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1. INTRODUCTION: THE GENERAL SIEVE AS AN EXTREMAL PROBLEM

Given a finite set $A$ of integers and a set $P$ of primes, the object of sieve theory
is to give lower and upper bounds for the sifting function

$S(A, P)=\neq\{a\in A : p|a\Rightarrow p\not\in P\}$ .

Such bounds can be of great interest in prime number theory; for example, if
$A=$ {$p+2\leq x$ : $p$ prime} and

$P=P(X1/(k+1))=$ {$p\leq x^{1/(k+1)}$ : prime}
with some positive integer $k$ , then a non-trivial lower bound for $S(A, P)$ implies
the existence of primes $p$ in the interval $[\sqrt{x}, x]$ .such that $p+2$ has at most $k$ prime
factors. In particular, if such a bound could be proved for $k=1$ and all sufficiently
large $x$ , then the twin prime conjecture would follow. While this result seems to be
beyond the reach of sieve methods, Chen ([Ch]; see also [HR]) was able to obtain
non-trivial bounds in the case $k=2$ by ingeneously combining sieve methods with
other techniques.

Even though sieve theory has been motivated by applications to concrete in-
stances of sets $A$ and $P$ , its success is largely due to its formulation as a general
problem of estimating the sifting functions $S(A, \mathcal{P})$ under minimal assumptions on
$A$ and $P$ . Most sieve theoretic estimates are of a very general nature, giving bounds
for $S(A, P)$ that depend on the specific nature of these sets only via one or more
simple parameters which measure, in a certain sense, the size and density of $A$ and
$P$ , and which, in some cases, can be shown to be best-possible under a suitable
set of assumptions. In other words, the object of many sieve theoretic results is to
solve an extremal problem: Given a set of parameters $\lambda_{i}(A,P)$ , find the maximum
and minimum value of $S(A, P)$ among all sets $A$ and $P$ for which $\lambda_{i}(A, \mathrm{p})\leq\lambda_{i}$

for given numbers $\lambda_{i}$ .
The classical instance of a sieve result formulated as an extremal problem is

the Rosser-Iwaniec sieve [Iw], which we now describe. This sieve involves two
parameters $\kappa$ and $s$ , and the assumptions on $A$ and $P$ can be informally stated as
follows:

(I) $A$ is well distributed in residue classes $0$ mod $d$ for moduli $d\leq D$ , in the
sense that

$\#$ { $a\in A:a\equiv 0$ mod $d$} $\approx\frac{\omega(d)X}{d}$ $(d\leq D,p|d\Rightarrow p\in P)$
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with $X=|A|$ and a multiplicative function $\omega(d)\mathrm{S}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{S}\mathfrak{g}_{\mathrm{i}\mathrm{g}\omega}r\mathrm{n}(p)\leq\kappa$ on
average over primes $p$ .

(II) $P$ is contained in $[2, D^{1/S}]$ .
Under these assumptions, the “expected” value for $S(A, P)$ is

$E(A, P)= \prod_{p\in P}(1-\frac{\omega(p)}{p})X$ .

The extremal problem underlying the Rosser-Iwaniec sieve method can now be
formulated as follows:

Extremal Problem I (The Rosser-Iwaniec sieve). Find best-possible func-
tions $F_{\kappa}(s)$ and $f_{\kappa}(s)$ such that, under the assumptions (I) and (II), one has

(1.1) $S(A, P)\leq(F_{\kappa}(s)+o(1))E(A, P)$

and

(1.2) $S(A, P)\geq(f_{\kappa}(s)+o(1))E(A, \mathrm{p})$ .

Suitable functions $F_{\kappa}$ and $f_{\kappa}$ were given in the case $\kappa=1$ by Jurkat and Richert
[JR], and for arbitrary $\kappa>0$ by Rosser and Iwaniec ([Iw2]; see also [Iw3]). Selberg
[Se] has shown that the Rosser-Iwaniec functions are indeed best-possible in the
cases $\kappa=1/2$ and $\kappa=1$ and thus completely solved the above extremal problem in
these cases. In the general case, however, the problem of finding optimal functions
$F_{\kappa}$ and $f_{\kappa}$ remains open.

