0000000000
958 0 1996 0 111-119 111

The Remainder Term in the Dirichlet Divisor Problem
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1. Introduction

Let d(n) denote the divisor function. We shall use ¢, ¢, ¢y, ¢, - - etc to denote
certain constants which need not be the same at each occurrence. In this talk we
shall give a survey on some recent results concerning the well-known remainder

term

A(z) = Zd(n)——x(logm-l—?*y-—l), z > 2,

n<z

which occurs frequently in analytic number theory. This can also be interpreted
as a lattice point problem since ) ., d(n) counts the number of lattice points in
the first quadrant bounded by the h;rperbola uv = .

The first result on A(z) was obtained more than one and a half century ago by
Dirichlet, who proved by an elementary argument that A(z) < 1/z. This upper
bound was successively improved upon by many authors and the best result to
date is : A(z) < 272%° for any & > 0, due to Iwaniec and Mozzochi [9]. It has

been widely conjectured that A(z) <. 2'/*4*¢ is true for any ¢ > 0.

2. Values of A(z)

Figure 1 below shows the graphs of y = A(z) for four different ranges of z.
An immediate observation was that A(x) is highly oscillatory, it takes large values
in both the positive and negative sides and yet it is slightly skewed towards the

positive. Indeed, Voronoi [18] has proved in 1904 that

X
(1) ' x A(z)de = }ZX + 0(_5(3/4),

that is, A(x) has 1/4 as mean value. Concerning the large values of A(z), Hardy

[3] showed earlier this century that

Alx) = { Lt ((mlogg;)z log log :c) ,
Q_(;r%')



The best results in this direction to date are
Az)=Q_ {'L% exp(c(loglog :c)%(log loglog 7;)—%)}
and B |
Alz) = Q4 {(1‘ log )7 (log log 2)13H084) exn(—c(loglog log x)%)}

for some constant ¢ > 0, due to Corrddi - Kétai [1] and Selberg - Hafner [2] re-
spectively. These Q-results, however, do not localize the occurrence of the extreme

values of A(z). There is an earlier result of Tong [12] which says that :

There ezist positive constants ¢ and ¢' such that, for any X > 1 and for any
t € [—cX /% X4 the equation A(z) =t always has a solution z in the interval
(X, X + ¢/'VX]. In particular, A(z) changes signs in [X, X + ¢VX] for every
X > 1, that is, the gap between the zeros of A(z) is O(\/x).

Basing upon some numerical evidence, Ivié¢ and te Riele [8] conjectured that
A(z) changes signs in every interval [X, X + c.X/4*¢] for any e > 0,X > Xo(e)
and c. is a constant dependent on ¢. This conjecture, however, was shown to be
too strong by the following result.

Heath-Brown and Tsang [5] : There exist positive constants ¢, ci,ca such that, fbr
any sufficiently large X, there are more than ¢, VX log® X disjoint subintervals of
length c; /X log™® X in [X, 9X], throughout each of which either A(z) > cX3 or
N(z) < —cX i holds. In particular A(z) does not change signs in each of these

subintervals.

The graph of y = A(z) oscillates rigorously above and below the z-axis.
Apparently there is no simple way to describe the values of A(z). However Heath-
Brown [4] has shown that A(z) possesses a distribution function in the following

SEIlSE.

There 15 a smooth function f(x) such that, for any interval I, we have
X! meas {z € [2,X]: 27 *A(z) € I} — /f(oz)da
‘ I

as X — 00 .
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3. Mean square of A(x)

When considered in the mean, the remainder term A(z) exhibits much better
regularity. Voronoi’s formula (1) shows that A(z) has an asymptotic mean value
of 1/4 over intervals of length 3> X3/, For the mean square, we have the following

formula of Tong [13]:
X
/ A(z)dz = cX3/? + F(X),
2

where ¢ = (672)71 3> d(n)*n"%? = 0.6542869--- and F(X) < X log® X.
Thus, A(z)? has asymptotic mean value of %c z over intervals of length >
VX log® X. After more than thirty years have elapsed, this was then sharpened
slightly by Preissmann [11] to F(X) < X log* X, by using a variant of Hilbert’s
inequality. (Motohashi and others observed that the same can be obtained via an
estimate for the sum str d(m)d(m + h).)

