
Value Distribution Theory over Function Fields
and a Diophantine Equation

Junjiro Noguchi
( $\mathfrak{R}^{\mathrm{p}}\frac{\backslash }{/}k7^{\text{次}\gamma}\grave{\hslash}$ ‘,f下大埋 )

\S 1. Introduction.

This is a report of the author’s late work [No9].

S. Lang [L] conjectured in 1974 that a hyperbolic algebraic variety defined over a
number field has only finitely many rational points, and its analogue over function
fields. For subvarieties of Abelian varieties the function field analogue was dealt with
by M. Raynaud [R], and lately G. Faltings [F] proved this conjecture for subvarieties of
Abelian varieties over number fields. On the other hand, the author [No6] proved the
function field analogue in general case (cf. also [Nol], [No2]). That is, let $\overline{\pi}$ : $\overline{X}arrow\overline{R}$ be
a compact complex fiber space with irreducible general fibers such that there is a non-
empty smooth Zariski open subset $R\subset\overline{R}$ and the restriction $\pi=\overline{\pi}|X$ : $Xarrow R$ with
$X=\overline{\pi}^{-1}(R)$ over $R$ is hyperbolic. Then there are only finitely many compact complex
spaces $\mathrm{Y}_{\mu},$ $\mu=1,$ $\ldots$ , $\mu_{0}$ , and holomorphic mappings $\phi_{\mu}$ : $R\cross \mathrm{Y}_{\mu}arrow X$ such that any
holomorphic section $\sigma$ of (X, $\pi,$ $R$ ) is given by $\sigma(t)=\phi(t, y)$ with some $y\in \mathrm{Y}_{\mu}$ , provided
that some geometric condition on the boundary fibers is satisfied. See Y. Imayoshi-H.
Shiga [IS], M. Zaidenberg [Z], and M. Suzuki [Sul], [Su2] for non-compact versions of
this result.

In the case of curves (Fermat, Catalan, Thue equations, etc.) defined over function
fields, $\mathrm{R}.\mathrm{C}$ . Mason [Mal], J. Silberman [Si] and J. Mueller [Mu] obtained similar or
more precise finiteness properties by making use of a different method which relies on
the function field analogue of “$abc$-conjecture” of Masser-Oesterl\’e. The function field
analogue of “$abc$-conjecture” was proved in more general form by $\mathrm{R}.\mathrm{C}$ . Mason [Mal],
[Ma2], J. Voloch [Vo] and W. Brownawell-D. Masser $[\mathrm{B}\mathrm{r}\mathrm{M}]$ . They actually proved a
version of “$abc$-conjecture” in several variables, which is nothing but a special case of
Nevanlinna-Cartan’s second main theorem with truncated counting functions applied
to algebraic case (see $[\mathrm{C},$ (3) $]$ and \S 1).

In \S 2 of this note we discuss the Nevanlinna-Cartan theory over function fields and
explain the main results. In \S 3 we apply the same idea to obtain a finiteness theorem for
$S$-units points of a Diophantine equation over number fields. \S 4 is devoted to examples.

For general references of Diophantine problems in the present direction, see S. Lang
[L1], [L2], [L4], P. Vojta [V] and [No3], [No5], [No8], and for hyperbolic manifolds and
the Nevanlinna theory, see S. Kobayashi [K1], [K2], [NO], S. Lang [L3] and [No8].
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\S 2. Value distribution theory over function fields and main results.

We first demonstrate the Nevanlin$\mathrm{n}\mathrm{a}$-Cartan theory over function fields. We will

systematically use current equations combined with the method of Cartan [C], which

make the arguments more geometric and simpler than those employed in [V] or $[\mathrm{B}\mathrm{r}\mathrm{M}]$ .

Let $k$ be an algebraically closed field of characteristic $0$ , and let $K$ be a function field of

one variable with genus $g$ over the constant field $k$ . The First Main Theorem ( $\mathrm{F}.\mathrm{M}$ .T.)

is nothing but $\mathrm{P}\mathrm{o}\mathrm{i}\mathrm{n}\mathbb{C}\mathrm{a}\mathrm{r}\mathrm{e}\text{ノ}$ duality or residue theorem. Then we prove the “Second Main

Theorem with truncated counting function” over function fields:

Theorem ( $\mathrm{S}.\mathrm{M}$ .T.). If $x_{j}\in K,$ $0\leq j\leq m$ , are linearly independent over $k$ , we

have

$(q-m-1) \mathrm{h}\mathrm{t}((X_{j}))\leq\sum_{i=1}^{q}N_{m}(H_{i}(Xj))+m(m+1)(g-1)$ ,

where $H_{i}$ are linear forms in general position, and $N_{m}(H_{i}(X_{j}))$ is the truncated counting

function of zeros of $H_{i}(x_{j})$ .

