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\S 0. Introduction

The Hardy-Littlewood circle method can be applied to certain problems of the
following kind. Consider a system of homogeneous polynomial equations

$V$ : $F_{i}(x_{0}, \ldots,xn)=0,$ $i=1,$ $\ldots r;F_{i}\in \mathrm{Z}[x_{0}, \ldots Xn];\deg F_{i}=di$.

We want to find an asymptotic for the number of primitive integral solutions of this
system of bounded but growing size, e.g. fitting in the box $B_{H}=HB_{1}$ as $Harrow\infty$ .

The basic requirements for applicability are: a) $n+1- \sum_{i}r_{d_{i}}$ is positive; b) $V$

has sufficiently many points locally over $\mathrm{R}$ and all $\mathrm{Q}_{p}$ . It is easy to $\mathrm{d}\mathrm{e}\mathrm{d}_{\backslash }\mathrm{u}\mathrm{c}\mathrm{e}$ formally
what is expected to be the main term of the asymptotics. On the contrary, many
technical problems crop up in estimating the remainder term. They are overcome
by adopting more restrictions. Some of them must be rather arbitrary, other might
be essential for the truth of the result, but nobody understands much about which
are which. See [Bi] for some early work, and [S] for later development.

Whenever the technique works, it shows that the number of the primitive solu-
tions of the system in question with, say, $\max(|x_{i}|)\leq H$ is $CH^{n+1-}\Sigma_{:}rd:(1+o(1))$

where $C$ is a product of local densities.
I this talk I review a number of notions, conjectures, and results that may be con-

sidered as an extension of this theorem in a wider context of Diophantine geometry.
Roughly speaking, the generalization proceeds along the following lines.

a). The system of equations $V$ is replaced by an arbitrary projective Fano
manifold over a number field $k$ . This means that the anticanonical class on it is
ample. Notice that a smooth complete intersection as $V$ above is Fano precisely
when $n+1- \sum_{i}^{r}d_{i}>0$ .

b). ”Size” of a solution is interpreted as the height $h_{L}$ of a $k$-point $x\in V(k)$

with respect to a metrized line bundle $L$ , and the dependence of the asymptotic
(for the number of solutions of bounded size) on $L$ and $h_{L}$ is scrutinized.

c). The necessity to delete some accumulating subvarieties of $V$ before starting
counting is recognized, and the geometry of accumulation is discussed (cf. [BM]).
Without this, no meaningful general picture emerges.

Below we start with describing an ideal situation. To simplify language, we
present it in the form of a precise conjecture about the asymptotics. However, this
conjecture should better be considered as a question, because not much evidence
for its general validity exists. We then discuss partial results in the direction of this
conjecture.

The program reviewed here is due to joint efforts of my friends and colleagues
V. Batyrev, J. Franke, Yu. Tschinkel, A. Peyre, collaboration with whom was my
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joy and privilege. Proofs and additional details can be found in the original works
cited in References.

\S 1. Conjectural asymptotic formula

1.1. Notation. Let $k$ be a number field of finite degree, $v$ runs over places of
$k^{\iota}$ . The local norm $|.|_{v}$ : $k_{v}^{*}arrow \mathrm{R}$ is defined by the condition $d\mu(ax)=|a|_{v}d\mu(x)$

where $d\mu$ is an additive Haar measure oh $k_{v}$ .
Let $V$ be a projective manifold over $k,$ $L$ a metrized invertible sheaf on $V$ . This

means, in particular, that each geometric fiber $L(x),$ $x\in V(k)$ , is endowed with
$v$-adic norm $||.||_{v}$ continuously depending on $x$ and satiswing two conditions: i)
$||al||_{v}=|a|_{v}||l||_{v}$ for all $l\in L(x);\mathrm{i}\mathrm{i})||l||_{v}=1$ for $l\neq 0$ and almost all $v$ .

