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CURVATURE OF CURVILINEAR 4-WEBS
AND PENCILS OF ONE FORMS

IsAO0 NAKAI

Department of Mathematics
Hokkaido University

ABSTRACT. A curvilinear n-web W = (F,..., Fy) is a configuration of n
curvilinear foliations F; on a surface. When n = 3, Bott connections of Fj
extend naturally to a unique affine connection, which is called Chern con-
nection. For 3 < n, this is the case if and only if the modulus of tangents to
the leaves of F; at a point i1s constant. An n-web is associative if the modu-
lus is constant and weakly associative if Chern connections of all 3-subwebs
have equal curvature form. We give a geometric interpritation of the curva-
ture form in terms of fake billiard in §2, and prove that a weakly associative
n-web 1s associative if Chern connections of triples of the members are not
flat, and then the foliations are members of a pencil (linear family of dim
2) of 1-forms. This result completes the classification of weakly associative
4-webs initiated by Poincaré, Mayrhofer and Reidemeister for the flat case.

Acurvilinear n-web on a surface S is an n-tpule of foliations of codimen-
sion 1, W = (Fy,...,F,). In this paper we assume that S is real analytic
and connected and Fj is defined by a real meromorphic 1-form w;: of which
coeflicients are locally fractions of real analytic functions. W is non singular
at a p € S if w; and w; Aw; are analytic and non zero at p for ¢ # 5. (W)
denotes the set of those p where W is singular. W is diffeomorphic to an
n-web W' = (Fj,..., F))on S if there exists an analytic diffecomorphism of
S to S’ sending F; to F! fori =1,...,n. An m-subweb of W is an m-tuple
of members of W.

First let n = 3 and assume W is non singular at p. Since the defining
1-forms w;,t = 1,2,3 on a surface are linearly dependent, we may assume
wy — 2w + ws vanishes identitically on a neighbourhood of p. Then there
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exists a unique 1-form 6 on the complement of £(W') such that dw; = 6 Aw;
for ¢+ =1,2,3 [1]. The exterior derivative d is independent of the forms w;
defining F; as well as the permutation of the suffix z. df is called the web
curvature form of W and denoted K(W). Bott connections of Fy, Fy, F3
defined by the transverse dynamics extend to unique affine connection with-
out torsion the so-called Chern connection on the complement of (W) (see
§1 for the definition). And the leaves of F; are geodesics of the connection.
g g) with respect to the

_ ( K(W) 0
coframe wy,wy and the curvature form dO© = ( 0 K(W)) [1,5,10].

Chern connection has the connection form © = (

A 3-web is hezagonal (or flat) if the web curvature vanishes identitically. It
is classically known that a hexagonal 3-web is locally diffeomerphic to the
3-web by parallel lines on the plane (see Fig 0. and §1).
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A non singular 4-web W = (F},..., Fy) possesses the relative and ab-
solute invariants: web curvature forms of §-subwebsand the cross ratio of
tangents to the leaves of W passing to a point which is a special case of
the basic affinor in higher dimensional webs (see [5] for the definition). The
higher covariant derivatives of the cross ratio generate all other absolute
invariants [3,4].
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We call nn curvilinear foliations as well as an n-web are associative if their
Bott connections extend to equal affine connection, in other words, all 3-
subwebs have equal Chern connection on the complement of the singular
locus. It is easy to see that n foliations (3 < n) are associative if and only if
the modulus of tangents to the leaves passing through a point is constant.
Clearly if an n-web is associative, it is weakly associative, i.e. Chern con-
nections of 3-subwebs have equal curvature form. But the converse is not
true in general. Poincaré [3], Mayrhofer [8,9] and Reidemeister [11] proved

Theorem 0. Let W be a germ of non singular 4-web on a surface. Assume
that all 3-subwebs are hexagonal. Then W is diffeomorphic to a germ of
the 4-web formed by 4 pencils of lines on the plane (Fig.1).

3-subwebs of the 4-web in the theorem are hexagonal (curvature van-
ishes), but their Chern connections are not equal. Henaut[7] gives a simple
proof of Theorem 0. Goldberg [4] proved a similar result by a different
approach. This paper is devoted to finding all weakly associative n-webs.

