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1 Introduction
V. F. R. Jones introduced index for subfactors in [11] and he found his celebrated
polynomial invariant for knots by using the subfactor theory in [12]. This work has
revealed an unexpected relation between subfactor theory and 3-dimensional topol-
ogy. A. Ocneanu’s paragroup theory (see [19], [20], [21], [15], [30] for the definition
of a paragroup, for example) also has revealed a deep relation between subfactor the-
ory and quantum group theory, 3-dimensional topology and rational conformal field
theory etc. (See [1], [8], [9], [21], [22], [25], [29] etc. for these topics.)

A. Ocneanu introduced the asymptotic inclusion for a subfactor in [19], [20]. This
asymptotic inclusion in subfactor theory is regarded as the right analogue of the
quantum double construction of Drinfel’d [3] (see [24] and [9]). In [23] A. Ocneanu
claimed that combinatorial data satisfying Moore-Seiberg axiom ([18]) in the rational
conformal field theory can be constructed after passing to the asymptotic inclusion
from a given paragroup (see [10, Section 13.5]). A. Ocneanu also says in [25] that
if the fusion graph of the asymptotic inclusion $M(M’\cap M_{\infty})\subset M_{\infty}$ is connected
then the system of $M_{\infty}- M_{\infty}$ bimodules are braided and non-degenerate and that if we
have a non-degenerate braided system of bimodules then we get a Reshetikhin-Turaev
type invariant of 3-manifolds based on surgery ([27]). So the asymptotic inclusions
are important for these reasons and others.

Most fundamental examples of the asymptotic inclusions are subfactors generated
by the $\mathrm{c}$.ommuting squares of the two-sided sequence of the Jones projections;

$\langle e_{-n}, \ldots, e_{-}1e_{1}\cap". , . , e_{n}\rangle$

$\subset$

$\langle e-n-1, \ldots, e_{\cap}-1, e1, \ldots, e_{n+1}\rangle$

$\langle e_{-n}, \ldots, e_{-10}, e, e_{1}, \ldots, e_{n}\rangle$ $\subset$ $\langle e_{-n-1}, \ldots, e_{-1}, e0, e1, \ldots, en+1\rangle$ .

Here Jones projections $\{e_{i}\}_{i\in \mathrm{Z}}$ satisfy the following relations;

$e_{i}e_{i\pm 1}e_{i}=\beta^{-2}e_{i}$ , for $i\in \mathrm{Z}$ ,
$e_{i}e_{j}=e_{j}e_{i)}$ whenever $|i-j|\neq 2$ ,
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where $\beta=2\cos(\pi/N)$ . We remark that the above commuting squares have periodic-
ity 2 in the sense of Wenzl (see [28, page 357] for the definition of the periodicity of
commuting squares). The indices of the subfactors were first computed by M. Choda
in [2]. The above subfactor is easily shown to be isomorphic to the asymptotic inclu-
sion of the Jones subfactor with principal graph $A_{n}$ . A proof of this fact follows from
a general fact that the commuting square

$(M’-k\cap M\mathrm{o})\cap \mathrm{v}(M’\mathrm{n}M_{k}0)$

$\subseteq$

$(M_{-k-}’\cap M\mathrm{o})1(\cap M0^{\cap M}k+1’)$

$M_{-k^{\vee M}k}’$. $\subset$ $M_{-k-1}’\mathrm{v}M_{k}+1$ ,

generates the asymptotic inclusion by Popa’s generating property (see [26]).
Another fundamental example is a group case which was first claimed in [20, III.3]

(see [16, Appendix] for a complete proof). That is, if we start with a finite group $G$

and consider the subfactor $R\subset R\cross G$ , where $R$ is the AFD $\mathrm{I}\mathrm{I}_{1}$ factor and $G$ acts
freely on $R$ , then the asymptotic inclusion is of the form $R^{G\cross G}\subset R^{G}$ , where $G\cross G$

acts freely on $R$ with $G$ embedded into $G\mathrm{x}G$ with a map $g$ }$arrow(g, g)$ . This example
gives one of the reasons why the asymptotic inclusion is analogous to the quantum
double construction. (See [17] for more details for this analogy.)