The (exponential) height function $h_{L}$ : $V(k)arrow \mathrm{R}$ is then defined by the formula

$h_{L}(_{X})= \prod_{v}||S(X)||^{-1}v$

where $s$ is any local section of $L$ nonvanishing at $x$ . If $L$ is ample, this is a counting
function, $\mathrm{i}$ . $\mathrm{e}$ . there is only a finite number of rational points of bounded height.

For a subset $U\subset V(k)$ we put

$N_{U}(h_{L}, H)=x \in U,h_{L(x)}\sum_{\leq H}1$
,

$Z_{U}(h_{L}, s)= \sum_{Ux\in}hL(_{X})-\mathit{8}$
.

1.2. Main Conjecture. Let $V$ be a Fano manifold over $k$ such that $V(k)$ is
Zariski dense (e.g. because $V$ is $k$-unirational), $U$ a sufficiently small dense Zariski
open subset of $V(k)$ . Then for $Harrow\infty$ we have

$N_{U}(h_{L}, H)=c(h_{L})Ha(L)(\log H)^{t}(L)-1(1+o(1))$ (1.1)

where $c(h_{L}),$ $a(L),$ $t(L)$ are defined below. (In 1.2.1 and 1.2.2 we $\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{i}\mathfrak{h}L$ with its
image in Pic $V\otimes \mathrm{R}$).

1.2.1. $a(.)$ is the unique function on the open ample cone in Pic $V\otimes \mathrm{R}$ which
is homogeneous of degree $-1$ and equals 1 on $P:=-K_{V}+theboundari/of$ the
effective cone. .

In particular, $a(-K_{V})=1$ . This is a strong form of the ”Linear Growth Conjec-
ture”. For a weaker version which does not presuppose existence of an asymptotic
formula and therefore is better suited for algebro-geometric study see [BM] and
[M2].

1.2.2. $t(L)$ is the codimension in Pic $V\otimes \mathrm{R}$ of the smallest face of $P$ to which
a point proportional to $L$ belongs.

This was suggested in [BM], together with a weaker, but unconditional version.
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1.2.3. A formula for $c(h_{L})$ was suggested by E. Peyre [P], but only for anti-
canonical heights:

$c(h_{-K_{V}})=A.B.\tau$ (1.2)

where $A$ measures the size of the effective cone, $B$ accounts for a possible weak
approximation failure, and $\tau$ is a version of the Tamagawa number generalizing the
classical product of the singular series by the singular integral. (Actually, Peyre
did not introduce $B$ explicitly).

To define $A$ , consider the space $N$ dual to Pic $V\otimes \mathrm{R}$ and the cone $N_{+}\subset N$

dual to the effective cone. ($N$ can be realized as the space of numerical equivalence
classes of of curves on $V$ , but this is irrelevant here). Let $D$ be the intersection of
$N_{+}$ with the affine hyperplane $\langle-K_{V}, .\rangle=1$ . Denote by $dy$ the Haar measure in
$N$ for which the lattice dual to in Pic $V$ gets volume 1. Let $d_{t}y$ be the derivative
measure on $\langle-K_{V}, .\rangle=t$ , in particular $d_{1}y$ is a measure on $D$ . We finally put:

$A= \int_{D}d_{1}y$ .

In the degenerate case of Picard group of rank 1, $A$ equals to the inverse index of
subgroup generated $\mathrm{b}\mathrm{y}-Kv$ .

Denote now by $\mathrm{B}\mathrm{r}(V)$ the Brauer group of $V$ and put

$B=|\mathrm{B}\mathrm{r}(V)/\mathrm{B}\mathrm{r}(k)|$ (1.3)

(cf. comments 1. $3\mathrm{c}$ ) below).

We now turn to the definition of the Tamagawa number. Start with recalling A.
Weil’s prescription for integrating a volume form over $k_{v}$-points of an algebraic (or
analytic) manifold. For a relatively compact open subset $U\subset V(k_{v})$ which belongs
to a coordinate neighborhood $(x_{1}, . . ‘ , x_{n})$ in $V$ we write $\omega=fdx_{1}\wedge\cdots\wedge x_{n}$ and
then put

$\int_{U}\omega=\int_{U}|f(x)|_{v}d\mu(_{X})$

where $d\mu$ is the additive Haar measure on $k_{v}^{n}$ giving volume $\delta_{v}^{-1/2}$ to $\mathit{0}_{v}^{n},$ $\delta_{v}$ being
the absolute local different.