While the Rosser-Iwaniec sieve is quite satisfactory in many respects and has
proved to be a highly effective tool in analytic number theory, it is by no means the
only possible way to formulate a sieve problem. For example, one might consider
the following questions:

(i) Can one obtain better estimates by considering only special types of sets
$A$, such as $A=\{n:n\leq x\}$ or $A=\{n:y<n\leq x\}$ ?

(ii) Can one do better for special sets of primes $P$ , such as the set of all primes
in a given interval $(y, x]$ ?

(iii) Can one obtain similar results with the parameter $s$ , which, in effect, mea-
sures the size of the largest element of $P$ , replaced by another measure of
the “size” of the set $P$ ? An example of such a parameter is the sum of
reciprocals of primes in $P$ .

The purpose of this paper is to address these and related questions, formulate
extremal problems that arise out of these questions, and survey some of the results
and open problems in this connection.

2. THE CASE $A=\{n : 1 \leq n\leq x\}$

We first consider what is, in a sense, the simplest possible type of a set $A$, namely
the case when $A$ consists of all positive integers not exceeding a given bound $x$ . We
shall write in this case

$S(x, P)=S(A,\mathrm{p})$ .
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For certain special sets of primes $P$ , the behavior of $S(x, p)$ is $\mathrm{r}\mathrm{e}1\dot{\mathrm{a}}\mathrm{t}\mathrm{i}_{\mathrm{V}\mathrm{e}}1\mathrm{y}$ easy to
determine. For example, if $P$ is of the form

(2.1) $P(x^{\alpha})=$ {$p$ prime: $p\leq x^{\alpha}$ },

where $\alpha\in(0,1)$ is fixed, then an asymptotic formula for $S(x, \mathrm{p})$ is given by a
classical result of Buchstab $[\mathrm{B}_{\}1}]$ , which states that

$S(x, P(X^{\alpha})) \sim\omega(\frac{1}{\alpha})\frac{x}{\log x^{\alpha}}$ $(xarrow\infty)$ ,

where $\omega(u)$ is the so-called Buchstab function. Similarly, if $P$ is of the form

(2.2) $P(X^{\alpha}, X)=$ {$p$ prime: $x^{\alpha}<p\leq x$ },

then a result of Dickman and de Bruijn $([\mathrm{D}\mathrm{i}], [\mathrm{d}\mathrm{B}])$ shows that

(2.3) $S(x, P(x^{\alpha}, x)) \sim\rho(\frac{1}{\alpha})x$ $(xarrow\infty)$ ,

where $\rho(u)$ , the Dickman function, is defined as the continuous solution to the
system

(2.4) $\rho(u)=1$ $(0\leq u\leq 1)$ , $u\rho’(u)=-\rho(u-1)$ $(u>1)$ .

Similar asymptotic relations can be derived for other sufficiently “well-behaved”
sets $P$ ; see, for example, [GM], or [Iwl].

The problem of estimating $S(x, P)$ becomes much more difficult if one does
not make any special assumptions on the nature of the set $P$ . In this case, the
assumptions (I) and (II) of the Rosser-Iwaniec sieve hold with $D=x,$ $\kappa=1$ ,
$\omega\equiv 1$ , and any parameter $s$ such that $p\leq x^{1/s}$ for $p\in P$ . The bounds (1.1)
and (1.2) then would indeed give non-trivial results in the case $P\subset[2, x^{\alpha}]$ with
$\alpha<1/2$ . However, if one only assumes that $P\subset[2, x]$ , then one is forced to take
$s=1$ , in which case (1.1) and (1.2) reduce to

(2.5) $0 \leq S(x,p)\leq(2e^{\gamma}+o(1))\prod p\in P(1-\frac{1}{p})x$ ,

since $f_{1}(1)=0$ and $F_{1}(1)=2e^{\gamma}$ , where $\gamma$ denotes Euler’s constant.
Thus, the question arises whether one can improve on the inequalities (2.5)

without imposing stringent regularity conditions on the distribution of the primes
in the set $\mathcal{P}$ . The first step in this direction was made by $\mathrm{R}.\mathrm{R}$ . Hall [Hal] who
showed that the constant 2 in the upper bound of (2.5) can be replaced by 1.