Recently J. Erlijman has made a remark in [4] that the following commuting
squares of two-sided sequence of generators $\{g_{i}\}_{i\in}\mathrm{z}$ of Hecke algebra of type $B,$ $C,$ $D$

produce the asymptotic inclusion for the Hecke algebra of type $B,$ $C,$ $D$ subfactors
of Wenzl;

$\langle g_{-n}, \ldots, g-1g1, \ldots, gn\rangle \mathrm{n}$’
$\subset$

$\langle_{\mathit{9}-n}-1, \ldots, g-1g1, \ldots, gn+1\rangle\cap$’

$\langle g_{-n}, \ldots, g_{-}1, g_{0,g_{1},\ldots,gn}\rangle$ $\subset$ $\langle g-n-1, \ldots, g-1, g_{0},\mathit{9}1_{\}}\cdots, g_{n+1}\rangle$ .

In these cases the commuting squares have the periodicity 2. But in the Hecke algebra
of type $A$ case, they have periodicity $n\{n\geq 2$ ) in general. And the period 2 case is
nothing but the above examples of the two-sided sequences of Jones projections.

In tbis paper we ge..neralize her construction of subfactors to the case we have
a fusion $\mathrm{r}\mathrm{u}_{1}^{\iota_{\mathrm{e}}}$ algebra and quantum $6j$-symbols which produce periodic commuting
squares. We prove that this construction produces the same subfactor as the asymp-
totic inclusion for the subfactor generated by the original periodic commuting square.
We also give some examples and by applying this result in the case of fusion rule alge-
bras of $SU(n)_{k}$ WZW models, which is the same as Hecke algebra of type $A$ subfactors
of Wenzl, we show that the above two-sided sequence of Hecke algebra of type $A$ gen-
erators produces the asymptotic inclusion of the Hecke algebra subfactor of type $A$ .
This result itself has been independently obtained by J. Erlijman [5].

According to the A. Ocneanu’s theory as in [25] and [9], we can get a great deal
of combinatorial data of RCFT and Reshetikhin-Turaev type topological invariants
by our method.
Acknowledgement The author would like to thank Prof. Y. Kawahigashi for fruitful
discussions and comments.
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2Quantum double construction for subfactors aris-
ing from periodic commuting squares

We start with a finite fusion rule algebra $A$ with quantum $6j$-symbols satisfying
unitarity, tetrahedral symmetry, and the pentagon equation (see [21], [7] for the
definitions of these). We denote that the standard basis of $A$ by $\{a_{j}\}_{j\in}j$ . Fix an
$\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}/\iota=a_{j}$ for some $j\in J$ and take finite powers $h^{k}$ of $h$ and decompose them
into sums of basis in $A$ . Thus we get a fusion rule subalgebra $B$ of $A$ generated by $h$

and quantum $6j$-symbols restrictcd to the subalgebra $B$ .
We assume that $h^{n}\succ*=id$, that is, $h^{n}$ contains an element $*=id$ in the

expression of $h^{n}$ as a sum of elements in the basis of $B$ . Here an element $id$ represents
the identity element of the fusion rule algebra $A$ . We take the smallest $n$ satisfying
the condition $h^{n}\succ*=id$ and denote it by the same $n$ . Then a natural finite grading
arise in the elements of the basis of $B$ as follows. We set $\Omega_{k}$ for all $k$ (mod $n$ ) a subset
of $\mathcal{B}$ consists of elements of the basis of $B$ which appear in the expression of $h^{k}$ as
a sum of the elements in the basis of $B$ . Then the basis of $\mathcal{B}$ is decomposed into a
union of finite subsets $\Omega_{0},$ $\Omega_{1,\}}\ldots\Omega_{n}-1$ so that they satisfy the following.

1. $*=id\in\Omega_{0,\in\Omega_{1}}h$

2. if $x$ is in $\Omega_{k}$ , then $x\cdot h$ can be decomposed into a sum of elements in $\Omega_{k+1}$ for
$k,$ $k+1\in \mathrm{N}$ (mod $n$),

Definition 2. 1 We call a subsystem (i.e., fusion rule subalgebra) $\mathcal{B}$ of a fusion rule
algebra A periodic when the generator $h$ of $B$ satisfies $h^{n}\succ id$ . The smallest such $n$

is called the period of the system $B$.