There is not much information on the true order of F(X). Ivié [6, Theorem
3.8] observed that

(2) CF(X) < UX) = Ar) < (U(z)log )3
Consequéntly, in view of the Q-results above, Ivié- Ouellet [7] showed that
F(z) = Q(z%(log )7 (log log ) § (3+1084) g=c(loglog log z)llz),

and it was even conjectured that F(z) <. 23/4%¢ is true for any ¢ > 0. This con-
Jecture is very strong, since by Ivié’s argument in (2), it implies the long standing
conjecture that A(z) <. z'/**¢. Ivié’s conjecture is indeed too optimistic. Re-

cently Tsang [15] deduced from the lower estimate :

2N
(3) / (F(z + VX) - F(2))%dz > X°

X
that F'(z) = Q(z). Later, this was further sharpened by Lau - Tsang [17] to F(z) =

Q_(zlog’ z), which is an immediate consequence of thg asymptotic formula
/X F(z)de = —(87*) 7' X%log” X + cX%log X + O(X?).
2
This asymptotic formula can be reformulated as
/A(F(z:‘) + (47?) "tz log? @ — Kz log z)dr < X2
2

for a suitable constant . This leads us to the following



Conjecture :

(4) F(z) = —(47) 'z log® & + rzlogz + O(z),
that us,
X , .
(5) / A(z)?de = X3/ — (4n*) 7' X log? X 4+ kX log X + O(X).
2

This conjecture, if true, would imply that A(z)? has asymptotic mean value over
intervals of length > v/X. The Q-result for F(z) explains adequately the level
of difficulty one faces in improving the upper bound for F(z). The gap now left
behind between the upper and lower bounds for F(x), though small, seems very
difficult to close.

Concerning the formula (4), one may naturally ask whether the O(z) term

contains some other main terms. Clearly

e
"

2X 2X+VX X+VX
(6) / (F(z +VX) - F(z))dz = / F(z)dz — / F(z)dz
X 2X
'« X3/ og* X, ‘

by applying Preissmann’s upper bound for F(z). We see that F(z +vX) — F(z)
must change signs, for otherwise, by (6)

2X X
/ (F(z+VX)—F(z))%dz < X log" X / |F(e+VX)-F(z)|dz < X°*/*log® X

X X
which contradicts (3). Hence the term O(z) in (4) is oscillatory and cannot be

o(x).

In support of our conjecture (4), we prove recently that :

Tsang [16]. For some positive constant ¢, we have
X ‘
/ |F(z) + (47?) 'z log® z — ke log x| dz < (er)*" X7+
2

for any r > 1. Consequently, if H(x) is any increasing function satisfying 2 <

H(z) <log* z, we have
|F(z)+ (47*) 'z logz — kalogz| < aH(2)

for all but (’)(Xe"'?lf(-\’)l“) values of x in [2, X].
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So at least our conjecture (4) is true for almost all z. Even though the constant
is effectively computable, it is difficult to obtain an-accurate numerical value for
it. Very roughly, we estimated x = 0.32 and Figure 2 below shows the graphs of
y = f2X A(z)dz — cX3/? 4 (472)71 X log? X — kX log X (with k = 0.32) for four

different ranges of X.

In an earlier paper [14], we have established the following higher power mo-

ments of A(z):
X ird -
/ A(l’)3clx = ‘C3X'/4 + @(Xr/4—5)’
2 . .

- X
| startas = ex + o(xe),

where 6 is some small positive constant. Likewise we can consider the refinement
of the O-terms in these formulas, but the machinery available does not seem to be

strong enough for this purpose.

4. Conclusion

Our investigation on the error term A(z) can be carried out for certain other

error terms in number theory which have representation by Voronoi’s type formula.

These include E(T') defined by

T
E(T) :=/ IC( +it)|?dt — Tlog .= — (2y~1)T, T >2
0

and
P(x) = Z r(n) — na,
n<ue

where 7(n) denotes the number of integer pairs (a,y) such that n = z2 + y%. All
our results on A(x) hold true for E(T) and P(x). The details will appear in a
forthcoming paper.

After this talk was presented, Professor IX. Matsumoto has kindly informed

me that a conjectural formula of the shape
T ' |
/ E(t)2dt ~ T3 + ¢ Tlog™ T
0

for a certain constant 4 has been proposed by him earlier [10]. Eventhough this

is not as precise as our conjecture in (5). it is nonetheless in that same direction.
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Figure 1.  Graphs of y = A(z)
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Figure 2
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