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1. INTRODUCTION

Daverman $[\mathrm{D}\mathrm{a}_{2}]$ introduced the notion of (strongly) hereditarily aspherical compacta,
which is a natural extension of the usual asphericity. A compactum is hereditarily as-
phe$7^{\cdot}ical$ if each closed subset $A$ is k-UV for all $k>1$ . Saying $A$ is k-UV means that
under some embedding of $A$ in the Hilbert cube, each neighborhood $U$ of $A_{\mathrm{C}\mathrm{o}\mathrm{n}}\mathrm{t}\mathrm{a}\dot{\mathrm{m}}\mathrm{s}$

a neighborhood $V$ of $A$ such that all maps $S^{k}arrow V$ extends to maps $B^{k+1}arrow U$ . Of
course, this k-UV property is independent of the embedding of $A$ in metrizable ANR’s.
$X$ is said to have Property $UV^{n}$ if it has Property k-UV for $0\leq k\leq n$ . A compactum
$X$ is said to be strongly heredita$7\dot{?}ly$ aspherical if $X$ can be embedded in the Hilbert cube
$Q$ such that for each $\epsilon>0$ there exists an $\epsilon$-cover $\mathcal{U}$ of $X$ by open collection of $Q$ , where
the union of any subcollection of elements of $\mathcal{U}$ is aspherical. Note that strongly hered-
itary asphericity implies hereditary asphericity. Manifolds and complexes of dimension
3 and higher cannot possess such a hereditary property. Surprisingly, Daverman $[\mathrm{D}\mathrm{a}_{2}]$

constructed examples of strongly hereditarily aspherical 3- and 4-dimensional compacta
and hereditarily aspherical generalized 3-dimensional manifold. Recently, Daverman
and Dranishnikov [Da-Dra] proved the existence of strongly hereditarily aspherical com-
pacta of arbitrary dimension. Furthermore, Daverman $[\mathrm{D}\mathrm{a}_{2}]$ proved that the class of
strongly hereditarily aspherical compacta contains all 2-dimensional compacta of ratio-
nal cohomological dimension one and cell-like maps defined either on strongly hereditar-
ily aspherical compacta or on locally simply connected hereditarily aspherical compacta
cannot raise dimension.

.

Dydak and the author [D-Y] introduced a different generalization of asphericity:
let us recall a compactum $X$ shape aspherical if any map $f$ : $Xarrow P$ from $X$ to a
polyhedron $P$ factors up to homotopy as $f\simeq h\circ g$ , where $g:Xarrow K,$ $h:Karrow P$

and $K$ is an aspherical $\mathrm{C}\mathrm{W}$-complex (i.e., $K$ is a $K(G,$ $1)$ ). Obviously, shape aspherical
compacta are aspherical and strongly hereditarily aspherical compacta are hereditarily
shape aspherical. They modified several results known to be true for the class of strongly
hereditarily aspherical compacta.

In this paper, we shall investigate the fundamental properties of the shape asphericity
which is natural from the view point of homotopy theory (see [Y] for the details).
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2. HEREDITARILY ASPHERICAL COMPACTA

In this section we shall introduce the following results in the joint work [D-Y] with
Jerzv Dvdak (University of Tennessee, Knoxville).

Theorem 2.1. If $X\in LC^{1}$ is a hereditarily aspherical compactum, then $X\in ANR$ . In
particular, $X$ is $\mathit{8}trongly$ hereditarily asphe$7^{\cdot}ical$ .

Remark 2.2. Theorem 2.1 gives a partial answer to Question 3 in $[\mathrm{D}\mathrm{a}_{2}]$ . Since the
property of the hereditary asphericity and of being $LC^{1}$ are preserved on a cell-like
map, Theorem 9 in $[\mathrm{D}\mathrm{a}_{2}]$ follows from Theorem 2.1.

Remark 2.3. Daverman $[\mathrm{D}\mathrm{a}_{2}]$ constructed a hereditarily aspherical generalized 3- dimen-
sional manifold. Does there exists a hereditarily aspherical ANR of dimension greater
than 3 ?