We remark that if the system $B$ is periodic with period $n$ , then it produces a
periodic commuting square with the same period $n$ in the following way. Hence we
get a subfactor with finite index. (See [28] Lemma 1.4.) We make a double sequence
of string algebra which is a modified version of the original string algebra construction
from a paragroup as follows. First we $\mathrm{p}\mathrm{u}\mathrm{t}*\mathrm{i}\mathrm{n}$ the upper left corner. Then we pass
to the right by multiplying the generator $h$ from the right and pass to the downward
direction by multiplying $h$ from the left. in this way we get periodic commuting
squares with period $n$ both in the horizontal and vertical directions.

$A_{-1,1}$ $\subset$ $A_{-1,2}$ $\subset$ $A_{-1,3}$ $arrow$ $P$

$\cap$ $\cap$ $\cap$ $\cap$

$A_{0,\mathrm{n}^{0}}$
, $\subset$

$A_{0,1,\cap}$

$\subset$

$A_{0,2,\cap}$

$\subset$

$A_{0,3 ,\cap}$

... $arrow$

$Q\cap$

$A_{1,\mathrm{n}^{0}}$
, $\subset$

$A_{1,1,\cap}$

$\subset$

$A_{1,2,\cap}$.
$\subset$

$A_{1,3,\cap}$

.. . $arrow$

$Q_{1}\cap$
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Note that the grading of the vertices of these commuting squares are illustrated
as follows:

$0$

$0121$ $..\cdot.\cdot$. $n-2n-1n_{0}1$ $01^{\cdot}.\cdot.\cdot$.
1 2 3 ... $0$ 1 2 . . .
2 3 4 ... 1 2 3
3 4 5 ... 2 3 4 , . .
:. :. :. ... :. :. :. $\cdot$

.,

$n-1$ $0$ 1 ... $n-2n-1$ $0$ .. .
$0$ 1 2 ... $n-1$ $0$ 1 . . .

.$\cdot$. .$\cdot$. $\cdot$.$\cdot$ ... .$\cdot$. .$\cdot$. ..$\cdot$

, . .

The connection on the above commuting squares is flat in the following sense, that
is, the horizontal string algebra $A_{0,k}$ (resp. $A_{1,k}$ ) commutes with the vertical string
algebra $A_{l,0}$ (resp. $A_{l,-1}$ ). (See [19], [20], [13] or [14] for the definition of the flatness
in the usual period 2 case.) This definition of the flatness in the case of double
sequence of periodic commuting squares is equivalent to the following condition. (cf.
[14, Theorem 2.1] $)$

$.arrow\otimes h$ $.arrow\otimes h$ $.arrow\otimes\overline{h}$

$*arrow x_{1}arrow\epsilon_{1}\xi 2X_{2}$ . . . $x_{2n-\iotarightarrow}\xi_{2}n*$

$h\otimes\cdot$

$\downarrow\eta_{1}y_{1}\downarrow$ $y_{1}\downarrow\eta_{1}$

$h\otimes\cdot$ $\downarrow\eta_{2}\downarrow$ $\downarrow\eta_{2}$

$y_{2}$ $y_{2}$ $=1$

.$\cdot$. :.
$y_{2m-1}$ $y_{2m-1}$

$\overline{h}\otimes\cdot$ $\downarrow\eta_{2m}\downarrow$ $\downarrow\eta_{2m}$

$*rightarrow x_{1^{rightarrow}}\xi_{1}\xi 2x_{2}$

. . .
$x_{2n-}\iotarightarrow\xi_{2n}*$

In the above diagram we pass to the right by tensoring $h$ (resp. $\overline{h}$ ) from the right
in the left (resp. right) half of the horizontal paths and pass to the downward by
tensoring $h$ (resp. $\overline{h}$ ) from the left in the upper (resp. lower) half of the vertical
paths. This identity is shown by a slight modification of the original proof in the

4



canonical period two case ([7, section 4]) if we have the pentagon relation which is
one of the axioms for the quantum $6j$-symbols.