Before stating our result we prepare some notions. A pencil of meromor-
phic one forms P = {w;},wy = (1 — t)wp + twy,t € R defined on S is non
singular at p if w, and wy A wy are analytic and non zero at p for distinct
s,t. We denote the set of those p where P is singular by ©(P). The web
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curvature form K(P) for P is the 2-form df defined on the complement of
2(P), where 8 is the unique l-form called the connection form of Psuch
that dw; = 6 A w;. Clearly all members of P are associative and all triples
of the members form 3-webs which have equal web curvature form K(P).
Cerveau [2] and Ghys [4] and the author [10] applied the web geometry of
3-webs of codimension 1 to classify codimension 2 foliations of 3 manifolds.

Let W = (Fy,F,,F;) be a non singular 3-web on S. In this paper
geodesics mean the leaves of the foliations. A geodesic triangle is a smooth
triangle A = A(E1, Ey, Es) with the edges E; in a leaf L) € Fo(;) for
i = 1,2,3 transversal at the vertices Vjr = E; N Eg,j # k. Here o is
a permutation of {1,2,3} and the convention E;;3 = E; is used. The
orientation of the A and the edge E; are given by 0A = Ey + E; + E3 and
OFE; = V; (i+1) — V(i—1),i (see Fig. 2). Define 0(A) =1 or — 1 alternatively
if the orientation is clockwise or anti-clockwise.
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From later on we assume the permutation ¢ is trivial unless otherwise
stated.

Let W = (Fy,F;,F3,F;) be a 4-web. A Schlafls configuration is a
quadraple of geodesic triangles Ay = A(E;, E3, Ey), Ay = A(EL, Ey, Ey),
Az = A(E!,EY EY) C Ay and Ay = A(EY",E}',E{') C Ay with the
following properties (see Fig. 3).
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(1) The edges with suffix 7 are contained in a common leaf L; € F; for
i=1,..4

(2) Aj, A has the common vertex Vi, , = Ep, N E,, where {5, k,m,n} =
{1,2,3,4},

(3) As+ Ay = Ay + As, where A; denotes also the underlying set of A;.

(4) The 3-subweb W; is non singular on a neighbourhood of A; for : =
1,....4. |

In other words a Schlafli configuration is formed by leaves of Fy,..., Fy in
general position. The goal of this paper is to prove the following general-
1zation of Theorem 0.
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Theorem 1. Assume 3-subwebs of a 4-web W = (Fy, F,, F3, Fy) are non
hexagonal. Then the following conditions are equivalent.

(1) F; is defined by a l-form wy, in a pencil of meromorphic 1-forms
P = {w}.

(2) The cross ratio C(Fy, F3, F5, Fy) of tangents to the leaves of F;,1 =
1,...,4 passing through a point is constant on the complement of L(W).

(3) Fy,...,F, are weakly associative: The web curvature form

~

K(Fy,...,F;,...,Fy) of the 3-subweb W; = (Fy, ..., F}, ..., Fy) is independent
of 1.
(4) For any Schléfli configuration (A1, Az, As, Ay),

(%) Z(—l)i /A K(Fy,...F, ..., Fy) =0.

(5) Fi,...,Fy are associative: Bott connections of Fi,...,F, extend to
equal affine connection on the complement of (W),

In the last section we prove a generalization of the theorem for m-webs
of R™, n < m, of codimension one.

All results in this paper remain valid replacing real analyticity with C3-
smoothness. The argument is local, so from now on we assume S is a
connected domain of RZ.

1. Bott connection and Chern connection. Bott connection of a non
singular foliation is defined by the differential of the transverse dynamics.
To state more precisely in our setting, recall the integrability condition

dw; = 0 A\ w;,

where w; is the defining one form of F; and wy — 2wy + w3 = 0. The 1-form
6 defines the (partial) connection of the normal bundle of the foliation F;
along the leaves as follows. Let L be a leaf of F;, p,g € L, and C C L a
smooth curve joining p to g. The parallel transport T(X) of a vector X
normal to L at p along C is defined by the relation

wi(T(X)) = exp( /; ) - wi( X).
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To extend Bott connection to an affine connection on S, consider an (in-
finitesimally) small geodesic triangle A with vertex p. By the transverse
dynamics along C. A is transported to a unique (infinitesimally small)
geodesic triangle A’ with vertex ¢ (Fig. 4).