Theorem 2.4. $Suppo\mathit{8}ef$ : $Xarrow Y$ is a cell-like map of compacta and $f^{-1}(A)i\mathit{8}\mathit{8}hape$

aspherical for each closed subset $A$ of Y. Then
1. $Yi\mathit{8}$ hereditarily $\mathit{8}hape$ aspherical,
2. $f$ is a hereditary $\mathit{8}hape$ equivalence,
S. $\dim X\geq\dim Y$ .

Theorem 2.5. Suppose $G$ is a group containing integers. If $\dim X\leq 2$ and $\dim_{G}X=$
$1_{j}$ then $X$ is hereditarily $\mathit{8}hapea\mathit{8}phe7^{\cdot}ical$ .

Theorem 2.6. Suppose $c$ is a group containing integers. Then the following conditions
are equivalent.$\cdot$

1. $\dim X\leq 2$ and $\dim_{G}X=1f$

2. $\dim_{G*_{\mathrm{Z}}c}X=1_{f}where*_{\mathrm{Z}}$ means the amalgamated free product with Z.

Definition. We say that a compactum $X$ is of perfect cohomological $dimen\mathit{8}i_{on\mathit{1}}$ pro-
vided $\dim_{G}X=1$ for all perfect groups $G$ .

Remark. Compacta of perfect cohomological dimension 1 were introduced in [D-R] as
Kainian compacta.

Corollary 2.7 (Dranishnikov-Repov\v{s} [D-R]). If $X$ is a compactum of perfect co-
homological dimension $\mathit{1}_{f}$ then $\dim X\leq 2$ .

It is well known that for compacta $X$ and $Y$ the equality
$(*)\dim(X\cross Y)=\dim X+\dim Y$

does not generally hold $[\mathrm{B}\mathrm{o}1_{1},\mathrm{B}\mathrm{o}\mathrm{r}\mathrm{l},\mathrm{p}]$ . Therefore it makes sense to study compacta such
that the equality $(*)$ holds $[\mathrm{K}\mathrm{o}_{1,2}\mathrm{K}\mathrm{o}]$ . One of the known cases is of compacta $X$ and $Y$

which have the property $\Delta$ in the sense of K. Borsuk [$\mathrm{B}\mathrm{o}\mathrm{r}_{2}$ , p.178]. Since 2-dimensional
ANR compacta have the property $\Delta$ , the equality $(*)$ holds (in fact, these spaces are
dimensionally full-valued $[\mathrm{K}\mathrm{o}_{1}])$ . Boltyanskii $[\mathrm{B}\mathrm{o}1_{1}]$ (see also $[\mathrm{B}\mathrm{o}\mathrm{r}_{1}]$ ) constructed 2-
dimensional $LC^{0}$ compactum with $\dim(X\cross X)=3$ . Thus, to consider whether the
equality $(*)$ holds in the class of 2-dimensional $LC^{1}$ compacta is natural. We shall solve
this problem in affirmative.
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Definition. Recall that a space is called $\mathit{8}emiloCally$ simply connected provided $X$ has
a basis of open sets $U$ such that the inclusion induced homomorphism $\pi_{1}(U)arrow\pi_{1}(X)$

is trivial.

Theorem 2.8. Let $X$ be a locally connected and semilocally $\mathit{8}imply$ connected com-
pactum of dimension $\geq 2$ . Then, $\dim_{G}X>1$ for all groups $G\neq 1$ .

Corollary 2.9. Let $X$ be a two-dimen8ional, locally connected and semilocally simply
connected compactum. $Then_{y}$ for any compactum $Y$

$\dim(X\cross Y)=\dim x+\dim Y$.

3. BASIC PROPERTIES OF SHAPE ASPHERICAL COMPACTA

This section presents some basic properties about the shape asphericity.

Proposition 3.1 ( $\mathrm{c}.\mathrm{f}$. [Da-Dra]). Let $X$ be a $\mathit{8}hape$ aspherical compactum. Then $X$

$ha\mathit{8}$ property $UV^{1}$ if and only if it is cell-like.

