BLOW ANALYTIC MODULI OF ANALYTIC FUNCTIONS OF TWO VARIABLES

MASAHIKO SUZUKI

Dedicated to the Memory of Professor Etsuo Yoshinaga

1. Introduction

Let $f_1, f_2: (\mathbb{R}^2, \mathbf{0}) \to (\mathbb{R}, 0)$ be germs of real analytic functions. We say that f_1, f_2 are blow analytic equivalent if there exist maps Φ , ϕ , β_1 , β_2 such that the diagram is commute:

where ϕ is a homeomorphis, Φ is an analytic isomorphism and $\beta(i=1,2)$ are compositions of blowing ups with smooth centers. T.C.Kuo proved the following theorem in [1].

Theorem 1.1. Let $F(x,p): (\mathbb{R}^n \times P, \mathbf{0} \times P) \to (\mathbb{R},0)$ be real analytic and let P be a subanalytic set. Suppose that for $p \in P$ fixed, $F_p : (\mathbb{R}^n, \mathbf{0}) \to (\mathbb{R}, 0)$, $F_p(x) = F(x, p)$ has an isolated singular point. Then there exists a finite filtraton of P by subanalytic sets $P^{(i)}(i=0,\ldots l)$

$$P = P^{(0)} \supset P^{(1)} \supset \cdots \supset P^{(l)} = \phi$$

such that

- (1) $dimP^{(i)} > dimP^{(i+1)}$, $P^{(i)} P^{(i+1)}$ is smooth, (2) for $p, p' \in P^{(i)} P^{(i+1)}$, F_p and $F_{p'}$ are blow analytic equivalent.

Let $\mathcal{A}_n := \{f | f : (\mathbb{R}^n, \mathbf{0}) \to (\mathbb{R}, \mathbf{0}); \text{ analytic} \}$. If $f \in \mathcal{A}_n$ has an isolated singularity, then f is finitely determined, that is, there exists an integer $r \in \mathbb{N}$ such that the analytic type of f is determined by the Taylor polynomial of f with degree r. Let J(n,1) be the set of r-jets of the element of \mathcal{A}_n and $L^r(n,n)$ be the set of r-jets of isomorphisms of $(\mathbb{R}^n, \mathbf{0})$. Then the Lie group $L^r(n, n)$ acts on $J^r(n, 1)$. Since $\operatorname{codim} Orb(j^r f) < +\infty$, There exists an analytic map $F: (\mathbb{R}^n \times \mathbb{R}^{\mu-1}, \mathbf{0} \times \mathbf{0}) \to (\mathbb{R}, 0)$ such that F is transeversal to $Orb(j^r(f))$. We call F the transeversal family of f. It is well known that we have

$$F(x,p) = f(x) + \sum_{i=1}^{\mu-1} p_i \alpha_i(x),$$

where $\alpha_1, \ldots \alpha_{\mu-1}$ are a basis of $\mathfrak{M}^2/\mathfrak{M}(\frac{\partial f}{\partial x_1}, \cdots, \frac{\partial f}{\partial x_n})$.

Let $S_f := \{p \in \mathbb{R}^{\mu-1} | f \text{ is blow analytic equivalent to } F_p\}$ as a germ at the origin. By Kuo's theorem above mentioned, it follows that S_f consists of finitely union of smooth manifolds. We propose the following problems:

Problems.

- (1) Estimate the dimension of S_f .
- (2) S_f is smooth?
- (3) Classify \mathcal{A}_n by the dimension of \mathcal{S}_f .
- (4) Prove that the upper semi-comtinuity of the $\dim S_f$.

2. Complex case

Let $f:(\mathbb{C},\mathbf{0})\to(\mathbb{C},0)$ be a germ of an analytic function with isolated singularity and let $F:(\mathbb{C}^n\times\mathbb{C}^{n-1},\mathbf{0}\times0)\to(\mathbb{C},0)$ be the traseversal family of f. Let

$$\mathcal{S}_f := \{ p \in \mathbb{C}^{\mu-1} | (\mathbb{C}^n, f^{-1}(0)) \text{ is relatively topological equivalent to } (\mathbb{C}^n, F_p^{-1}(0)) \}$$

Let $f:(\mathbb{C}^2,\mathbf{0})\to(\mathbb{C},0)$ be a germ of an analytic function and let $f(x,y)=\sum a_{i,j}x^iy^j$ be the Taylor expansion of f with respect to a coordinate system (x,y) of \mathbb{C}^2 . The Newton polygon $\Gamma_+(f;(x,y))$ with respect to the coordinate system (x,y) is the set $\bigcup_{i,j\neq 0}\{(i,j)+(i,j)\}$

 \mathbb{R}^2_+ . Newton boundary $\Gamma(f;(x,y))$ of f is the union of caompact faces of the boundary of the Newton polygon of f. For a compact face γ of $\Gamma(f;(x,y))$, we define f_γ by $f_\gamma(x,y) = \sum_{(i,j)\in\gamma} a_{i,j} x^i y^j$.