T O\ P\

Fl'é‘\ L/~

This transportation determines a linear map of the tangent spaces T, S
to T,S. The linear map is defined also for all piecewise geodesics by com-
position of those linear maps along the geodesic pieces. It is easy to see this
transportation determines an affine connection, and the connection form

with respect to the coframes wy,ws is 0 . This connection is called

0 6
Chern connection of the 3-web W. Chern connection is in other words the
unique common extension of Bott connections of Fy, Fy, F3. The structure
group of the connection is R*: the group of similar transformations, and
the holonomy map along a closed cycle C' is

exp(L@)-(é g’) |

Assume that 6 is closed, i.e. the web curvature form vanishes identically.
Then &; = exp(— [ 6) - w; is closed and @&y — 20, + &3 = 0. By integrating
the equation, we obtain the deveroping map ([ &1, [ @2, [ @3) of S to the
hyperplane H = {(uy,us,u3) € R® | uy — 2us + uz = 0}, which sends
the leaves of the web to the lines defined by u; = const. in H. Thomsen
(c.f. [3]) proved that the Hexagonality of 3-webs is equivalent to the closure
condition of the piecewise geodesic hexagon as in Fig.5.
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Fj. 8

In general this hexagon is not closed (Fig.6) .

~

A

v , R(x),

v,

F‘j‘ 6
Now assume that the foliations Fy, Fy, Fy are defined by the level func-
tions z,y and an f(z,y) such that f(¢,0) = f(0,¢) = ¢ and f(t,t) = 2t

flz,y) =z +y+k(z —y)zy + --- . Then the web curvature form for the
3-web of this form is presented as

. 0 fe
K(W) = 3207 <log f_y> dz A dy

and the return map R(z) as in Fig.6 is written in a coordinate z on the leaf
L centered at p as follows.

Rz)=z+kz®+---.
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To see the for of R it suffices to notice R'(z) = 1 + 3ka? + --- is the linear
term of the holonomy at z anti-clockwisely along the "non-closed hexagon”
and the area of the "hexagon” is proportional to 3z2. In the next section
we interprete the curvature in terms of the fake billiard.

2. Transverse dynamics and fake billiard. Let W = (Fy, F;, F3) be a

non singular 3-web on a surface and assume all leaves are simply connected.
Let L; be a leaf of F;, p,q € L; and 3,k # ¢. The transverse dynamics

is a germ of diffeomorphism of the leaf L;(p) of F} passing through p to the
leaf Li(q) of F} passing through ¢, which assigns to z € L;(p) sufficintly
close to p the unique intersection point y € L;(z) N Li(q). Fake billiard
along a boundary of an oriented geodesic triangle A = A(Ey, E,, E3) is the
return map -

Tin = Tivz 0 Tix1 0 Ti t Lig1(vic1,i),vic1,i — Lig1(vic1,i), vie1i
where T; denotes the transverse dynamics along the edge E;

L2 T (N o s .
T s v P Lit1(vj—1,5),v5-1,5 = Ljpa(vj41), vj 41,

V3

L (V,3) L. (V)
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Clearly T% ,i = 1,2,3 are conjugate with each other : Tj1; 0 T: 1o T, =
. oA J g + A
T5,. We denote the derivative of T3, at v;—1,; by dIsa.

Lemma 1. Fake billiard along an oriented geodesic triangle A =
A(F1, Fy, Fy) has the following derivative at the origin.

OTA = —exp (—G(A) / K(F1,F2,F3)) ,
A

where o(A) = 1 or —1 respectively A is the clockwise orientation or anti-
clockwise.

Proof. Assume A and Fi, F,, F3 are defined by the level functions f,z and
y as in Fig.7 bis.