Remark. One may consider whether an aspherical compactum is shape aspherical. But
it is not always true. Let $T$ be the Taylor’s example [T]. Then $T$ is aspherical (in
fact, has property $UV^{\infty}$ ), but not shape aspherical, because of the proposition above
and non-cell-likeness of it ($\mathrm{c}.\mathrm{f}$ . [Da-Dra]). Even finite dimensional case, asphericity
and shape asphericity do not coincide in general (for example, consider the Daverman-
Dranishnikov’s example $F$ in [Da-Dra, Theorem 3.7] and use Theorem 3.4 in [D-Y] $)$ .

Every morphism $F:(X, *)arrow(Y, *)$ of the pointed shape category induces a well-
defined morphism $\mathrm{P}^{\mathrm{r}\mathrm{o}-\pi}1(F):\mathrm{p}\mathrm{r}\mathrm{o}-\pi 1(X, *)arrow \mathrm{p}\mathrm{r}\mathrm{o}-\pi 1(Y, *)$. In fact, it follows from the
following theorem that a shape aspherical continuum is determined up to shape type
by its pro-fundamental group. We denote the set of all morphisms (in the category of
pro-groups) from $\mathrm{p}\mathrm{r}\mathrm{o}-\pi_{1(}X,$ $*$ ) to $\mathrm{p}\mathrm{r}\mathrm{o}-\pi_{1}(Y, *)$ by $\mathrm{p}\mathrm{r}\mathrm{o}_{-}\pi 1((X, *),$ $(Y, *))$ .

Theorem 3.2. Let $(X,$ $*)$ be a pointed continuum, $(Y, *)$ a pointed $\mathit{8}hape$ aspherical
continuum. Then we have the following bijection:

$Sh((X, *),$ $(Y, *))\approx pro-\pi_{1}((x, *),$ $(Y, *))$ .

Corollary 3.3. Two shape $a\mathit{8}phe$rical pointed continua having isomorphic pro-fimda-
mental $group_{\mathit{8}}$ have the same shape type.

Corollary 3.4. If $X$ and $Y$ are $\mathit{8}hapea\mathit{8}phe\dot{n}cal$ pointed continua with $i\mathit{8}omo7phiC$ pro-
fundamental $groups_{f}$ then pro-Hq $(X, c)$ $\approx$ pro-Hq $(Y, G)$ and pro-Hq $(X, c)$ $\approx$

$pro- Hq(Y, G)$ for any abelian group $G$ .

From the Smith’s theorem [Sm, p.367], we know that a finite dimensional aspherical
complex has fundamental group, which contains no elements of finite order. Moti-
vated by the result, we introduce a new notation. An inverse sequence $\{G_{i,g_{i-1}^{i}}\}$ of
groups is pro-tor8ion free if for each $i\in \mathrm{N}$ there is a $j>i$ such that {$g\in G_{j}$ :
$g$ is an element of finite $\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{e}\mathrm{r}$} $\subseteq \mathrm{K}\mathrm{e}\mathrm{r}(g_{i}^{J}’)$, (the definition coincides the usual one in the
category of abelian groups). Then we naturally pose the following question:

43



Question. Does a finite dimensional shape aspherical compactum have pro-fundamen-
tal group pro-torsion free?

Remark. Examples constructed by Daverman, Daverman-Dranishnikov [$\mathrm{D}\mathrm{a}_{2}$ , Da-Dra]
have pro-fundamental groups pro-torsion free.

If a non-trivial group $G$ is not torsion free, we can find a non-trivial finite cyclic
subgroup of $G$ . Suppose $\{G_{i,p_{i-1}^{i}}\}$ is not pro-torsion free. Then we have a non-trivial
pro-subgroup $\{F_{i,p_{i1}^{i}}-|_{F_{i}}\}$ of $\{G_{i}\},$ $\mathrm{w}\mathrm{h}\mathrm{e}\dot{\mathrm{r}}\mathrm{e}F_{i}$ is the subgroup of $G_{i}$ generated by the
set of all finite order elements of $G_{i}$ . We may not obtain a non-trivial pro-subgroup
$\{\mathrm{Z}_{d_{i}}\}$ .of $\{F_{i}\}$ consisting of finite cyclic groups (for example, consider the pro-group
$\{G_{i},p^{l}i-1\}$ defined by $G_{i}= \prod_{j\in \mathrm{N}}G_{ij}$ and $p_{i-1}^{i}= \prod j\in \mathrm{N}p(j)^{i}i-1$

’ where $G_{ij}=\mathrm{Z}_{2}$ and
$p(j)_{i-1}^{i}=id_{\mathrm{Z}_{2}}$ if $j\geq i$ or trivial if $j<i$ ), but we shall give examples, which suggest
that the question will be affirmative in the case.