Now if the sheaf of volume forms is $v$-adically metrized by $||.||_{v}$ , we define a mea-
sure $\mu_{v}$ on $V(k_{v})$ by putting in any coordinate neighborhood $\mu_{v}=\omega/||\omega||_{v}$ where $\omega$

is any meromorphic volume form regular and non-vanishing in this neighborhood.
So the measure varies with the change of local metrics.

In the global situation of 1.1, we might be tempted now to define the adelic
Tamagawa measure as a product of $\mu_{v}$ , however in general the integral will diverge
so that local corrections must be first inserted. To understand them, we notice
that if $||.||_{v}$ is induced by an integral structure on $V$ with good reduction at $v$ , then
denoting the closed fiber by $\tilde{V}$ we have

$\int_{V(k_{v}})\mu_{v}=\frac{|\tilde{V}(F_{v})|}{q_{v}^{\dim V}}=1+\frac{\mathrm{H}(\Phi_{v}|\mathrm{p}\mathrm{i}_{\mathrm{C}}\tilde{V}\otimes\overline{F}_{v})}{q_{v}}+O(q_{v}-3/2)$ (1.4)
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where $q_{v}$ is the cardinality of the residue field $F_{v}$ and $\Phi_{v}$ is the local Frobenius.
The local factors of Artin’s $L$-function (without archimedean ones)

$L$ ( $s$ , Pic $(V\otimes\overline{k})$ )
$:= \prod_{v}\det(1-q_{vv}^{-1}\Phi|\mathrm{P}\mathrm{i}_{\mathrm{C}}(V\otimes\overline{k})^{I_{v}})^{-1}:=\prod_{v}L_{v}(S)$

can be used to cancel the divergence of the product of (1.4) because $L_{v}(1)$ differs
from the first two summands of (1.4) by $O(q_{v}^{-2})$ .

Following [P], we choose now a finite set $S$ of places containing non-archimedean
and bad reduction ones, put $L_{S}= \prod_{v\not\in s^{L}v},$ $\lambda_{v}=L_{v}(1)$ for $v\not\in S,$ $1$ for $v\in S$.

Finally, to get the number $\tau$ we integrate this measure over the closure of $V(k)$

in $V(A_{k})$ in the direct product topology.
It might be helpful for the reader to look at the case $V=\mathrm{P}_{k}^{n}$ where the constant

(for a natural $O(1)$-height) was calculated by Schanuel. For the anticanonical
height it takes form

$\frac{h}{\zeta_{k}(n+1)}(\frac{2^{r_{1}}(2\pi)^{r_{2}}}{\sqrt{d}}\mathrm{I}^{n+1}(n+1)^{r_{\frac{R}{w}}}$ .

where $w$ is the number of roots of unity in $k,$ $R$ regulator, $d$ discriminant. On the
other hand, $A=(n+1)^{-1},$ $B=1$ , and the rest is precisely the Tamagawa number.

1.3. Comments. a). As was mentioned, we expect a formula of the type (1.1)
with predicted values of $a(L)$ only after removal of some varieties accumulating
rational points. A standard example of such a variety is a $k$-rational exceptional
curve on a del Pezzo surface (Fano variety of dimension 2, e.g. a cubic surface in $\mathrm{P}^{3}$ ,
or intersection of two quadrics in $\mathrm{P}^{4}$ ). In fact, such a line contributes about $CH^{2}$

points of anticanonical height $\leq H$ . This example teaches us something general
about the geometry of accumulating subvarieties: if we expect the linear growth
conjecture, then any subvariety having $\mathrm{a}$