(0,%)
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L, " N
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| N
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V.. = (0,0) | L3 (8,0) = V3
23 \
______ RN
(%Y (0,%)

Then o(A) = —1. Let vs; = (a,0),v12 = (0,a) and
T’3321’l)12(a" y) = (0’ y,)'



Then we obtain

/ <log ) dy.

Let T22  (0,y') = (z,a). Then

V12012
dz Je
(2) log d—y,(y' = a) = log —y(07 a).
Let 32 ,..(z,a) = (z,y"). Then
& 2
—(z=0)= —(0,0).
(3) log ——(z = 0) = log fy(O, )
From (2) and (3), we obtain
dyf’ B dy” dyl
fe fe
= log =—(0,0) —log —(0,a
g fy( ) — log fy( )

From (1) and (4)

dyll fx)
o -] = lo d
1 & ( dy) /1)311)121)23 ( gfy Y
fz
lo dr Nd
/ ( gfy> M

= /A K(W)

119
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This completes the proof.

Let W = (Fy, Fy, F3, F,) be a non singular 4-web on a surface. Define
the cross ratio by

Clky, k2, lh,1l2) = 221 : ::;EZE : Zi;

for the lines k; = {y = a;z},l; = {y = biz},7 = 1,2, and define the cross
ratio of tangents to the leaves L;(p) € F; passing through p by

C(p) = C(TpLa(p), TpLs(p), TpLa(p), TpL1(p))-

From now on we assume 1 < C(ky, k2,11,1l3) < oo (this holds uniformly on
the connected component of the surface).

Lemma 2. Let A; = A(E;, Es, E4) be a geodesic triangle of the 3-subweb
(Fy, Fy, F,) (Fig.8). Then the following fake billiard along 0A;

Ta, =T3 oT32 oT; :Li(via),viz = La(vi2),v12

V4112 V24041 V12V24

has the following derivative at vy

C(v41)

dTA3~C(4)—1

(1 0(1)24)) dTAs-

Fig.8



121

) F”gxg



122

Proof. Let f; be a local level function of F; defined on a neighbourhood of
A3. Let

T,?i : Ls(U41),U41 — Lz(v41),v41

Tg; i L1(v24),v24 — L3(v24),v24

denote the transverse dynamics respectively along the leaves of F}, F;, such
that

hoTolhi=Ff, fioTy = fo
It 1s easy to see

d(faoTp2) =(1—C(vuy,)) dfs,

32 C(vvy
d(f4 OT'U41) — (C((Uv(‘n)jl) df47

from which

32 33 13y (C(vey,) _
d(f4 © Tv41 © Tvz4,v41 © Tvz4) - (0(1)«041) _ 1)(1 C(vv24)) df4

By definition we obtain

TA;; — T24 o T32 o T33 o T13 o T41

V41,v12 V41 V24,V41 V24 V12,024

from which we obtain the statement.
Lemma 3. Let Ay, Ay, A3 be as in Fig.9. Then
dTa, = dTa, - dT_a, - C(vss),
where —/\; denotes the triangle A, with reverted orientation.

Ve

\ F.'éf 9

e Bt e e
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Proof. Let Ta,vis, T—a,v13, Ta,v24 denote fake billiard along 0A,, —0A;,
003 starting at vyz,ves. It 1s easy to see fake billiard Ta,y,3 © T-A 0,5 1S
conjugate with

T o T3 o T41 o T?* o T32 o T3 o T2 o732
Agvay

V34V24 V13V34 V3413 V4v34 . T Asv24 V34V24 V34 V24034

where T3314 is defined by fs 0T2?! = f3, f3 being the defining function of Fj.

V34

Differentiating the equality we obtain the statement with the equality.

C(vsa) - d(fao T.) = dfs.

Lemma 4. Let Ay,As,As3 be as in Fig.9. Then

_0(041)—1 1

dTn, -dT_p, -dTp, = ———— C e
t! Az As C(’U41) (034) C(’U24) -1

Proof. The statement follows from Lemmas 2 and 3.