Example 3.5. Let $n$ be an odd prime and $\{\mathrm{Z}_{n}arrow f_{1}^{2}\mathrm{Z}_{2n}arrow f_{2}^{3}\mathrm{Z}_{4n}arrow\cdots\}$ a (non-
trivial) pro-group consisting of finite (multiplicatively written) cyclic groups $\mathrm{Z}_{2^{k-1}n}=$

$\{g_{k}^{0}=1_{k,g_{k}}, \cdots, g_{k}^{2^{k-1}1}\}n-$ with generators $g_{k}$ of the order $2^{k-1}n$ and homomorphisms
$f_{k-1}^{k}..\mathrm{Z}_{2^{k-1}n}arrow \mathrm{Z}_{2^{k-2}n}$ induced by $f_{k-1}^{k}(g_{k})=g_{k-1}$ . Then there exist no finite dimen-
sional shape aspherical compacta with $\mathrm{p}\mathrm{r}+\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{a}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{l}$ group which is isomorphic to
the pro-group.

Remark. Since the example above essentially contains a pro-group $\{\mathrm{Z}arrow \mathrm{Z}arrow\cdots\}$ ,
we may see the same conclusion using an argument of the following example. Also
we note that there is an example in which the proof above breaks down (calculate the
odd-dimensional pro-homology groups of $\{\mathrm{Z}_{p}arrow \mathrm{Z}_{p^{2}}arrow\cdots\}$ , where $p$ is a prime).

More generally, we have the following example along a proof of the Smith’s theorem
$([\mathrm{K}- \mathrm{N}_{- \mathrm{S}}])$ .

Example 3.6. Let $\{G_{i,p_{i-1}^{i}}\}$ be a pro-group containing the pro-group $\{\mathrm{z}_{2^{k-1}f}n’ k-k1\}$

in the example 3.5 as a pro-subgroup. Then there exist no finite dimensional shape
aspherical continua with pro-fundamental group which is isomorphic to the pro-group.

Theorem 3.7. Let $X_{i},$ $i\in \mathrm{N}_{f}$ be compacta. Then the following are equivalent:
(1) the product space $\prod_{i}X_{i}$ is shape $a\mathit{8}phe\dot{n}Cal_{f}$

(2) each $X_{i}$ are shape aspherical.

A map $f:Xarrow Y$ is refinable if for every $\epsilon>0$ there is an $\epsilon$-map $g:Xarrow Y$ such
that $d(f, g)<\epsilon$ . Note that refinable maps do not preserve shapes in general.

Theorem 3.8. Let $f:Xarrow Y$ be a refinable map between compacta. Then
(1) $X$ is $\mathit{8}hape$ aspherical if and only if so is $Y$ ,
(2) if $X$ is hereditarily $\mathit{8}hapea\mathit{8}phe7\mathrm{r}ical$ and $Y$ is $LC^{1}$ , $fi\mathit{8}$ hereditarily $\mathit{8}hape$ equiv-

alence.
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4. $\mathrm{s}_{\mathrm{H}\mathrm{A}\mathrm{p}}\mathrm{E}$ ASPHERICITY PASTING THEOREM

J. H. C. Whitehead $[\mathrm{W}\mathrm{H}\mathrm{J}_{1}]$ proved an “addition theorem” of aspherical polyhedra
with an application to the study of knots and linkages as an answer of question proposed
by Eilenberg. In this section, we shall show a similar one of shape aspherical compacta
under some conditions.