”
$\mathrm{t}\mathrm{o}\mathrm{o}$ small” restriction of the anticanonical

class on it, must $\mathrm{b}\mathrm{e}-K$-accumulating.
Generally, accumulating subvarieties can be defined without any conjectures,

and they form a sequence which hypothetically stabilizes for Fano manifolds, but
may be infinite, say for K3 or Enriques surfaces: see a discussion in [BM] and [M2].

b). The formula for $t(L)$ implicitly assumes that the effective cone is finite
polyhedral. This is known $\mathrm{h}\mathrm{o}\mathrm{m}$ Mori theory for the ample cone, and follows by
duality for effective cone in dimension two and, with some effort, in dimension three
(Batyrev). The problem in higher dimension seems open.

c). For a discussion of failure of weak approximation and its influence on the
constant $c(h_{-K})$ , see a controverse between [H-B] and [Sw-D]. To my opinion,
Swinnerton-Dyer convincingly argues that a correction accounting for possible fail-
ure must be made, and that it can be done by defining the Tamagawa number
via integration over the adelic closure of $V(k)$ instead of $V(A_{k})$ . the correction
factor $B$ . The tentative identification of the correction factor $B$ with the order of
the Brauer group is a flight of fancy, only partly supported by the philosophy of
the Brauer-Manin obstruction: cf. [M1], [C-TS] and many other publications of
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Colliot-Th\’el\‘ene and his collaborators. However, at least for compactifications of
anisotropic tori this is justified: cf. [BT].

d). The height zeta-function introduced in 1.1 had never reappeared in the
preceding discussion, but of course one hopes that the asymptotic formulas for the
point counting function in fact reflect the analytic behavior of the zeta-function
near the boundary of the convergence domain. This is actually the way some of the
results cited in the next section were proved. The function itself is however very
sensitive to the choice of the height, and e.g. for complete intersections its global
properties are unknown.

\S 2. Results

We will refer to the asymptotic formula (1.1) as Conjecture, adding necessary
qualifications about $L,$ $h_{L}$ etc when need arises.

2.1. Theorem. Let $V$ be a Fano smooth complete intersection of dimension $\geq 3$

satisfying weak approximation. Then the main term of the circle method formula
is equivalent to the asymptotics of the Conjecture for $L=-K_{V}$ .

This was stated in [FMT] without paying attention to the constant. A. Peyre
[P] settled the value of the constant. Of course, the formula furnished by the circle
method was anyway the principal source for the general Conjecture.

2.2. Theorem. Let $G$ be a semi-simple connected simply connected algebraic
group over $k,$ $P\subset G$ a parabolic $k$ -subgroup, $V=P\backslash G$ . Choose a standard family of
maximal compact subgroups of $G(k_{v}‘)$ . Then for any height function on $V$ related to
the metrics locally invariant with respect to these compact subgroups the Conjecture
holds. For an anticanonical height of this $t\uparrow/pe$ the constant is correct at least if $G$

is quasi-split, $i.e$ . contains a Borel subgroup defined over $k$ .

This was proved in [FMT] using the deep Langlands theory of Eisenstein series. A
formula for the anticanonical constant was also given. A. Peyre [P] then established
that it can be rewritten as in (1.2).

Note that unlike the case of complete intersections, a generalized flag space $V$ can
well have rank of the Picard group bigger than 1 so that powers of $\log H$ actually
appear in the formula and the contribution $A$ is not 1.

2.3. Theorem. Let $V$ be a smooth compactification of an anisotropic toms
over $k$ . Then the Conjecture holds for $V$ and a certain family of heights kfined
(not uniquely) by the condition of local invariance with respect to the action of a
compact subgroup of $T(A_{k})$ . If the height is anticanonical, it is a counting function
even for non-Fano compactifications $V$ , and the Conjecture holds for it with the
$cor7eCt$ constant.

In this case treated in [BT] the non-trivial Brauer group appears for the first
time. Note also that already in dimension three there exist non-rational anisotropic
tori and their compactifications.