This theorem plays an important role in the present work. We derive a version of
“$abc$-conjecture” in several variables over function fields (Corollary (2.16); cf. [Ma2],

[Vo], and $[\mathrm{B}\mathrm{r}\mathrm{M}]$ , Corollary I). We also show “Ramification Theorem” over function

fields, and “Generalized Borel’s Lemma” over functions fields. To state the latter, we

take an equation

(2.1) $a_{1}x_{1}^{d}+\cdots+a_{s}x_{s}^{d}=0$ $(s\geq 2)$ ,

where $a_{j}\in K^{*}$ , and $d\in \mathrm{Z},$ $d\geq 1$ . The original Borel’s Lemma deal with case where

$a_{j}=1$ and $x_{j}$ are entire functions without zero, and hence $d$ can be increased as much

as you like.

(2.2) Generalized Borel’s Lemma. Let $x_{j}\in K^{*},$ $1\leq j\leq s$ , satisfy (2.1). Assume

$d>s(s-2)+(s-1)^{2} \mathrm{h}\mathrm{t}(a1, .., , a_{s})+(S-1)(_{S}-2)\max\{0, g-1\}$.

Then there is a disjoint decomposition $\{1, \ldots, s\}=\bigcup_{\nu=1}^{l}I_{\nu}$ of indices such that

(i) $|I_{\nu}|\geq 2$ for all $\nu_{i}$

(ii) for arbitrary two indices $j,$ $k\in I_{\nu}$ , the ratio $x_{j}/x_{k}$ is a constant.

(iii) $\sum_{j\in I_{\nu}}ajx^{d}j=0$ for all $\nu$ .
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This is important and is used to establish the Main Theorem in below.

We consider a Diophantine equation of the following type. Let $\{M_{j}(Z_{1}, \ldots, Zn)\}_{j1}^{s}=$

be a set of monomials of the same degree $d_{0}$ in variables $z_{1},$ $\ldots,$
$z_{n}$ . Let $X\subset \mathrm{P}_{K}^{n-1}$ be

a hypersurface defined over If by equation

(2.3) $a_{1}M_{1}^{d}(z_{1}, \ldots , z_{n})+\cdots+a_{S}M_{s}^{d}(\mathcal{Z}1, \ldots, z_{n})=0$ ,

where $a_{j}\in K^{*}=I\mathrm{f}\backslash \{0\}$ and $d\in \mathrm{Z}$ is a positive integer.

We use the notion of $n$-admissibility for $\{M_{j}\}$ due to $[\mathrm{M}\mathrm{N}, \S 2]$ , which is used to
construct hyperbolic hypersurfaces of $\mathrm{P}^{n}(\mathrm{C})$ for any $n\geq 2$ , partially answering to
a conjecture of S. Kobayashi. (Cf. \S 4 for a number of examples.) Essentially, n-
admissibility requires the exponent vectors of many monomials are located generically,
not lying in a finite union of affine hypersurfaces (cf. Remark (2.4), $(\mathrm{v})$ ). We will then
prove that hyperbolic projective hypersurfaces constructed by [MN] enjoy the same
finiteness property as mentioned in \S 0, when they are defined over function fields.

To state the result, we introduce some notation. Let $\mathrm{P}=(z_{1}, \ldots, z_{n})\in X(K)$ be a
$K$-rational point of $X$ . We denote by ht(P) $=\mathrm{h}\mathrm{t}((z_{i}))$ the (projective) height of the
point P. We set

$\mathrm{Y}(\mathrm{P})=\{(u_{1}, \ldots, u_{n})\in \mathrm{P}^{n-1}(k);\sum a_{j}M_{j(z_{1}}d,$ $\ldots,M_{j}^{d}zn)(u_{1}, \ldots, u_{n})=0$,
$j$

and $u_{j}=0$ if $z_{j}=0\}$ .

Then $\mathrm{Y}(\mathrm{P})$ is a projective variety defined over $k$ . Moreover, we set

$\mathcal{R}(\mathrm{P})=\{(z_{1}u_{1,\ldots,n}Zu_{n})\in \mathrm{P}^{n-1}(K);(u_{1}, \ldots , u_{n})\in \mathrm{Y}(\mathrm{P})\}\subset X(K)$ .

Main Theorem. Let the notation be as above. Assume that $\{M_{j}(Z_{1,\ldots,n}z)\}_{j=}s1$ is

n-admissible.

(i) Assume that

$d>s(s-2)$ .

Then the heights $\mathrm{h}\mathrm{t}((z_{i}))$ of points of $X(K)$ are bounded, so that there is a projective
variety $\mathrm{Y}$ over $k$ , not necessarily irreducible, and a morphism $\Phi$ : $\mathrm{Y}_{K}arrow X$ over If such

that $X(K)=\Phi(\mathrm{Y}_{K})$ .

(ii) Assume that

$d>s(s-2)+(s-1)^{2} \mathrm{h}\mathrm{t}(a_{1}, \ldots , a_{s})+(s-1)(s-2)\max\{0,g-1\}$ .