P'ropositio'nk5. Let (Ay, Ay, A3,A4) be a Schlifli conﬁgurétion. Then

Z(—w’/ K(F, .. B, .. F)
A

C('U41) -1 ‘. 0(1)23) -1 ) 1 1

C(va1) Clvzz)  Clvaa) =1 Clo) -1 Cvs4) - C(v12)

= log

Proof. We may assume vzy = (0,0), F3, Fy are defined by the coordinate
functions y,z and Fy, F, by functions f,g respectively. Let vi3 = (a,b)
and P; = (0,b), P, = (a,0). Let O denote the geodesic rectangle with the
vertices vig, P1,vs34, P2, and let A} (resp. Al) denote the geodesic triangle
with the vertices v1g, Vo4, Py (resp. viz,v1s, P2) and let A = Ay+ AL, Al =
Az + Al (see Fig.10).. |
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\\ Y,
y F« i
A, hE
Az
\
Vo k
2
L * A/l Vll
] \ V.
| A 23
A, 4
\
Vay Vi3
~— N
Then AN

I
kC(’Ulg)
K(F,,F;,F —/KF,F,F =1
A ( 1,43 4) O ( 2,43 4) og C(Pl)C(Pz)

The alternative sum in the equality of the proposition is

——{/ —I—/ +/ I{(Fg,Fg,F4)}+{\/ +/ +/ I{(FlaFSaF‘L)}
Al | Al ‘ Al O Ay

—/ I((Fl,FQ,F4)-|—/ I((Fl,FQ,F:;)
Asz

Ay

K(Fy,F;5,Fy) — / K(F,F,Fy)}

1
2 As

= {— I((FQ,Fg,F4)—}—/

N A

+{“/ K(F2,F3,F4)+/ K(Fy,Fs,Fy)}
= !

—{—/ I{(Fl,Fg,F4)+/ I{(Fz,Fg,F4)—/ K(Fy, Fy, F3)}.
Al Al

Ay
By Lemma 1 and Lemma 4
—lop (L Ca)(Clva) = 1), C(v12)C(v3a),  Cvar)(C(vas) — 1)
=8 G ua) - DCom) T CPNEEP) 1 (Clons) - DCloms)
_ C(’U41) —1 C(’Uzg) -1 1 1
- log { C(U41) ) C('Uzg) ’ C(’U24) _1 : C(’U13) _1 : 0(034) ) C(UIZ)}I
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3. Proof of Theorem 1. The implications (1) — (2),(3) — (4),(1) — (5)
are clear. The implication (1) — (3) follows from the uniqueness of the 1-

form 6(P).
Proof of (5) — (3). For each 3-subweb W' = (F;, F}, Fy,) if Bott connections

of F;, F;, Fy, extend to equal affine connection, it is Chern connection of W'.
Therefore common extension of all Bott connections is Chern connection of

3-subwebs.

Proof of (2) — (1). Let wy,ws be meromorphic 1-forms defining Fi, F»
respectively. Then wg is presented as ws = Awj + pws with meromorphic
functions A, y on the surface S. Now we may assume A = p = 1/2 replacing
wi,wq. Similarly assume Fy is defined by wy = N'wy + p'w,. Then the cross
ratio C(Fy, F3, Fy, Fy) = —X'/p' of the leaves of Fy, F3, Fy, Fy is constant

¢ # 0 by assumption. Therefore we may assume wy = cwy + wa.

}Proof of (4) — (8). Consider the Schlafli configuration such that 1}12 =
Vo4 = V41 as in Fig.11.

By the hypothesis (4)

/m K(W) = /A K(Wz)+/A2 K(Wy),

where K(W;) denotes the web curvature form of the 3-subweb of W forget-
ting the :-th foliation. This tells that the integral of the curvature form over
a geodesic triangle can be calculated by decomposing into small geodesic
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triangles. Now decompose the A; into infinitely many geodesm triangles of
the same type as A, as in Fig.12.