As to the lower bound in (2.5), Erd\"os and Ruzsa [ER] showed that if $\sum_{\mathrm{p}\in P}1/p\leq$

$K$ for some constant $K$ , then one has

$S(x, P)\geq(_{C}(K)+Q(1))X$ ,

where $c(K)=e^{-e^{\mathrm{c}K}}$ with an absolute constant $c$. This result suggests to obtain
bounds on $S(x, \mathrm{p})$ in terms of the parameter $K(P)= \sum_{\mathrm{p}\in P}1/p$ . More precisely,
one is led in this way to the following extremal problem.
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Extremal Problem II (The Erd\"os-Ruzsa sieve). Find $be\mathit{8}t$-possible functions
$G(K)$ and $g(K)$ such that, if $P\subset[2, x]$ has sum of reciprocals at most $K_{f}$ then one
has

(2.6) $S(x, \mathrm{p})\leq(G(K)+o(1))\prod_{\mathrm{P}\in \mathcal{P}}(1-\frac{1}{p})x$

and

(2.7) $S(x, P) \geq(g(K)+o(1))\prod_{p\in \mathcal{P}}(1-\frac{1}{p})x$ .

The lower bound function $g(K)$ was determined in [Hi3], where it was shown
that $g(K)=\rho(e^{K})e^{K}$ , where $\rho(u)$ is the Dickman function defined by (2.4). Note
that if $\sum_{p\in P}1/p$ is approximately equal to $K$ , then the product appearing on the
right hand side of is essentially equal to $e^{-K}$ . Thus, (2.7) may be restated as

$S(_{X}, \mathrm{p})\geq(\rho(e^{K})+o(1))x$ ,

In view of the relation (2.3), this means that, subject to the condition $\sum_{p\in P}1/p\leq$

$K,$ $S(x, P)$ is asymptotically smallest when the set $P$ is of the form $P(X^{\alpha}, X)$ with
$\alpha=e^{-K}$ . Thus, in a sense, the most efficient way of sieving the integers $\leq x$ by
a set of primes with sum of reciprocals bounded by a parameter $K$ is by choosing
the primes in this set as large as possible.

The determination of the upper bound extremal function $G(K)$ in (2.6) remains
an open problem. By result of Hall quoted above, this function must satisfy $G(K)\leq$

$e^{\gamma}$ for all $K$ . In [Hil] it was shown that $G(K) \leq\int_{0}^{e^{K}}\rho(u)du$, which is slightly better
than Hall’s bound since $\int_{0}^{\infty}\rho(u)du=e^{\gamma}$ . However, it is unlikely that this bound
gives the true value of $G(K)$ .

We conclude this section by considering a variant of the above extremal problem
that involves a weighted version of the sifting function $S(x, p)$ , namely

$T(x, P):=p|n \Rightarrow\sum_{n\leq px}\frac{1}{n}\not\in p$

.

Extremal Problem III (The weighted Erd\"os-Ruzsa sieve). Find $be\mathit{8}t$-possible
functions $H(K)$ and $h(K)$ such that, if $P\subset[2, x]$ has sum of reciprocals at most
$K$ , then one has

(2.8) $T(x, \mathrm{p})\leq(H(K)+o(1))\prod_{p\in P}(1-\frac{1}{p})\log X$

and

(2.9) $T(x, P) \geq(h(K)+o(1))\prod p\in \mathcal{P}(1-\frac{1}{p})\log X$.
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In this version, the problem can be completely solved: the optimal functions are
$H(K)= \int_{0}^{e^{K}}\rho(u)du$ and $h(K)=1$ . The determination of $H(K)$ is given in [Hil]
and based on a relatively simple variational argument. The fact that $h(K)=1$ is
essentially trivial; one simply has to observe that

$T(x, P) \prod_{Pp\in}(1-\frac{1}{p})^{-1}=$
$\sum_{n\leq x}$

$\frac{1}{n}$ .
$\sum_{m\geq 1}$

$\frac{1}{m}$

$p|n\Rightarrow p\not\in P$ $p|m\Rightarrow p\in P$

$\geq\sum_{n\leq x}\frac{1}{n}=(1+o(1))\log x$ ,

and that this lower bound is best possible.