An inverse system $\{G_{i,g_{i-1}^{i}}\}$ of groups and homomorphisms is pro-abelian if for each
$i\in \mathrm{N}$ there is a $j>i$ such that ${\rm Im} g_{i}^{j}\subseteq G_{i}$ is abelian. Then note that there is a pro-
group $\{H_{i}, h_{i1}^{i}-\}$ such that each $H_{i}$ are abelian groups and $\{G_{i,g_{i-1}^{i}}\}\approx\{H_{i}, h_{i-1}^{i}\}$ .
A pointed compactum $X$ has $\mathrm{p}\mathrm{r}\mathrm{o}-\pi 1(X, *)$ pro-abelian if whenever $X$ is written as
an inverse limit $X \cong\lim_{arrow}\{(P_{i}, *), f_{i-1}^{i}\}$ of finite pointed $\mathrm{C}\mathrm{W}$-complexes, the system
$\{\pi_{1}(P_{i}, *), f_{i-1}^{i}\}$ is pro-abelian. Then if $X$ is a compactum with $\mathrm{p}\mathrm{r}\mathrm{o}-\pi 1(X, *)$ pro-abelian
embedded in the Hilbert cube $Q$ as a $Z$-set, then $X$ has a basis of open neighborhoods
consisting of sets with abelian fundamental groups (see the proof of [D-Y, Lemma 3.2]).

Theorem 4.1. Suppose $X_{1\mathrm{z}}X_{2}$ and $X_{0}=X_{1}\cap X_{2}$ are connected, $\mathit{8}hape$ aspherical
compacta $\mathit{8}uch$ that $pro_{-}\pi_{1(}X_{0},$ $*$ ) $arrow pro-\pi_{1}(X_{i}, *)$ is a monomorphism $(i=1,2)$ for
$\mathit{8}ome$ base $point*\in X_{0,1}.\cdot$ If. $X_{if}i=1,2_{y}$ have $pro-\pi 1(Xi, *)$ pro-abelian, then $X_{1}\cup X_{2}$

is $\mathit{8}hape$ aspherical.

5. GENERALIZED WHITEHEAD CONJECTURE

The following conjecture is proposed by Daverman-Dranishnikov [Da-Dra], as a gen-
eralization of the classical Whitehead conjecture, for an approach of their problems. ,

Generalized Whitehead conjecture. If $Xi\mathit{8}$ a 2-dimen8ional compactum having
Property 2-UV, then every subcompactum has Property 2-UV.

We shall touch upon the conjecture above, under some condition, along a technique
of the classical Cockcroft’s paper [Cc].

Let $\{(K_{i}, *), f_{i}^{i+1}\}$ be an inverse system of finite polyhedra with the limit $(X,$ $*)$ . For
a pointed map $p_{i}$ : $K_{i}arrow K(\pi_{1(K_{i}}, *),$ $1)$ from $K_{i}$ to an Eilenberg-MacLane complex of
type $(\pi_{1}(K_{i}, *),$ $1)$ with an isomorphism $\pi_{1}(p_{i})$ , we have a map $\tilde{f}_{i}^{i+1}$ : $K(\pi_{1}(K_{i+1}, *),$ $1)$

$arrow K(\pi_{1}(K_{i}, *),$ $1)$ such that $p_{i}\circ f^{i1}i^{+}\simeq\tilde{f}_{i}^{i+1}\circ p_{i+}1$ :

$(*)$

$p_{i}\downarrow K_{i}$

$arrow f_{i}^{i+1}$

$K_{i+}1^{p_{i+}1}1$

$K(\pi_{1}(K_{i}, *),$
$1)arrow\tilde{f}_{i}^{i+\mathrm{i}}K(\pi_{1}(K_{i+}1, *),$

$1)$

Then we have a pro-group $\{H_{n}(K(\pi_{1}(K_{i}, *), 1)), H_{n}(\tilde{f}_{i}i+1)\}$ over the homology groups.
Since the pro-group is independent to a resolution of $X$ , we may denote the equivalence
class of pro-groups which contains the pro-group by $H_{n}(\mathrm{p}\mathrm{r}\mathrm{o}-\pi 1(x, *))$ .