Because the vertical string algebra has period $n$ , the vertical graphs are not the
(dual) principal graph of the subfactor $P\subset Q$ in spite of the flatness when the period

$\mathrm{n}$ is greater than 2. But we can get the principal graph of the subfactor by using
the following “orientation reversing” method of [6]. (cf. [6, Corollary3.4, Corollary
3.6]) We change the construction in the vertical direction from multiplying only $h$ to
multiplying $h$ and $\overline{h}$ alternately. Note that the system $B$ contains $\overline{h}$ by the definition
of periodicity of $B$ and the Frobenius reciprocity, i.e., we have $h^{n-1}\succ\overline{h}$ . So we
obtain a subsystem of $\mathcal{B}$ consisting of elements of the basis appearing in the finite
alternating products of $l\iota$ and $\overline{f}\iota$ . We denote this subsystem by C. In this way we get
the grading of the commuting squares changed as follows:

$0$ 1 2 ... $n-1$ $0$ 1 ...
$0$ 1 2 3 . .. $0$ 1 2 .. .

$n-1$ $0$ 1 2 ... $n-1$ $0$ 1 .. .
$0$ 1 2 3 ... $0$ 1 2 .. .

$n-1$ $0$ $1$ 2 . .. $n-1$ $0$ 1 ...... .$\cdot$. .$\cdot$. .$\cdot$. ... .$\cdot$. ... $\cdot$ ..$\cdot$ .. .

We denote these modified commuting squares as follows.

$B_{-1,1}$ $\subset$ $B_{-1,2}$ $\subset$ $B_{-1,3}$ $arrow$ $N$

$\cap$ $\cap$ $\cap$ $\cap$

$B_{0,0,\cap}.$

.

$\subset$

$B_{0,1,\cap}$

$\subset$

$B_{0,2,\cap}$

$\subset$

$B_{0,\mathrm{n}^{3}}$
, $arrow$

$M\cap$

$B_{1,\mathrm{n}^{0}}$
, $\subset$

$B_{1,1,\cap}$

$\subset$

$B_{1,2,\cap}$

$\subset$

$B_{1,3,\cap}$

$arrow$

$M_{1}\cap$

.$\cdot$. .$\cdot$. .$\cdot$
. .$\cdot$. .$\cdot$.

Here we remark that the subfactor $N\subset M$ is identical to $P\subset Q$ .
Because of the flatness of the connection and Wenzl’s dimension estimate [28,

Theorem 1.6], we conclude that the vertical graphs are the (dual) principal graph
of this subfactor. (see [6, Corollary 3.4, Corollary 3.6].) So we obtain the canonical
double sequence of higher relative commutants by applying the “orientation revers-
ing” method to both horizontal and vertical directions. (See [6, Theorem 3.5].) The
grading of the verticcs again changes as follows:

$0$

$01n_{0}1$ $01^{\cdot}.\cdot..\cdot$ $n_{0}1$ $01n_{0}1$ .. $\cdot$

.
$\cdot$

.
$n-1$ $0n-1$ $0$ ... $n-1$ $0n-1$ ...

$0$ 1 $0$ 1 ... $0$ 1 $0$ ...
$n-1$ $0n-1$ $0$ ... $n-1$ $0n-1$ ...
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We denote these canonical commuting squares as follows:

$C_{-1,1}$ $\subset$ $C_{-1,2}$ $\subset$ $C_{-1,3}$ ... $arrow$ $N$

$\cap$ $\cap$ $\cap$ $\cap$

$c_{\cap}0,0$

$\subset$

$C_{0,1,\cap}$

$\subset$

$C_{0,\mathrm{n}^{2}}$
, $\subset$

$C_{0,\mathrm{n}^{3}}$
, $arrow$

$M\cap$

$C_{1,\mathrm{n}^{0}}$
, $\subset$

$C_{11}\cap$’

$\subset$

$c_{\cap}1,2$

$\subset$

$c_{\cap}1,3$

$arrow$

$M_{1}\cap$... .$\cdot$
.

.$\cdot$. ... .$\cdot$
.