3. THE CASE $A=\{n : y<n\leq y+x\}$

For simplicity we write $S(y, x, P)$ for $S(A, P)$ in this case and put

$s^{*}(x, \mathcal{P})=\mathrm{m}\mathrm{a}\mathrm{x}y\geq 0^{S(y,x,P)}$ ’ $S_{*}(x, \mathrm{p})=\min_{\geq y0}s(y, x, P)$ .

Thus, $S^{*}(x, \mathrm{p})$ and $S_{*}(x, p)$ represent the largest respectively smallest values of
the sifting functions $S(A, P)$ when the sets $A$ are intervals of length $x$ . If $x$ is
an integer, it is easy to see via the Chinese Remainder Theorem that $S^{*}(x, \mathrm{p})$ and
$S_{*}(x, p)$ are also equal to the maximum resp. minimum possible number of positive
integers $n\leq x$ that $\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}6\Gamma n\not\equiv a_{p}$ mod $p$ for each prime $p\in P$ , where $(a_{p})_{p\in P}$ is a
given set of “forbidden” residue classes.

The problem of obtaining precise upper and lower bounds for the functions $S^{*}$

and $S_{*}$ is a difficult and largely unsolved one, even when $P$ is of the special form
$P(x^{\alpha})$ or $P(X^{\alpha}, X)$ defined in (2.1) and (2.2). In the first case, the Rosser-Iwaniec
sieve leads to the bounds

$S^{*}(x, P(x^{\alpha})) \leq(F(1/\alpha)+o(1))\prod p\in P(1-\frac{1}{p})x$

and

$S_{*}(x, P(x^{\alpha})) \geq(f(1/\alpha)+o(1))\prod_{p\in P}(1-\frac{1}{p})x$ ,

where $F=F_{1}$ and $f=f_{1}$ . As remarked above, the functions $F_{\kappa}$ and $f_{\kappa}$ are best-
possible under the general assumptions of the Rosser-Iwaniec sieve. However, it is
not clear, whether these functions are still best possible if the sets $A$ are restricted
to intervals. Specifically, one can formulate the following extremal problem.

Extremal Problem IV (The interval sieve). Find best-possible functions $F_{0}(s)$

and $f_{0}(s)$ such that

(3.1) $S^{*}(x, P(x^{1/s})) \leq(F_{0}(S)+o(1))p\prod_{\in \mathrm{p}(x^{1/s})}(1-\frac{1}{p})x$
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and

(3.2) $S_{*}(X, \mathrm{p}(X^{1/s})\geq(f\mathrm{o}(s)+o(1))p\in \mathrm{p}(\prod_{\epsilon,x^{1/)}}(1-\frac{1}{p})x$ .

This problem appears to have been first raised by Selberg [Se]. Very little is
known about the functions $f_{0}$ and $F_{0}$ , apart $\mathrm{h}\mathrm{o}\mathrm{m}$ the trivial inequalities

(3.3) $f(s)\leq f_{0}(s)$ , $F(s)\geq F_{0}(s)$ .

In particular, it is not known whether for any single value of $s$ these inequalities are
strict. Selberg observed that a resolution of this question in either way would have
important consequences in prime number theory. For example, a strict inequality
$F_{0}(s)<F(s)$ for some value $s\in[1,2]$ would imply the non-existence of Siegel zeros.
In the other direction, if it were true that $f_{0}(2)=f(2)(=0)$ , then it would follow
that the sequence $\{p_{n}\}$ of primes satisfies $p_{n+1}-p_{n}>(\log p_{n})2-\epsilon$ , a result which
would imply a $10,000 conjecture of Erd\"os.