The author prove the following result in [2].

Theorem 2.1. Let f(x,y) be a germ of a quasihomogeneous function of two complex variables with isolated singularity. Then we have $S_f = a$ linear space in $\mathbb{C}^{\mu-1}$ generated by a basis of $\mathbb{C}[x_1,\ldots,x_n]/(\frac{\partial f}{\partial x},\frac{\partial f}{\partial y})$ in $\Gamma_+(f;(x,y))$.

M.Oka proved the following result in [3].

Theorem 2.2. Let $F(x,t): (\mathbb{C}^2 \times \mathbb{C}, \mathbf{0} \times \mathbf{0}) \to (\mathbb{C}, \mathbf{0})$ be analytic and suppose that $f_t = F|_{\mathbb{C}^2 \times \{\mathbf{0}\}}$ has an isolated singularty. If the Milnor number of f_t is constant independent

of $\forall t$ and f_0 is convenient, then there exists a coordinate system $\phi_t(x,y) = (x(t),y(t))$ which is analytic in t and satisfies the following conditons:

- (1) $\phi_t(0) = 0$, $\phi_0(x, y) = (x, y)$
- (2) $\Gamma(f_t; \phi_t) = \Gamma(f_0; \phi_0)$

M.Oka and Kushnirenko proved the following result in [4],[5].

Theorem 2.3. Suppose that $f:(\mathbb{C}^n,\mathbf{0})\to(\mathbb{C},0)$ has an isolated singularity and has a non-degenerate Newton boundary. Then the Milnor number of f is the number of a basis of $\mathbb{C}[x_1,\ldots,x_n]/(\frac{\partial f}{\partial x_1},\ldots,\frac{\partial f}{\partial x_n})$ in $\Gamma_+(f)$.

Lê Dũng Tráng and C.P.Ramanujan proved the following result in [6].

Theorem 2.4. Let $F: (\mathbb{C}^n \times \mathbb{R}, \mathbf{0} \times \mathbf{0}) \to (\mathbb{C}, \mathbf{0})$ be analytic and $F_t = F|_{\mathbb{C}^n \times \{t\}}$ has an isolated singularity for $\forall t \in \mathbb{R}$. If the Milnor numbers of F_t are independent of t, then the relative topological types of $(\mathbb{C}^n, F_t^{-1}(\mathbf{0}))$ are independent of t.

From the above three results, it follows that

Theorem 2.5. Let f be a germ of complex analytic function with isolated singularity at the origin, f(0) = 0 and suppose that f has the non-degenerate Newton boundary. Then we have $S_f = a$ linear space in the moduli space of the transversal family of f generated by a basis of $\mathbb{C}[x_1,\ldots,x_n]/(\frac{\partial f}{\partial x},\frac{\partial f}{\partial y})$ in $\Gamma_+(f;(x,y))$.

We will draw an analogy in case of real analytic functions in what follows.

3. REAL CASE

In what follows, suppose that $f \in \mathcal{A}_n$ has an isolated singularity. Let $F : (\mathbb{R}^n \times I, \mathbf{0} \times I) \to (\mathbb{R}, 0)$ be analytic and $F_0 = f$, where I is the open interval (-1, 1).