Then it follows that

/;1 K(Wy) :/Al K(Wy),

from which K(W;) = K(Ws).
Proof of (3),(4) — (2). We may ssume W is non singular and Fy, Fy, F3, F}

are defined by level fuctions f,¢g and the coordinate functions y, z respec-
tively. By a suitable coordinate transformation of the y we may assume
f(t,0) = f(0,t) = ¢(¢,0) = t, and applying Poincaré linearlization theorem
to the dynamics ¢ — ¢(0,t) we may assume ¢(0,t¢) = kt. Here k is the cross
ratio C'(Fy, Fs, Fy, F}) at the origin, and f, g are of the form

flz,y) =z +y+mzy+ O,
g(z,y) =z + ky + ney + O,

0, O' being the remainder terms of «, y of order 3 which vanishe identitically
on the z and y axes. It is easy to see that only similar transformations
(z,y) — (cz,cy) respect this normal form. Therefore the ratio (m : n) as

well as k gives rise to an absolute invariant of 4-webs. By definition, the
cross ratio at (z,y) is

( + n2)(1 + my)
(14 ny)(1+ mz)

C(z,y) = C(Fy, Fs5, F3, Fy)(z,y) =
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Denote C(z,0) = C(z) and C(0,y) = D(y) for simplicity. On the z-axis

this restricts to

k 4+ nz

C’(:c) - 1+ mz

+--=k+(n—Fkm)z+---.

By Proposition 5 applied to the Schlafli configuration as in Fig.11 we obtain

C(kx) Clkz)—1
C(z) _ C(z)—1"

With the initial condition C(0) = k,C'(0) = n — km this equation admits
a unique solution

—k
C(,0) = Cla) =k + L Fm)e
k-1
Similarly we obtain
k(m —n)y
C0,y) =D(y) =k + 1 ( k(m—r)z)y‘
» T k-1

By the hypothesis (3) K(W;) = K(W,). Hence

2

o I’ 9z

from which

52 82 fx 9z | |

Therefore
C(z,y) = C(z)D(y)/k.

Assume a 4-web W' = (FY,..., F}) (not necessarily of the above normal
form) is defined by the level functions f,g,y, z, and assume the cross ratio
function C'(z,y) is a product of two linear fractions C'(z), D'(y) of z and
y. Let ¢ and ¥ be the diffeomorphisms of the z-axis and the y-axis, which
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normalizes W' to the above normal form. Since the cross ratio is an absolute
invariant, we obtain '

C'(z,y) = C(¢(z), %(y))-

First assume n # m,km. Then C(z),D(y) are not constant and it
follows from the above equality that ¢, are also linear fractions. Since for
the normal form the transverse dynamics of F, F3 sending the z-axis to
the y-axis respecting the origin are linear maps, those dynamics for W' are
linear fractions. This argument applies to germs of the normal form W at
all points on a neighbourhood of the origin, and implies that the transverse
dynamics sending horizontal lines to vertical lines are all linear fractions. It
is easy to see that this implies also the transverse dynamics of Fj, Fy among
the horizontal lines as well as the vertical lines are also linear fractions in
the coordinates z and y (Fig.13).

N

Therefore we may assume that the level functions f, g are linear fractions

in z,y when it is restricted to the horizontal and the vertical lines defined
by the coordinate functions y, ¢ respectively. We may write as

a(z)y + b(z)

F= 1—c(z)y

:b+(a+bc)y+(ac+bcz)y2+---,

b being a linear fraction of z. The Schwarzian derivative of f in z is

Fral =77 =50

)2
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and write 1t as a series in y with function coefficients -
So + S1y 4+ Soy? 4 --- .