By using this canonical Jones tower $N\subset M\subset M_{1}\subset M_{2}\cdots\subset M_{\infty}$ , we can construct
the asymptotic inclusion $M(M’\cap M_{\infty})\subset M_{\infty}$ . We also get another subfactor
$Q(Q’\cap Q_{\infty})\subset Q_{\infty}$ from the previous tower $P\subset Q\subset Q_{1}\subset Q_{2}\cdots\subset Q_{\infty}$ .

Here we remark that the asymptotic inclusion $M.\vee(M’\cap M\infty)\subset M_{\infty}$ is generated
by the following commuting squares:

$C_{n,0_{\cap}^{c}0,n}$
$\subset$

$C_{n+1,0_{\cap}}\vee c0,n+1$

$C_{n,n}$ $\subset$ $C_{n+}1,n+1$ ,

and the subfactor $Q(Q’\cap Q_{\infty})\subset Q_{\infty}$ is also generated by the commuting squares:

$A_{n,0_{\cap}^{A}}0,n$

$\subset$

$A_{n+1,0_{\cap}}\vee A0,n+1$

$A_{n,n}$ $\subset$ $A_{n+1,n}+1$ .

Now we give a graphical expression of bimodules arising from these subfactors
$M(M’\cap M_{\infty})\subset M_{\infty}$ and $Q(Q’\cap Q_{\infty})\subset Q_{\infty}$ . First remark that the generator $h$

can be identified with $M$ as an M-N bimodule by using canonical commuting squares
ae above and graphical expression as in Figure 2.1 (see [24] and [9].)

$h$

Figure 2.1
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So the graphical expressions of the bimodules arising from the subfactor $M(M’\cap$
$M_{\infty})\subset M_{\infty}$ are exactly the same as the original ones in [24], [9] by this identification
of $l\iota=MM_{N}$ and $\overline{l\iota}=NM_{M}$ .

Next we give graphical expressions of the bimodules arising from the subfactor
$Q(Q’\cap Q_{\infty})\subset Q_{\infty}$ . The algebras $Q=M,$ $Q(Q’\cap Q_{\infty})=M\vee(M’\cap M_{\infty})$

and $Q_{\infty}$ are expressed as in Figures 2.2, 2.3 and 2.4 respectively. Here the point is
that we change all the labels of edges on the boundary from $MMN$ and $NMM$ to the
generator [$\mathrm{t}$ . In particular Figure 2.2 is exactly the 2-dimensional expression of the
string algebras with period $n$ .

Figure 2.2
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Figure 2.3

rlgure $\angle.\not\in$

Here Figure 2.2 actually represents $Q^{\mathrm{o}\mathrm{p}}=M^{\mathrm{o}\mathrm{p}}$ but we use this expression instead of
the upside-down picture for simplicity.

Similarly if we change the labels of the edges on the boundary from $MMN$ and
$NM_{M}$ to $h$ , we get a graphical expression of Q-Q bimodule as in Figure 2.5.
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$x$

Figure 2.5

Here $x$ is one of the elements in the basis of $\mathcal{B}$ . We denote this Q-Q bimodule by $K_{x}$

and call it a surface bimod$\mathrm{u}le$ . In the following we use the notation $\mathcal{I}\equiv\Omega_{0}\cap C$ which
is a subset of the $\mathrm{b}\mathrm{a}s$is in the system $C$ .

Theorem 2. 2 The bimodule $K_{x}$ above is irreducible. And the set of Q-Q bimodules
$\{K_{x}\}_{x\in\tau}$ makes an isomorphic system of Q-Q bimodules arising from the subfactor
$(N\subset M)\cong(P\subset Q),$ $i.e.$ , the system $\{A_{x}\}_{x\in \mathcal{T}}$ of M-M bimodules as above.

Proof.$\cdot$ From the commuting squares with the following gradings

$0$ 1 2 3 $0$ 1 2 $arrow$ $M–Q$
$n-1$ $0$ $1$ 2 $n-1$ $0$ 1 $arrow$ $M_{1}$

$0$ 1 2 3 $0$ 1 2 $arrow$ $M_{2}$

$n-1$ $0$ $1$ 2 $n-1$ $0$ 1 $arrow$ $M_{3}$

.$\cdot$. .$\cdot$. .$\cdot$. .$\cdot$. ... ..$\cdot$ .. .$\cdot$. ..$\cdot$ ... .$\cdot$. .$\cdot$.

and the graphical expression of $Q=M$ and Q-Q bimodule, the set of bimodules
$\{K_{x}\}_{x\in \mathcal{I}}$ really makes a system of Q-Q bimodules. The same method as in the proof
of Theorem 2.1 in [9] also works by using Wenzl’s dimension estimate [28, Theorem
1.6] in order to show the irreducibility of the inclusion $Q\subset R_{x}$ . Here $R_{x}$ denotes a
von Neumann algebra corresponding to Figure 2.6.