Definition 3.1. We say that F admits a blow analytic trivialization along I if there exist a local homeomorphism ϕ , an analytic isomorphism Φ and successive blowing ups $\beta_i (i = 1, ..., \gamma)$ such that the following diagram commutes:

$$(\mathcal{M}_{\gamma}, \beta^{-1}(o \times I)) \xrightarrow{\beta_{\gamma}} \cdots \xrightarrow{\beta_{0}} (\mathbb{R}^{n} \times I, \mathbf{0} \times I) \xrightarrow{proj} I \qquad \uparrow f$$

$$(\mathcal{M}_{\gamma}, \beta^{-1}(o \times I)) \xrightarrow{\beta_{\gamma}} \cdots \xrightarrow{\beta_{0}} (\mathbb{R}^{n} \times I, \mathbf{0} \times I) \xrightarrow{proj} (\mathbb{R}^{n}, 0).$$

where $\beta_i: \mathcal{M}_i \to \mathcal{M}_{i-1}$ is the blowing up with a smooth center $S_{i-1} \subset \mathcal{M}_i(\mathcal{M}_0 = \mathbb{R}^n \times I)$ and the composition map $S_i \xrightarrow{inclusion} \mathcal{M}_i \xrightarrow{\beta_i} \cdots \xrightarrow{\beta_1} \mathcal{M}_0 = \mathbb{R}^n \times I \to I$ is a submersion.

We have the following result.

Theorem 3.1. Suppose that $F: (\mathbb{R}^2 \times I, \mathbf{0} \times I) \to (\mathbb{R}, 0)$ admits a blow analytic trivialization along I and $F_0(x, y) = f(x, y)$ is convenient. Then there exists a coordinate system (x', y') Of \mathbb{R}^2 (which is a small perturbation of the original coordinate (x, y)) and a real analytic family of local coordinates $\varphi_t(x', y') = (x(t), y(t))(|t| << 1)$ such that

- (1) $\varphi_t(0,0) = (0,0)$ and $\varphi_0(x',y') = (x',y')$
- $\Gamma(F_t; \varphi_t) = \Gamma(f; (x', y')).$

In Kuo's theorem, we can replace the condition (ii) to

(1) For $P^{(i)} - P^{(i+1)} \ni \forall p, p'$ (close enough), F_p and $F_{p'}$ are jointed by a blow analytically trivial homotopy.

In fact, he have proved Theorem 1.1 under the above condition in [1]. From our result and Kuo's result, we have

Assertion 3.1. dim(the topological component of $P^i - P^{(i+1)}$ which contains $f) \leq$ the number of a basis of $A_2/(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y})$ in $\Gamma_+(f)$

The following result is deduced as the special case from the result in T.Fukui and E.Yoshinaga [6].

Theorem 3.2. Let $F: (\mathbb{R}^2 \times I, \mathbf{0} \times I) \to (\mathbb{R}, 0)$ be analytic. Suppose that the Newton boundary of F_t is independent of t and non-degenerate. Then F admits a blow analytic trivialization along I.

From this result and the above Assertion, we have

Assertion 3.2. Let $f:(\mathbb{R}^2,\mathbf{0})\to(\mathbb{R},0)$ be a germ of analytic function with isolated singularity. If f has a non-degenerate Newton boundary, then $\dim(\text{the topological component})$ of $P^{(i)}-P^{(i+1)}$ which contains $f=\text{the number of a basis of } \mathcal{A}_2/(\frac{\partial f}{\partial x},\frac{\partial f}{\partial y})$ in $\Gamma_+(f)$.

In addition to the problems mentioned in the section 1, we propose the following problem:

Problem

(5)Blow analytic constancy implies blow analytic triviality?

If this is true, then we have

Conjecture. Let $f: (\mathbb{R}^2, \mathbf{0}) \to (\mathbb{R}, 0)$ be a germ of analytic functions with isolated singularity. If f has a non-degenerate Newton boundary, then we have $\dim \mathcal{S}_f = \text{the number}$ of a basis of $\mathcal{A}_2/(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y})$ in $\Gamma_+(f)$.

we expect the conjecture will be true in genaral.

4. Outline of a proof of the result

Let $F: (\mathbb{R}^2 \times I, \mathbf{0} \times I)$ be analytic and $F_0(x, y) = f(x, y)$. Suppose that F admits a blow analytic trivialization along I and satisfies the commutative diagram mentioned in the previous section:

$$(\mathcal{M}_{\gamma}, \beta^{-1}(o \times I)) \xrightarrow{\beta_{\gamma}} \cdots \xrightarrow{\beta_{0}} (\mathbb{R}^{2} \times I, \mathbf{0} \times I) \xrightarrow{f} (\mathbb{R}, 0)$$

$$\downarrow \phi \qquad \qquad \downarrow I \qquad \uparrow f$$

$$(\mathcal{M}_{\gamma}, \beta^{-1}(o \times I)) \xrightarrow{\beta_{\gamma}} \cdots \xrightarrow{\beta_{0}} (\mathbb{R}^{2} \times I, \mathbf{0} \times I) \xrightarrow{proj f} (\mathbb{R}^{2}, 0),$$