The initial term is Schwarzian derivative of b, and 57,5, are Schwarzian
derivatives of the first two and three terms of the expantion of f. Since
f is a linear fraction in z for all fixed y, all these coefficients vanish. It
then follows that a,b and ¢ are rational functions of z, hence f is a rational
function of z,y. Again since f is linear fraction in z and y, f is of the form

c1TY + c2T + c3y + ¢4

fz,y) = clzy + chr + chy + ¢

Now we will show that the curvature form K(Fy, Fs, F;) of the 3-subweb
(F}y, F3, Fy) vanishes at the origin. (This can be also seen by straight forword
calculation.) Recall the rotation map R defined as in §1, Fig 6. Since R
is defined by composing the various transverse dynamics respecting the
origin, all of which are linear fractions by the above form of f, p is also a
linear fraction of . On the other hand the rotation map has the expantion
R(z) = 2+ k(0,0)z® + - - - and the second order term is missing. Therefore
R is the identity and in particular the web curvature vanishes at the origin.
This argument applies at all point in the domain of definition S to imply
that the curvature form vanishes identically. This contradicts the hypothesis
of the theorem. v

Next assume n = m and n # km. Then by the same argument as the
above case D(y) is constant and

(n —km)z
_ (n—km)z
k‘-—-l

C(z,y) = C(v,0) = C(a) =k +

is not constant. In this case exchange the roles of Fy and Fj (or F3) in the
above argument. Then it reduces to the first case n # m,km, since C is
not constant on the leaves of F}, F5 and also F3.

Similar argument applies to the case n = km and n # m. The rest is the
case m = n = (. Clearly this implies that the cross ratio function is locally
constant. By the analyticity, the cross ratio is constant on the domain of
definition. This completes the proof of Theorem 1.
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4. Proof of Theorem 0 and associative webs and weakly associa-
tive webs of codimension 1 in higher dimension.

First we give an elementary proof of Theorem 0. By the form of f, the
foliation F3 is a pencil of conics with two base points p;, p2. By a Mobius
transformation (¢(z), ¥ (y)) sending p; to (0,0) and p; to (00, 00), we may
assume F3 is a pencil of lines with base point (0,0). In particular a leaf of
F3 meet a leaf of F, F; at a single point. Now consider the 4-th foliation
F,. The same argument as in the previous section applies to imply that F}
is a pencil of conics and a leaf meets each member of the pencils of lines
Fy, F,, F3 at a single point. It then follows that the leaves of Fy are lines
hence F} is a pencil of lines. This completes the proof of Theorem 0.

Let W = (F},...,Fy41) be a non singular (in general position) (n + 1)-
web of codimension 1 on an open subset of R™. Chern connection ~; of W
is an extention of Bott connection of the i-th foliation F; (see [5] for the
definition). In the case n = 3 twice the average of the curvature forms of
Y1,---,Yn+1 had been already found by Blaschke[l], so we call it Blaschke
curvature form. Let F; be given by the i-th coordinate function of R™ for
t = 1,...,n and let F,, 11 be defined by a function f. Define Blaschke
curvature form by

9 goo

; dl’ = d(—izlz.)“ n(log fx.:)x,-dwz') = %i ._12 . n(log%)wi%‘ dz; A d:Cj.

It is easily seen that dI' restricts to the web curvature form of the 3-web on
z;z -plane cut out by z;,z; and f. Conversely this property characterizes
Blaschke curvature form.

Proposition 6 [1]. Blaschke curvature form restricts to the web curvature
form of the 3-web on the intersections of the leaves of n — 2 foliations cut
out by the remaining 3 foliations.

We call n + 2 foliations of codimension 1 are.associative if the modulus
of tangent hyperplanes to the leaves of foliations passing through a point is
constant. And we call n 4+ 2 foliations of codimension 1 are weakly associa-
tive if for all n + 1-subwebs Blaschke curvature forms are equal. It is not
difficult to see that if the modulus of the tangent hyperplane is constant,
n + 2 foliations are associative hence weakly associative. In the following
we discuss the converse.
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Assume that Blaschke curvature forms are equal. Then the curvilinear
4-web on the intersection of n —2 foliations cut out by the remaining 4 folia-
tions is weakly associative by Proposition 2. Assume that those curvilinear
4-webs are not hexagonal i.e. all 3-subwebs are not hexagonal. By Theorem
1 the cross ratio of tangents to the leaves of curvilinear 4-web is constant
on each leaves of the (n — 2)-intersection. We claim this implies that the
cross ratio of the 4-web is constant on the connected domain of definition.
It then follows that the modulus of the tangent hyperplanes is constant on
the domain of definition. To prove the claim it suffices to prove for the case
n = 3, by induction on n. For simplicity assume that 5 foliations are defined
by the coordinate functions z,y, z and f and g. By the above argument the
cross ratio of the curvilinear 4-web on each level hyperplane of z is constant.
Notice that the cross ratio of the curvilinear 4-web on z-level hyperplane is
determined by those on the level hyperplanes of y and z. Those cross ratios
are constant on the z-axis by the same argument. Therefore the cross ratio
of the 4-web on the z-level planes is constant on z-axis hence the modulus
of tangent hyperplanes as well as the cross ratio is locally constant. We can
state the result in the following general form.