While for bounded values of $s$ virtually nothing is known about $f_{0}$ and $F_{0}$ beyond
the inequalities (3.3) and their consequences, the asymptotic behavior of these
functions is somewhat better understood. Indeed, in [HM] it was shown that as
$sarrow\infty$ , one has

(3.4) $\log(F0(_{S))\mathrm{o}\mathrm{g}(F}-1\sim \mathrm{l}(_{S))\mathrm{o}\mathrm{g}_{S}}-1\sim-s\mathrm{l}$

and an analogous relation for the differences $1-f_{0}(s)$ and $1-f(s)$ .
It is easy to formulate an analogue of the Erd\"os-Ruzsa extremal problem for $S^{*}$

and $S_{*}$ , but this problem is wide open. In particular, obtaining non-trivial lower
bounds for $S_{*}(x, \mathrm{p})$ under the condition that $P\subset[2, x]$ and $\sum_{p\in \mathcal{P}}1/p\leq K$ for
some fixed $K$ , appears to be quite difficult. In fact, it is conceivable (though, I
believe, unlikely) that for some absolute constant $K$ and all sufficiently large $x$ it
is possible to find a set $P\subset[2, x]$ with sum of reciprocals at most $K$ such that
$S_{*}(x, P)=0$ .

4. EXTREMAL PROBLEMS FOR SUMS OF MULTIPLICATIVE FUNCTIONS.

The two extremal problems of Section 2 can be generalized to extremal problems
for sums of multiplicative functions with values in $[0,1]$ . This is not too surprising,
since the function $S(x, \mathrm{p})$ may be written in the form $\sum_{n<x}f(n)$ where $f$ is the
(multiplicative) characteristic function of the set of integers $\mathrm{t}\overline{\mathrm{h}}\mathrm{a}\mathrm{t}$ do not have a prime
divisor belonging to $P$ . For example, Problem II can be generalized to multiplicative
functions $f$ with values in the interval $[0,1]$ by making the substitutions

$S(x, p) arrow S(x, f)=\sum f(n)n\leq x$ ’

$\prod_{p\in p}(1-\frac{1}{p})arrow\prod_{p\leq x}(1-\frac{1}{p})(1+\sum_{m\geq 1}\frac{f(p^{m})}{p^{m}}\mathrm{I}$ ,

$\sum_{\mathrm{p}\in P}\frac{1}{p}arrow\sum_{p\leq x}\frac{1-f(p)}{p}$ .
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All results remain valid in this more general setting; in fact, in most cases, the
results quoted earlier were first proved for multiplicative function, and then spe-
cialized to sieve estimates.

The case of multiplicative functions that take on complex or negative values
appears to be much more difficult, and no results of a quality comparable to those
obtained for functions with values in $[0,1]$ are known. We confine ourselves to
mentioning two types of results in this direction. The first concerns an inequality
of the form

(4.1) $\sum_{n\leq x}f(n)\ll x\exp\{-K\sum_{xp\leq}\frac{1-{\rm Re} f(p)}{p}\}$ ,

where $f$ is a multiplicative function satiswing $|f|\leq 1$ . Assuming that the values of
$f$ on primes fall into a given convex subset $D$ of the unit disk, one can try to prove an
estimate of the form (4.1) with a best-possible constant $K=K(D)$ in the exponent.
This problem was investigated in recent papers by Hall and Tenenbaum [HT] and
Hall [Ha2]. In particular, in [HT] the best-possible constant $K$ was determined for
the case when $f$ has values in [-1, 1].

A second type of problem originated with a conjecture of Heath-Brown. In a
slightly more general form the conjecture asserts that there exists a positive constant
$\delta$ such that for all completely multiplicative functions $f$ with values in the interval
[-1, 1] and all $x\geq 1$ one has

$\sum_{n\leq x}f(n)\geq(-1+\delta)x$
.

This conjecture was recently proved by Hall [Ha3]. However, the best-possible value
for the constant $\delta$ remains an open question. More precisely, if one defines

$C(X)= \inf\{\frac{1}{x}\sum_{n\leq x}f(n)\}$ ,

where the infimum is taken over all completely multiplicative functions with values
in [-1, 1], what is the asymptotic behavior of $c(x)$ ? Hall’s result only shows that
$c(x)$ is bounded away from-l.