Note that β_0 is $\sigma \times id_I : \mathcal{N} \times I \to \mathbb{R}^2 \times I$, where σ is the blowing up of \mathbb{R}^2 with center the origin and $\mathcal{N} = \{([\xi, \eta], (x, y)) | \xi y - \eta x = 0\} \subset \mathbb{R}P^1 \times \mathbb{R}^2$. Let (x, y) be the coordinate system of \mathbb{R}^2 which is obtained by the coordinate transformation

$$\begin{cases} x = x \\ y = y - \pi(p)x \end{cases}$$

where $p \in \sigma^{-1}(0) \cong S^1$ is a point which is not contained in the centers of the blowing ups $\beta_1, \ldots, \beta_{\gamma}$ and $\pi = proj : \mathbb{R}P^1 \times \mathbb{R}^2 \to \mathbb{R}P^1$.

We set $(u_{0\pm}, v_{0\pm}) = (u'_{0\pm}, v'_{0\pm}) := (x, y)$, $o_{0\pm} = o'_{0\pm}$ = the origin of \mathbb{R}^2 and set $\mathcal{N}_{0\pm} = \mathbb{R}^2(x, y)$. Next we define inductively real analytic manifold $\mathcal{N}_{k\pm}$, real analytic maps $\sigma_{k\pm} : \mathcal{N}_{k\pm} \to \mathcal{N}_{(k-1)\pm}$ according to the sign +, - respectively as follows. Let $\mathbb{R}^2(u_{k\pm}, v_{k\pm})$, $\mathbb{R}^2(u'_{k\pm}, v'_{k\pm})$ be copies of \mathbb{R}^2 and set $\mathcal{N}_{k\pm} = \mathbb{R}^2(u_{k\pm}, v_{k\pm}) \cup \mathbb{R}^2(u'_{k\pm}, v'_{k\pm})$. Let $o_{k\pm}$ (resp. $o'_{k\pm}$) be the origin of the patch $\mathbb{R}^2(u_{k\pm}, v_{k\pm})$ (resp. $\mathbb{R}^2(u'_{k\pm}, v'_{k\pm})$) and let $\sigma_{k+} : \mathcal{N}_{k+} \to \mathcal{N}_{(k-1)+}$ (resp. $\sigma_{k-} : \mathcal{N}_{k-} \to \mathcal{N}_{(k-1)-}$) be the blowing up of $\mathcal{N}_{(k-1)+}$ (resp. $\mathcal{N}_{(k-1)-}$) with center o_{k+} (resp. o''_{k-}) defined by

$$\sigma_{k+}(u_{k+}, v_{k+}) = (u_{k+}, u_{k+}, v_{k+}) = (u_{(k-1)+}, u_{(k-1)+}, v_{(k-1)+})$$

$$= (u'_{k+}, v'_{k+}, v'_{k+}) = \sigma_{k+}(u'_{k+}, v'_{k+})$$

$$\sigma_{k-}(u_{k-}, v_{k-}) = (u_{k-}, u_{k-}, v_{k-}) = (u'_{(k-1)-}, u'_{(k-1)-}, v'_{(k-1)-})$$

$$= (u'_{k-}, v'_{k-}, v'_{k-}) = \sigma_{k-}(u'_{k-}, v'_{k-})$$

and we set $\sigma_{0\pm} = id : \mathbb{R}^2 \to \mathbb{R}^2$.

At first we consider the analytic map $\sigma_{k+}: \mathcal{N}_{k+} \to \mathcal{N}_{(k-1)+}$. We set

$$m_{k+} = \text{the order of } f \circ \sigma_{0+} \circ \cdots \circ \sigma_{k+}(u_{k+}, v_{k+})$$

$$\Delta'_{k+} = \{(u_{k+}, v_{k+}) \in \Gamma(f \circ \sigma_{0+} \circ \cdots \circ \sigma_{k+}; (u_{k+}, v_{k+})) | u_{k+} + v_{k+} = m_{k+}\}$$

Let Δ_{k+} be the face of $\Gamma(f;(x,y))$ corresponding to Δ'_{k+} by the map

$$\begin{pmatrix} u_{k+} \\ v_{k+} \end{pmatrix} \mapsto \begin{pmatrix} u_{k+} - k v_{k+} \\ v_{k+} \end{pmatrix}.$$