The authors use a generalization of the Tate method (adelic Poisson formula) in
order to investigate the height zeta-function and its singularities.
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2.4. Theorem. If the Conjecture holds for $(V_{i}, h_{i}),$ $i=1,2$, with remainder
terms $O(H(\log H)^{t}:-2),$ $t_{i}=\mathrm{r}\mathrm{k}\mathrm{P}\mathrm{i}\mathrm{c}(Vi)$ , then it holds for $(V_{1}\cross V_{2}, h_{1}h_{2})$ . If $h_{i}$ are
anticanonical and the symptotics have correct constants, the same is $tme$ for $h_{1}h_{2}$ .

This was checked in [FMT] and [P] (anticanonical constants).
The last general result concerns the compatibility of the Conjecture with the

change of height (or the box $B_{1}$ in the Introduction). Note that Theorems 2.2 and
2.3 were stated only for some particular classes of metrics. As we have already
remarked, global properties of the height zetas are sensitive to the choice: compare
e.g. zetas for two anticanonical heights on $\mathrm{P}^{1}(\mathrm{Q}):\max(x_{0}^{2}, X_{1})2$ and $x_{0}^{2}+x_{1}^{2}$ .

A. Peyre has shown that the compatibility of the anticanonical constants with
different choices of the height functions is equivalent to a cer.tain equidistribution
property.

More precisely, call an open subset $W\subset V(A_{k})$ good if a Tamagawa measure of
its boundary is zero. Let $U\subset V(k)$ be a Zariski open dense subset. We will say that
$U$ satisfies the equidistribution property $E_{U}$ if there exists an anticanonical height
$h$ such that for all good $W,$ $N_{U\cap W}(h, H)/N_{U}(h, H)$ tends to the quotient of the
Tamagawa volumes $\mathrm{o}\mathrm{f}\overline{V(k)\cap W}$ and $\overline{V(k)}$ (with respect to the measure associated
with $h$) as $Harrow\infty$ .

Then we have $([\mathrm{P}])$ :

2.5. Theorem. $a$). Whenever $V$ is a complete intersection, and the circle
method is applicable, $E_{V}$ holds. The same is true for quasisplit flag varieties.

$b)$ . If $E_{U}$ holds and the Conjecture is true for $U$ and some anticanonical height,
it is $tme$ for all anticanonical heights. Moreover, the average of the Dirac distribu-
tions supported by $V(k)$ and ordered by the increasing height tends to the respective
Tamagawa measure.

$c)$ . Conversely, if for the complement of the accumulating subvarieties $U$ the
Conjecture holds for all anticanonical $hei_{\mathit{9}}hts_{\mathrm{z}}$ then $E_{U}$ holds.

2.6. Examples with accumulating subvarieties. No accumulating subvari-
eties appear in the situation of Theorems 2.1-2.3 (the divisor at infinity of a toric
compactification can be accumulating for non-anisotropic tori, but it carries no
$k$-points in the anisotropic case). Therefore the following examples treated by A.
Peyre directly present considerable interest showing that the Conjecture still holds
for them (they are all special examples of toric compactifications for split tori): $\mathrm{P}^{2}$

over $\mathrm{Q}$ with $\leq 3$ points blown up; $\mathrm{P}^{n}$ with a certain family of projective subspaces
blown up.

2.7. Further comments. The existing methods do not allow us to treat even
cubic surfaces which remain the first challenge. Nevertheless, numerical calculations
and an averaging argument are compatible with the Conjecture: see [H-B] and [Sw-
$\mathrm{D}]$ .

Note that for cubic curves the asymptotics $c(\log H)^{r/2}$ is known. It can be
deduced from the Mordell-Weil theorem and the existence of exactly quadratic
N\’eron-Tate heights. $\mathrm{P}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{a}\mathrm{r}\mathrm{e}\text{ノ}$ formulated the Mordell-Weil property as a conjecture
about the finite generation of $k$-points of a plane cubic curve with respect to the
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composition described by secants and tangents. This construction remains valid,
but the question remains unresolved for cubic surfaces. In my recent note [M3] a
different version of finite generation is proved and some numerical evidence for the
initial problem is presented. However, no connection between the finite generation
and asymptotic count was established.
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