EXTENDED FORMAL POWER SERIES AND G-FUNCTIONS

T.Harase (原液数. Faculty of Education, Tottori University 点版大数章)

At first, let us consider a formal power series ring R = k[[x]] where k is a field. The fraction field of R is $\mathbb{Q}(R) = k(x)$. Every element of k(x) is expressed as a power series with finite negative exponents. But when we consider a power series ring of several indereminates $R = k[[x_1, ..., x_n]]$, some elements of $\mathbb{Q}(R)$ can not be expressed as a power series. For example, consider

$$\frac{1}{x+y} \in \mathbb{Q}(k[[x,y]]).$$

Sometimes, we want to express every element of $\mathbb{Q}(R)$ as a formal power with possibly negative exponents. So I introduced extended formal power series rings. [5]

Let $\alpha = (\alpha_1, ..., \alpha_m)$ be a vector in \mathbb{R}^m , and let $\underline{n} = (n_1, ..., n_m)$ be an integer vector in \mathbb{Z}^m . Fixing $\underline{\alpha}$, $L = L(\underline{n})$ denotes the linear form

$$\underline{\alpha} \cdot \underline{n} = \alpha_1 n_1 + \ldots + \alpha_m n_m.$$

We abbreviate $\sum a(\underline{i})\underline{x}^{\underline{i}}$ for

$$\sum_{i_1 = -\infty}^{\infty} ... \sum_{i_m = -\infty}^{\infty} a_{i_1 ... i_m} x_1^{i_1} ... x_m^{i_m}.$$

The following definitions are essential.

Definition 1. A subset $I \subset \mathbb{Z}^m$ is L-finite iff $\forall N \in \mathbb{Z}$

$$\#(I \cap \{\underline{n}|L(\underline{n}) < N\}) < \infty$$

Definition 1'. $f = \sum a(\underline{i})\underline{x}^{\underline{i}}$ is L-finite iff $I = \{\underline{i}|a(\underline{i}) \neq 0\}$ is L-finite. Definition 2. $K_L = k((\underline{x}))_L = k((x_1, ..., x_m)) = \{L - finite \ series\}.$

Under these definitions, we have the following:

Theorem 0. (1) $k((\underline{x}))_L$ is a $k[\underline{x}]$ -algebra. (2) If $\alpha_1, ..., \alpha_m$ are linearly independent over \mathbb{Q} then $K = K_L$ is a field containing $k(\underline{x})$.

Remark. When char(k) > 0 many results are obtained. In this note we restrict ourselves to relation to G-functions.

From now on let k be a number field and Σ be the set of all places of k, and $|.|_v$ be the normalized absolute value corresponding to $v \in \Sigma$. Let $f = \sum_{n=0}^{\infty} a_n x^n \in k[[x]]$. The definition of the G-function is the following.

f is an G-function iff

(1) $\sigma(f) < \infty$

(2) f is D-finite.

Here $\sigma(f) = \overline{\lim}_{n \to \infty} \frac{1}{n} \sum_{v} Max_{m \leq n} (\log^{+}|a_{m}|_{v})$, and D-finite means that f satisfies a linear differential equation over k(x). It is well known that this definition is equivalent to the Siegel's original definition. Further we may take f from k(x).

By using our "extended power series" we can define G-functions of several vaiables naturally. That is: f is an "extended" G-function iff

(1) $f \in K_L$, $\sigma(f) = \overline{\lim}_{N \to \infty} \frac{1}{N} \sum_{v} Max_{L(\underline{n}) < N} (\log^+(|a_n|_v) < \infty.$

(2) $f \in K_L$ is D-finite (f is contained in a $\frac{d}{dx_i}$ -stable $k(\underline{x})$ -vectore subseace $V \subset K_L$).

Next we consider the diagonal maps. For

$$f = \sum_{n_1=0}^{\infty} \sum_{n_m=0}^{\infty} a_{n_1,...,n_m} x_1^{n_1} ... x_m^{n_m} \in k[[x_1,...,x_m]],$$

diagonal map I is defined as

$$I(f) = \sum_{n=0}^{\infty} a_{n,\dots,n} t^n \in k[[t]].$$

It is easy to see that the diagonal map I is defined for "extended formal power series rings" K_L .

It can be proved that if $f \in K_L$ is D-finite then $I(f) \in K((t))$ is also D-finite. So we have that

$$f \in K_L$$
: "extended" $G - function \Rightarrow I(f) : G - function$.

Recall the following conjecture of Christol:

Every globly bounded G-function is a diagonal of some rational function. Here "globally bounded" for series $f = \sum a_n x^n$ means that coefficients $a_n \in \mathbb{O}[\frac{1}{N}]$ for every n, where \mathbb{O} is the ring of integers in the number field k and N is a natural integer. In this conjecture, the rational function means an elements in $K[\underline{x}]_{(x)}$. But in our situation we can take elements from $k(\underline{x})$.

It is sometimes possible to prove an "extended" G-function to be a rational function. The method of Gelgond, Chudnovskys are available for elements in $k((x_1, ..., x_{\nu}))_L$. The following is the analogy for the Chudnovskys criterion for rationality for elements in $k[[x_1, ..., x_{\nu}]]$.

Proposition. Let $Y=(y_0,...,y_{\mu-1})\subset K((x_1,...,x_{\nu}))_L$, let $\tau>0$, and let $V\subset\Sigma$ be some subset of places of k. Assume that for each $v\in V$ the $y_i's$ converge on a polydisk $|x_i|_v<\kappa_{i,v}$ $(i=1,...,\nu)$. If the following inequality holds

$$(*) \ \sigma_{notV}(Y) + \tau \sigma(Y) < \sum_{v \in V} [1 - (\frac{1}{\mu}(1 + \frac{1}{\tau}))^{\frac{1}{\nu}}] \cdot (\sum_{i=1}^{\nu} log \kappa_{i,v}),$$

then y_i' s are linearly dependent over $k(\underline{\xi})$ where $\underline{\xi} = (\xi_1, ..., \xi_{\nu}), \ \xi_i = x_i^{\frac{1}{n}}$ for some n > 0. It is a question to prove that y_i' s are linearly dependent over $k(\underline{x})$.

References

- 1. Y .André, G-functions and Geometry, Aspect of Math 13, Viewweg, Bonn, 1989.
- 2. T. Harase, Algebraic elements in formal power series rings, Isr. J. Math., 63, 1988,281-288.
- 3. -, Algebraic elements in formal power series rings II, Isr. J. Math., 67, 1989, 62-66.
- 4. -, Algebraic dependence of formal power series, Proceedings, Analytic Number Theory(ed. Nagasaka and Fouvry), Tokyo 1988, Springer L.N.M. 1434, 1990.
- 5.-, Extended Formal Power Series Rings. Analytic Number Theory & Related Topics, World Scientific, 1991, 29-35.