Next we set

 $\nu_{k+} = \min\{y | \text{there exists } x \text{ such that } (x,y) \in \Delta_{k+}\}$ $\nu'_{k+} = \max\{y | \text{there exists } x \text{ such that } (x,y) \in \Delta_{k+}\}$

and there exists $\gamma \in \mathbb{N}$ such that

$$\nu_{0+} \ge \dots \ge \nu_{(\gamma-1)+} = 0, \qquad \nu'_{0+} \ge \dots \ge \nu'_{(\gamma-1)+}$$

We have the following lemmata.

Lemma 4.1. Suppose that $F: (\mathbb{R}^2 \times I, \mathbf{0} \times I) \to (\mathbb{R}, 0)$ admits a blow analytic trivialization along I and suppose that

$$f_{\Delta_0+}(x,y) = x^{\alpha} y^{\beta} \Big(\sum_{i=0}^{\gamma} a_i x^{\gamma-i} y^i \Big), \qquad a_0 a_{\gamma} \neq 0$$

as a germ at the origin. Then there exist germs $\varepsilon(t)$, $\delta(t)$ and $a_i(t)$ $(i = 1, ..., \gamma)$, at t = 0, of real analytic functions wich satisfy the following conditions,

- (1) $F_{t,\Delta_t}(x,y) = (x \delta(t)t)^{\alpha} (y \varepsilon(t)x)^{\beta} (\sum_{i=0}^{\gamma} a_i(t)x^{\gamma-i}y^i)$
- (2) $\varepsilon(0) = \delta(0) = 0$ and $a_i(0) = a_i$ $(i = 1, ..., \gamma)$
- (3) $\sum a_i(t)x^{\gamma-i}y^i$ does not divide by $(x-\delta(t)y)$ or $(y-\varepsilon(t)x)$ in $\mathbb{R}\{x,y\}$,

where Δ_t is the homogeneous face of $\Gamma(F_t;(x,y))$.

By Lemma 4.1 we can find germs of real analytic functions $\varepsilon_1(t)$, $\delta_1(t)$ and $a_i(t)$ (i = $1, \ldots, \gamma_1$) as in Lemma 4.1 so that

$$F_{t,\Delta_t}(x,y) = (x - \delta_1(t)y)^{\alpha} (y - \varepsilon_1(t)x)^{\beta} \Big(\sum_{i=0}^{\gamma_1} a_i(t)x^{\gamma_1 - i}y^i \Big).$$

We set

$$\varphi_{1+}(x,y,t) = (x_1(t), y_1(t), t) = (x - \delta_1(t)y, y - \varepsilon_1(t)x, t).$$

Then $(x_1(t), y_1(t), t)$ is a real analytic family of coordinates of \mathbb{R}^2 and

$$\{(x_1, y_1) \in \Gamma(F_t; (x_1, y_1)) | x_1 + y_1 = \text{the order of } F_t \circ \varphi_{1+,t}^{-1}(x_1, y_1)\} = \Delta_{0+}$$

for $\forall t \ (|t| << 1)$, where $\varphi_{1+,t} = \varphi_{1+}|_{\mathbb{R}^2 \times \{t\}}$.

We have the following lemma by means of induction.

Lemma 4.2. Suppose that $F \circ (\sigma_{(k-1)+} \times id_J) \circ \cdots \circ (\sigma_{0+} \times id_J) : (\mathcal{N}_{(k-1)+}, o_{(k-1)+}) \rightarrow$ $(\mathbb{R},0)$ admits a blow analytic trivialization along J, where $J=(-\varepsilon,\varepsilon)$ and suppose that $\Gamma(F_t; (x_{(k-1)+}, y_{(k-1)+})) \cap \{\nu_{(k-1)+} \le y_{(k-1)+} \le \nu'_{(k-1)+}\} = \Delta_{(k-1)+} \text{ for } \forall t \in J \text{ and } f_{\Delta_{(k-1)+}}$ has no power of x only. Then $F \circ (\sigma_{k+} \times id_J) \circ \cdots \circ (\sigma_{0+} \times id_J) : (\mathcal{N}_{k+}, o_{k+}) \to (\mathbb{R}, 0)$ admits a blow analytic trivialization along J and there exist a positive number δ_{k+} and a bianalytic map