Theorem 7. Assume m foliations Fi,..., Fn, n+2 < m of codimension 1
on an n-manifold are non singular, in general position and also the curvilin-
ear 4-webs on the intersection of n — 2 foliations cut out by the remaining
4 foliations are not hexagonal. Then the following conditions are euivalent.
(1) F,...,F, are associative: the modulus of tangent planes to the
leaves of Fi,..., Fy, passing through a point is constant. ,

(2) Fi,...,Fy, are weakly associative: Blaschke curvature forms of (n+1)-
subwebs are equal. |

For the hexagonal case the statement is not true. In fact m pencils of
hyperplanes on R satisfies (2) but (1). The author does not know if there
exist other such examples. It seems imporant to classify all such webs,
generalizing Theorem 0. , '

Clearly a non singular associative m-web of codimension 1 on an n-
manifold, n < m, is defined by an m-tple of members of n-dimensional
linear family of one forms L = {w, }yeprn. It is easily seen that if the m points
in the projectivization PL = P"! are non degenerate and not contained
in a quadric hypersurface, all members of L are integrable by Frobenius
theorem. We say such m foliations are generic. In [10] the author proved
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Proposition 8. If all members of L are integrable and 3 < n, there exists
unique closed one form 6 such that

dw =6 A\ w.

By Proposition 8 we obtain

Proposition 9. If linearly independent integrable one forms Fi,...,Fn,
(possiblly singular) on an n-manifold are weakly associative and generic,
then the m-web (Fi,..., Fy,) is parallelizable at non singular point.

Here a non singular m-web (Fi,..., Fy,) is parallelizable if it is locally
diffeomorphic to the m-web by m foliations by parallel hyper planes in R™.
In the paper [10] a more detailed suructure of the parallelizable webs is
investigated.

REFERENCES

1. W. Blaschke, Einfihrung in die Geometrie der Waben, Birkhauser-Verlag, Basel
Stuttgart, 1955.

2. D. Cerveau, Equations differentielles Algebraiques: Remarques et problemes, J. Fac.
Sci. Univ. Tokyo Sect IA Math. 36 no.3, 665—-680.

3. S.S. Chern, Web geometry, Bull. AMS 6 (1982), 1-8.

4. E. Ghys, Flots transversalement affine et tissus feuilletés, Mem. Soc. Math. France
46 (1991), 123-150.

5. Goldberg, Theory of multicodimensional (n+1)-webs, Kluwer Academic Publ., 1988.

6. Goldberg, Curvilinear 4-webs with equal curvature forms of its 3-subwebs, Webs and
Quasigroups (1993), 9-19, Tver State Univ. Russia.

7. A. Hénaut, Sur la linéarisation des tissus de C?, Preprint inUniv. Bordeaux I.

. K. Mayrhofer, Kurven systeme auf Fldchen, Math. Z. 29 (1928), 728-752.

9. K. Mayrhofer, Uber sechsen systeme, Abh. Math. Sem. Univ. Hamburg 7 (1929),
1-10.

10. I. Nakai, Superintegrable foliations and web structure, Geomenty and Analysis in
Dynamical systems ed. H. Ito, Advanced series in Dynamical systems, vol. 14, World
Scientific, pp. 126-139.

11. K. Reidemeister, Gewebe und Gruppen, Math. Z. 29 (1928), 427-435.

12. Thomsen, See [3].

0]

SAPPORO 060, JAPAN

E-mail: nakai@math.hokudai.ac.jp



