (I)
and (p1 0917, pa 0 g27") : (R%,0) — (R?,0) is a fold.
(I$ I)Z ‘
(11, 91), (p2,92) are both of type (1)
and (p1 0917 Y, peoge™t) : (R%,0) — (RZ%,0) is a cusp.
(IL ) :
(11, 91) 15 of type (II), (p2, g2) is of type (1)
and (p1 09171, pp 0 g271) : (R?,0) — (R?,0) s a fold.
(II1,1)° :
(k1,91) is of type (III), (n2,g2) is of type (1)
and the discriminant set of g1 and go(u5 *(0)) are transversal.
(II1,1)!:

(n1.91) is of type (III), (p2, g2) is of type (I)

and the discriminant set of g and ga(py ' (0)) have two point contact.
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(IV,I):
(11, 91) is of type (IV), (b2, 92) 1s of type (1)
and the discriminant set of g1 and g2(u; *(0)) are transversal.
W, I):
(11,.91) is of type (V). (1, 92) is of type (D),

the discriminant set of g1 and gy(u; ' (0)) are transversal.

(VI I):
(11, 91) 1s of type (VI), (h2,92) is of type (I)

and the tangent cone of the discriminant set of g1 and ga(us '(0)) are transversal.

(II1,III):
(11.91)s (B2, 92) are both of type (11I)
and the discriminant sets of g1, gs are transversal.

In the case r = 3.

(L I, D1y : (B4, 955 ik, gx) 3 of type (I, I)1 for LS j <k £ 3.

(II, 1, 1N © (p1, 915 2. 2) is of type (III, I)° and (pz2, ga; pi3, g3) is of type (I,
I).

(III, III, I)%° : (py, 91; pas g2) 15 of type (IIL, III) and (p5,95; p3, g3) is of type
(III, I forj =1,2.

Besides the following nine types:

(I,‘I, Doo, (IL I, D3°, (1L, I, 13°, @V, L, DY°, (v, 1, 197, (VL L, I)9°:
(11,915 k> gr) @5 of type (I, I)o, (v, I),v=IL....VIfork = 2,3 and (p2,92; 13, 93)
s of type (I, I)o.

(L, I, D1, (L, I, I)2 0, (III, I, I)é’0 : (p1, 915 B2, 92) 1s of type (I, D)y, (I, I)2, (111,
! and (42, 92; ps, gs) s of type (I, I)o.

Remark 1.1. In the case r = 2, the generic condition of (I, I); (resp. (I, I)2)
means that g1 (uz;7(0)) and g2(u2~1(0)) have second (resp. third) order contact.

Remark 1.2. In the case r 2 4 all of generic types are essentially same as the case
r = 3. That is, we can add only type (I) to the each type in the case 7 = 3 such
that (p4,95;4r,gr) for j =1,...,7 — 1 is not of type (*, I)1, (*, I)z in the list of
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the case r = 2. In the same sense for the case 7 = 3, the generic types except three

types (I, I, I); 1, (I1T, I, I)‘(l)-'o., (IT1, II1, I)°0 are essentially same as in the case r = 2.

Next we shall give a normal form for each type stated as above. Denote by
Ez.,... .z, the ring of all smooth function germs on R™ at 0 with a coordinate

(z1,-..,%a) and denote by M, . .. the unique maximal ideal of &, .,

Theorem B. The topographic multigerms of each type are equivalent to one of the
following multigerms . T; = (1,915« 3ty Gr):

In the case r = 1.

)

g1 =y, g1 =(z1,11)

(1) |

= i, jgl = (z1,91)-
(IIT)

pm=z1+y, (= (z1,93)-

vy

m=zi+y1, 0= (z1,99).

(V)
m=a+ny+35, g =(z1,90).

(V1)

p1=vy1+aogy, g1=(21,¥} +z1y1),

where o € My, .
In the case r = 2.
(Ia I)O

L=y, g1 =(z1.9);

p2 =Tz, g2 =(T2,y2).

p1 =9, g1 =(z1,¥1);

py =23 +y2, g2 = (Ta.y2).



(I7I)2

(I, )

(II1,1)°

(II1,1)!