$$\varphi_{k+}: \mathbb{R}^2(x,y) \times I_{\delta_{k+}} \longrightarrow \mathbb{R}^2(x_{k+},y_{k+}) \times I_{\delta_{k+}}$$
$$(x,y,t) \longmapsto (x_{k+}(t),y_{k+}(t),t)$$

such that

- (1) $\varphi_{k+}(x, y, 0) = (x, y, 0), \ \varphi_{k+}(0, 0, t) = (0, 0, t)$
- (2) $\Gamma(F_t; (x_{k+}, y_{k+})) \cap \{\nu_{k+} \leq y_{k+} \leq \nu'_{k+}\} = \Delta_{k+}$ (3) $\Gamma(F_t; (x_{k+}, y_{k+})) \cap \{\nu_{1+} \leq y_{k+}\} = \Gamma(F_t; (x_{1+}, y_{1+})) \cap \{\nu_{1+} \leq y_{1+}\},$ where $I_{\delta_{k+}}$ is the open interval $(-\delta_{k+}, \delta_{k+})$.

Lemma 4.3. If F admits a blow analytic trivialization along I and noncompact face of $\Gamma_{+}(F_t;(x,y))$ is independent of t, then we have

$$\Gamma(F_t;(x,y)) = \Gamma(f;(x,y))$$
 for $|t| << 1$

We apply Lemma 4.2 for F and then for $k = 0, ..., \gamma - 1$ and |t| << 1,

$$\Gamma(F_t; (x_{k+}, y_{k+}) \cap \{(x_{k+}, y_{k+}) | \nu_{k+} \le y_{k+} \le \nu'_{k+}\} = \Delta_{k+}$$

Next for the sign -, we proceed with the same argument as the sign + and then for $l = 1, \ldots, \xi - 1 \text{ and } |t| << 1,$

$$\Gamma(F_{l};(x_{l-},y_{l-})) \cap \{(x_{l-},y_{l-}) | \zeta_{l-} \leq x_{l-} \leq \zeta'_{l-} \} = \Delta_{l-}$$

$$\Gamma(F_{l};(x_{l-},y_{l-})) \cap \{\zeta_{1-} \leq x_{l-} \} = \Gamma(F_{l};(x',y')) \cap \{\zeta_{1-} \leq x' \},$$

where
$$(x'(t), y'(t), t) = \varphi_{1-} \circ \varphi_{(\gamma-1)+} \circ \cdots \circ \varphi_{1+}(x, y, t)$$
 and
$$\zeta_{k-} = \min\{x | \text{there exists } y \text{ such that } (x, y) \in \Delta_{k-}\}$$

$$\zeta'_{k-} = \max\{x | \text{there exists } y \text{ such that } (x, y) \in \Delta_{k-}\}$$

$$\zeta_{0+} \geq \cdots \geq \zeta_{(\xi-1)+} = 0, \qquad \zeta'_{0+} \geq \cdots \geq \zeta'_{(\xi-1)+}.$$

We set $\varphi(x, y, t) = (\varphi_t(x, y), t) = \varphi_{(\gamma - 1)} \circ \cdots \circ \varphi_{1-} \circ \varphi_{(\gamma - 1)} \circ \cdots \circ \varphi_{1+}(x, y, t)$ and then we have that the noncompact face of $\Gamma(F_t; \varphi_t)$ is independent of t for |t| << 1. Hence from Lemma4.3, $\Gamma(F_t; \varphi_t)$ is independent of t for |t| << 1. This completes the proof.

REFERENCES

- 1. Kuo, T. C., "On classification of real singularities," Inventiones Mathematicae 82, 257-262 (1985).
- 2. Suzuki, M., "The stratum with constant Milnor number of a mini-transversal family of a quasihomogeneous function of corank two," Topology 23,101-115 (1983).
- 3. Oka, M., "On the stability of the Newton boundary," Proceedings of Symposia in Pure Mathematics 40,259-268 (1983).
- 4. Oka, M., "On the bifurcation of the multiplicity and topology of the Newton boundary," J. Math. Soc. Japan 31 435-450 (1979).
- 5. Kushnirenko, A.G., "La fonction zeta d'une monodromie," Comment. Helv. 50, 233-248 (1975).
- 6. Lê Dũng Tráng and Rananujam, C.P., "The invariance of Milnor Number implies the invariance of the topological type," Am. J. Math. bf 98, 67-78 (1976).