5. EXTREMAL PROBLEMS FOR SOLUTIONS OF INTEGRAL EQUATIONS

If $f$ is a multiplicative function, then it is not hard to show that the averages

$M(t)=e^{-t} \sum f(n)n\leq et$

$\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{S}6\Gamma$ an approximate integral equation of the type

(5.1) $M(t) \approx\frac{1}{t}\int_{0}^{t}M(s)\phi(t-S)d_{S}$ $(t\geq 0)$
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with a suitable function $\phi(s)$ that, roughly, represents the average of the values
$f(p)$ when $p$ is near $e^{s}$ . Wirsing [Wi] appears to have been the first to recognize
this connection between multiplicative functions and integral equations, and he
made extensive use of this connection in his work on mean values of multiplica-
tive functions. In light of the generalization described in the previous section of
the extremal sieve problems of Section 2 to extremal problems for multiplicative
functions, it is natural to expect that these problems have analogs for solutions of
integral equations of the type (16). This is indeed the case, as we shall describe
below.

Motivated by (5.1), we consider solutions to integral equations of the form

(5.2) $m(t)= \frac{1}{t}\int_{0}^{t}m(S)\phi(t-s)d_{S}$ $(t>0)$ .

We will assume that $\phi$ : $R^{+}arrow[0,1]$ is continuous and satisfies $\int_{0}^{1}\frac{1-\emptyset(s)}{s}d_{S}<\infty$ .
Under these assumptions it is not hard to see that (5.2) has a unique continuous
solution $m(t)=m_{\phi}(t)$ normalized so that $m(\mathrm{O})=1$ . (For a more detailed discussion
of the equation (5.2) see [Hi2].) One can then formulate the following extremal
problem.

Extremal Problem V (Integral Equations). Find best-possible functions $G(K)$

and $g(K)$ such that, if $\int_{0}^{1}\frac{1-\emptyset(s)}{s}\leq K$ , then the solution $m_{\phi}(t)$ to (5.2) satisfies

$m_{\phi}(1) \leq G(K)\exp\{-\int_{0}^{1}\frac{1-\phi(s)}{s}d_{S\}}$

and
$m_{\phi}(1) \geq g(K)\exp\{-\int_{0}^{1}\frac{1-\phi(s)}{s}d_{S}\}$

The analogy to the extremal problem for multiplicative functions formulated in
the previous section becomes apparent, if one notes that, after suitable rescaling,
one has the correspondences

$\frac{1}{x^{t}}\sum_{n\leq x^{t}}f(n)arrow m(t)$ ,

$f(p)arrow\phi(\log p/\log x)$ ,

$\prod_{p\leq x}(1-\frac{1}{p})(1+\sum_{m\geq 1}\frac{f(p^{m})}{p^{m}}\mathrm{I}arrow\exp\{-\int_{0}1\frac{1-\phi(s)}{s}d_{S}\}$ ,

$\sum_{p\leq x}\frac{1-f(p)}{p}arrow\int_{0}^{1}\frac{1-\phi(s)}{s}d_{S}$ .

Following Wirsing’s approach, one can indeed show that this problem is equiv-
alent to the corresponding extremal problem for multiplicative functions, and the
extremal functions are the same for both cases. As in the arithmetic case, only

8



EXTREMAL PROBLEMS IN SIEVE THEORY

the function $g(K)$ is known (namely, $g(K)=\rho(e^{K})e^{K}$); the upper bound function
$G(K)$ is unknown. On the surface, it would seem that the determination of $G(K)$

is a tractable problem in analysis, but I have not been able to make any substantial
progress in this direction.

It should be noted that, while the problem of estimating the sifting function
$S(x, p)$ can be transformed into an essentially equivalent, and perhaps tractable,
problem in analysis, this is not the case with the more delicate problem of estimating
the “interval sifting functions” $S^{*}(x, \mathrm{p})$ and $S_{*}(x, p)$ introduced in Section 3; it
appears indeed that the estimation of these functions is an inherently arithmetic
problem that is genuinely more difficult than that of estimating $S(x,p)$ .
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