9



$m$ $\mathrm{m}$

Figure 2.6

Here the edges of the boundaries are labelled by $h$ except for the top two $x’ \mathrm{s}$ .
And a graphical inspection as in the proof of Theorem 2.1 in [9] shows that the

fusion rule and quantum $6j$-symbols of the system of surface bimodules depend only
on the labels on the top edges $x\in \mathcal{I}$ of the surface bimodules and do not depend
on the labels of edges on the boundaries. So the above system of Q-Q bimodules
$\{K_{x}\}_{x\in\tau}$ have the same fusion rule and quantum $6j$-symbols as the system of Q-Q
bimodule arising from the subfactor $P\subset Q$ . Q.E.D.

From the above theorem we may and do use the notation $Q$ for the two isomorphic
system of Q-Q bimodules as in the theorem.

Similarly we get an irreducible $Q(Q’\cap Q_{\infty})-Q\vee(Q’\cap Q_{\infty})$ bimodules expressed
as in Figure 2.7.
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Figure 2.7

where $x$ and $y$ are any pair of basis in $\mathcal{I}$ and the edges on the boundaries are labelled
by $h$ . We denote this bimodule by $L_{x,y}$ . The above theorem shows that this system
$\{L_{x,y}\}$ has the same fusion rule and quantum $6j$-symbols as the system $\{B_{x,y}\}$ of
$M(M’\cap M_{\infty})- M(M’\cap M_{\infty})$ bimodules.

We can also get the sets of irreducible $Q\vee(Q’\cap Q_{\infty})- Q_{\infty}$ bimodules $\{L_{z}\}$ and
irreducible $Q_{\infty}- Q_{\infty}$ bimodules $\{L_{\pi_{i}}\}$ as in Figure 2.8 and Figure 2.9 respectively by
changing the labels of the edges on the boundaries from $MMN$ and $NMM$ to $h$ . The
irreducibility of these $Q\mathrm{V}(Q’\cap Q_{\infty})- Q_{\infty}$ and $Q_{\infty}- Q_{\infty}$ bimodules are shown in the
same way as in [9, Theorem 4.1, Theorem 4.2].

$\Gamma$ lgure $\Delta.\mathrm{O}$

Here the labellings $\pi_{i}$ are given by the elements of the subset of the minimal
central projections of Tube $Q$ , the tube algebra of the system $Q$ of Q-Q bimodules
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(see [25], [9] for the definition of the tube algebra) which are reachable $\mathrm{f}\mathrm{r}\mathrm{o}\mathrm{m}*\mathrm{b}\mathrm{y}$ the
fusion graph of the asymptotic inclusion $M(M’\cap M_{\infty})\subset M_{\infty}$ (see [25]).

Now we can get the following theorem similarly.

Theorem 2. 3 All the systems of bimodules $\{L_{x,y}\},$ $\{L_{z}\}_{f}\{\overline{L}_{z}\}$ and $\{L_{\pi_{i}}\}$ consists
of four kinds of bimodules arising from the subfactor $Q(Q’\cap Q_{\infty})\subset Q_{\infty}$ have the
same ($\mathrm{Z}_{2}$ graded) fusion rules and quantum 6j-.symbols as the four kinds of bimodules
arising from the subfactor $M(M’\cap M_{\infty})\subset M_{\infty}$ . Hence the two sysiems make the
same paragroups.

Proof: By the graphical inspection as in the proof of Theorem 2.1 in [9] we can
easily see that the fusion rules and quantum $6j$-symbols of the system of these four
kinds of bimodules depends only on the labelling of $X,$ $Y,$ $Z$ and $\pi_{i}$ . So we get the
result. Q.E.D.