The following Lemma, as a generalization of the Hopf theorem $[\mathrm{H}\mathrm{o}_{1}, \mathrm{H}\mathrm{o}_{2}]$ , is useful
for us.
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Lemma 5.1. Let $X$ be a pointed continuum.
(1) There is an exact $\mathit{8}equence$:

$pro-\pi 2(x)arrow pro-H2(x\mathfrak{h})arrow H_{2}(pro-\pi 1(X, *))arrow*$ ,

where $\mathfrak{h}i\mathit{8}$ the Hurewicz’s homomorphism.
(2) If $X$ is 2-8hape $dimen\mathit{8}i_{\mathit{0}}nal$, there are a pro-group $pro-\Gamma_{2}(X)$ , a $monomo7phi\mathit{8}m$

pro-r2 $(X)arrow pro-\pi_{2}(X)$ and an $epimo7phi\mathit{8}mp_{\Gamma \mathit{0}}-\Gamma_{2}(X)arrow H_{3}(pro-\pi 1(X, *))$ .

We call that the rank of a pro-group $\mathcal{G}=\{c_{i,g_{i^{+1}}^{i}}\}$ with pro-finitely generated
abelian is at most $n$ (denoted by rank $\mathcal{G}\leq n$) provided that for every $i\in \mathrm{N}$ there
is a $j>i$ such that ${\rm Im} g_{i}^{j}$ is a finitely generated abelian group with rank ${\rm Im} g_{i}^{j}\leq n$ .
We easily see that an epimorphism between the pro-groups preserves the rank and a
monomorphism raises the one.

Proposition 5.2. Let $X$ be a $\mathit{2}-(shape)$ dimensional aspherical pointed continuum with
$pro-\pi_{1}(X)$ pro-free abelian. Then we have rank$(pn)-\pi_{1}(X))\leq 2$ .

We denote the free abelian group $\oplus_{i=1}^{n}\mathrm{Z}\langle g_{i}\rangle$ of rank $n$ by $\mathrm{Z}^{n}$ . Then we know that
the i-th homology group of $\mathrm{Z}^{n}$ is the free abelian group $1\leq j_{1}<\cdots<\oplus \mathrm{z}j_{i}\leq n\langle gj1’\ldots , g_{j_{i}}\rangle$ of

rank $n!/i!(n-i)!$ .

Lemma 5.3. Let $f:\mathrm{Z}^{n}arrow \mathrm{Z}^{m}$ be a homomo$7phism$ between free abelian groups of rank
$n$ and $mrepre\mathit{8}ented$ by the following matrix

$A=$ .

Then the $homomo7phi\mathit{8}mS$ between the 2- and 3-dimensional homology $group_{\mathit{8}}$ induced
by $f$ are represented by

$f_{*}2( \langle g_{a},g_{b}\rangle)=1\leq p<q\leq\sum m\langle h_{p’ q}h\rangle$ for $1\leq a<b\leq n$ ,

$f_{*\mathrm{s}}( \langle g_{a},gb,gC\rangle)=\sum 1\leq p<q<r\leq m$

$a_{pa}$ $a_{pb}$ $a_{\mathrm{P}^{C}}$

$a_{qa}$ $a_{qb}$ $a_{q_{C}}$

$a_{ra}$ $a_{rb}$ $a_{rc}$

$\langle h_{p}, h_{q}, h_{r}\rangle$ for $1\leq a<b<c\leq n$ .
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By using lemma 5.1, proposition 5.2 and lemma 5.3, we can show the following
theorem.

Theorem 5.4. Let $X$ be a pointed 2-dimen8ional continuum having Property 2- $UV$

with $pro-\pi_{1}(X, *)$ pro-free abelian and $Y$ a pointed 2-dimensional $\mathit{8}ub_{CO}ntinuum$ of $X$

with $pro-\pi_{1}(Y, *)$ pro-free abelian. Then we have the following table:

rank $pro-\pi_{1}(X)$

2 1 $0$

$\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}pro-\pi_{\rceil}Y$

where the $symbol/mean\mathit{8}$ that the $ca\mathit{8}edoe\mathit{8}$ not $7\dot{\mathrm{v}}se$, the symbol $\mathrm{O}^{d_{oe}\mathit{8}}$ that $Y$ is 2- $UV$

and $t‘+1-\mathit{8}hape$ connected” does that $t\iota under$ the condition (X, $Y$ ) is 1-8hape connected”.
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