IV, 1)

(v.1)

(VI I)
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p1 =y, g1 =(z1,%1);

Py = T3+ Toy2 +y2, g2 = (T2,Y2)

H1 = .’D%iy%, g1=(1{1"yl)§ ’

g2 =3, g2 =(T2,92)

=T 4y, = (ml;y%);
e = Tg + 0(z2,Y2), g2 = (T2,Y2),

where 0 € Mg, 4, wz’thaaTog(O) =0.

po=z1 4y, g1 =(z1,93);
po =ys +0(z2,92), g2 = (%2,92),

where § € M2, . with £4(0) #0.

T2,Y2

p=z 4y, g1=(T1,97);
p2 = zo + 0(z2,y2), g2 = (Z2,92),

where § € Mg, ,, with -3%(0) =0.

pr =+ + 93, g1 = (21, 93);
po = 2 + 0(z2,92), g2 = (Z2,%2),

where § € Mg, ,, with %(0) =0.

p=un+aog, g1 =(z1,y +Tim1);
Ha2 = T2 + 0(£2a?]2)7 g2 = (-’1?2,3/2),

where « € My, ,,0 € Mg, ,, with 5‘1%(0) =0.
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(III,III)
w1 =190 +ta1oq, 91=('131,‘!/%);
pa =Tz + 0092, g2 = (z3,92),

where a1,y € My, with %‘f—( ) # 0, a;; (0) #0.

Remark 1.3. The normal forms of type (I, I, I); 1, (III, I, I)(l)’o, (111, 111, 1)%.°
the following:

(I, I, )11 : p1,91; p2, g2 have the same form as the normal form of type (I, I);,

p3 = ys + aza® + 0(z3,v3), 93 = (Z3,93)

where a € R — {0,1}, 8 € M2
am, 1, 1)° -

with az 2(0) = 0.

3,Y3

p=z1+y, g1 = (T1,0°);
p2 =2 + a(T2,32), g2 = (T2, ¥2);
3 = T3 +ﬂ(ﬂ33;ya)= g3 = (z3,93),
where a € Mg, 4,,8 € Mg, .y, thh 2e(0) = £(0) =0, 22(0) = 22(0)
and £5(0) - £2(0) 528, (0) # £5(0) - §5;<0)axaay3 (0).
(III, I, 1)%° . pq, g1; g2, g2 have the same form as the normal form of type (III,

III),

ps =3 +y3 +0(z3,¥3), g3 = (z3,y3) where § € M?

z3,Y3"

Remark 1.4. The divergent diagram (R, 0) « (R?,0) — (R?%,0) have been studied
by Arnol’d [1], Carneiro [5], Dufour [10] from the viewpoint of envelope, stability
theory. Also, the normal forms of each type stated in Theorem A for r = 1 has been
obtained by Arnol’d [1], Dufour [10].(The classification of Arnol’d is not C* case
but formal case.) For r = 2, essentially types (I,I)x (k =0,1,2), (II,I) have been
studied by Dufour [7, 8, 9] from the viewpoint of “bi-stability” and its normal forms
have been obtained. On the other hand, singularities for certain visual images have
been studied by several authors [4, 6, 13, 16, 17]. In particular, Dufour and Tueno
have investigated in [13] the pattern of illuminance due to a point source of light

which coincide with our Theorem A in the case r = 1.
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2. GEOMETRIC DESCRIPTION OF THE NORMAL FORMS

In order to understand our classification of topographies geometrically, let us
describe the level curves {gx(ur~*(c))} and the discriminant set of g, 1 = & =

r(r = 1,2) for each type.

(M
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Remark 2.1. The normal forms in Theorem B depend on arbitrary functions
with some conditions, that is so-called “functional moduli” appear in the normal
forms. For the type (VI) the uniqueness of the functional moduli have been studied
and the complete invariant has been detected ([11], [15]). For other types which
appear functional moduli, however we can not obtain the uniqueness result of the
functional moduli in this paper. We remark that the topographies have “d-web”(a
configuration of d foliations) structure. It is known that the only one functional
moduli appear in the local normal form of 3-web which consists of 3 curvilinear
foliations in R? ([12]) So we observe that it is natural the only one functional
moduli appear in our normal forms of the types which have 3-web structures. Also
we remark that two functional moduli which appear in our normal form of types
(111, III), (VI, I) deeply connect with the 4-web structure which the topographies
of type (III, III), (VI, I) have. We can not obtain the result that whether the two

functional moduli are reduced to only one or not in this paper.
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