Corollary 2. 4 Two subfactors $Q(Q’\cap Q_{\infty})\subset Q_{\infty}$ and $M(M’\cap M_{\infty})\subset M_{\infty}$

are isomorphic.

Proof: Because the two subfactors have finite index and finite depth and have the
same paragroups, these are isomorphic by Popa’s generating theorem for strongly
amenable subfactors [26]. $\mathrm{Q}.\mathrm{E}$ .D.

In the following we give some applications of this result.

Example 2. 5 We start with $SU(n)$ WZW model with level $k$ . We can get a com-
mutative fusion rule algebra with quantum $6j$-symbols. If we take the fundamental
generator $h$ , then the resulting subfactor $(P\subset Q)\cong(N\subset M)$ is the same as Hecke
algebra subfactor of type A of Wenzl. (See [6].) The above corollary shows that the
following commuting squares

$\langle$

$g_{-n},$ $\ldots,$ $g_{-}1,$
$g_{1,\ldots,g\rangle}\cap n$

$\subset$

$\langle g-n-1, \ldots, g_{-1}g1, \ldots, gn+1\rangle\cap$’

$\langle$

$g_{-n},$ $\ldots,$ $g_{-1},$ go, $g1,$ $\ldots,$
$gn\rangle$ $\subset$ $\langle g_{-}n-1_{\rangle}\cdots, g_{-1,gg}0,1)\ldots, gn+1\rangle$
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generate the asymptotic inclusion $M(M’\cap M_{\infty})\subset M_{\infty}$ . Here $g_{i}’ \mathrm{s}$ are the standard
generators of Hecke algebras satisfying the following relations:

$g_{i}g_{i+1}gi=gi+1g_{ig_{i}}+1$ , for $i\in \mathrm{Z}$ ,
$g_{i}g_{j}=gjg_{i}$ , whenever $|i-j|\geq 2$ ,

$g_{i}^{2}=(q-1)g_{i}+q$ , for $i\in \mathrm{Z}$ ,

where $q=e^{\pm i\pi/n}$ .
The isomorphism for this example has been obtained by J. Erlijman [5] indepen-

dently by a different method.

Example 2. 6 Again we start with $SU(n)$ WZW model with level $k$ and take an-
other generator $h$ different from the fundamental one, then the resulting subfactor is
isomorphic to $pPp\subset pQ_{k}p$ , where $P\subset Q$ denotes Hecke algebra subfactor of type
A of Wenzl and $p$ is a projection in $P’\cap Q_{k}$ for some $k$ . Here $Q_{k}$ is one of the von
Neumann algebras in the tower $P\subset Q\subset Q_{1}\subset\ldots\subset Q_{k}\subset\ldots$ which are generated
by the double sequences of period $n$ commuting squares as in [28]. In this case we
do not have natural generators for the commuting squares as in the previous exam-
ple. But our method also works in such cases and we can construct the asymptotic
inclusions for many such subfactors. This is an advantage of our method.

.
Example 2. 7 We start with a fusion rule algebra which consists of N-N bimodules
of a subfactor $N\subset M$ with principal graph $D_{2m}$ for $m\geq 2$ . If we take a bimodule
corresponding to one of the two tails of the principal graph $D_{2m}$ as a generator, then
the subsystem $B=\langle h\rangle$ has period 2 if $m$ is even and period grater than 3 if $m$ is odd.
This is because the contragredient map for $D_{2m}$ changes by mod 4, i.e., if.m is even,
we have $\overline{h}=h$ and if $m$ is odd, we have $\overline{h}\neq h$ .

Remark 2. 8 We can easily modify this method to the case when the subsystem $B$

has more than two generators. For example if we have $m$ generators $h_{1},$ $h_{2},$
$\cdots,$ $h_{m}$

which are elements in the basis of $A$ , then we take $h=h_{1}+h_{2}+*\cdot\cdot+h_{m}$ as a new
generator. And in this case we have to change the definition (Definition 2.1) of the
periodicity. We say the fusion rule subalgebra $B$ generated by the above $h$ periodic
of with the period $n$ if the Bratteli diagram for $\{h^{k}\}_{k=0.’ 1,2},\cdots$ has periodic with the
periodicity $n$ .
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