Then all points of $X(K)$ are defined over $k$ ; that is, $X(K)=X(k)$ .
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(iii) Assume that

$d>s!(\mathit{8}!-2)+(\mathit{8}!-1)(s!-2)\mathrm{m}\mathrm{a}\mathrm{x}\mathrm{t}0,$ $g-1\}$ .

Then there are only finitely many rational points $\mathrm{P}_{\mu}\in X(K),$ $\mu=1,$ $\ldots,$
$\mu_{0}(<\infty)$ such

that
$X(K)=\cup^{0}\mathcal{R}(\mu \mathrm{p}_{\mu})$ .

$\mu=1$

(2.4) Remark. (i) If $X$ is defined over $\mathrm{C}$ , and $\{M_{j}(z_{1,\ldots n}, Z)\}_{j1}^{s}=$ is n-admissible,
then the condition in (i) of the Main Theorem implies the hyperbolicity of $X([\mathrm{M}\mathrm{N}])$ .

(ii) The general theorem obtained by [No6] cannot be applied, since the present $X$

does not satisfy in general the geometric condition on the boundary fibers needed for it
(see [No2], [No7]).

(iii) There is a similar result to the Main Theorem for Abelian varieties over function
fields with level structure (see A. Nadel [N] and [No4]).

(iv) The equations defining these hyperbolic hypersurfaces may be the first exam-
ples of single equations in several variables which satisfy such a finiteness property. It

strongly suggests that those equations has only finitely many rational points if they are
defined over number fields (cf. \S 3).

(v) The implication of the condition, $\{M_{j}\}$ being admissible, used in the above argu-
ments is that solutions of equations

$z_{1}^{\alpha_{j_{\nu}1}}\cdots z-\alpha k\nu 1\alpha_{j}m-\nu^{m}\alpha_{k_{\nu}m}=1$ , $1\leq\nu\leq l$

in $\mathrm{P}^{m-1}(k)$ with any choice of such indices $j_{\nu}<k_{\nu}$ are isolated. Therefore, even if

{ $M_{j(z_{i})\}_{j=1}^{s}}$ is not $n$-admissible, there is a case where the Main Theorem remains valid
by generic choice of the coefficients $a_{j}\in IC^{*}$ in (2.3); that is, $(a_{1}, \ldots, a_{S})\in \mathrm{P}^{s-1}(K)$

with $a_{j}\in K^{*}$ lies out of a proper algebraic subset. In this case we say that $X$ or (2.3) is

of generic case. If $\{M_{j}(Z_{i})\}_{j}^{s}=1$ is $n$-admissible, we say that $X$ or (2.3) is of admissible
case. Cf. [ $\mathrm{M}\mathrm{N}$ , Theorem (3.10), \S 3].
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\S 3. $S$-units points.

In this section we deal with $X$ defined by (2.3) over a number field. Let $F$ be a
number field and let $S$ be a finite set of places of $F$ containing all infinite places, and
$\mathcal{O}_{S}^{*}$ be the set of all $S$-units of $F$ . We prove Borel’s Lemma for $S$-units by making use
of Schmidt’s linear subspace theorem.

Borel’s Lemma for $S$-units. Let $\mathcal{Z}$ be the set of all $S$ -unit solutions of equation

(3.1) $a_{1}x_{1}+\cdots+a_{s}x_{s}=0$ $(s\geq 2)$

with $a_{j}\in F^{*}$ . Then there is a finite decomposition $\mathcal{Z}=\bigcup_{\mu=1}^{\mu 0}z_{\mu}(\mu_{0}<\infty)$ such that
for every fixed $Z_{\mu},$ $1\leq\mu\leq\mu 0$ , there is a decomposition of indices

$\{1, \ldots, s\}=\cup I_{l}m$

$l=1$

satisfying the following conditions:

(i) $|I_{l}|\geq 2$ for all $l$ .

(ii) If we write $Z_{\mu}=\{(x_{i}(\zeta));\zeta\in Z_{\mu}\}$ and take an arbitrarily fixed $I_{l}$ , then

$\frac{x_{j}(\zeta)}{x_{k}(\zeta)}=c_{jk}\in \mathcal{O}_{S}^{*}$

are independent of $\zeta\in Z_{\mu}$ for all $j,$ $k\in I_{l}$ .
(iii) $\sum_{j\in I}la_{j^{X}}j(\zeta)=0$ for $\zeta\in \mathcal{Z}_{\mu}$ and $l=1,2,$ $\ldots,$

$m$ .
Let $X\subset \mathrm{P}_{F}^{n-1}$ be a projective variety defined by (2.3) with $a_{j}\in F^{*}$ , where $d\geq 1$ is

arbitrary. A rational point $(x_{1}, \ldots , x_{n})\in X(F)$ is called an $S$ -unit point if either $x_{j}=0$

or $x_{j}\in \mathcal{O}_{S}^{*}$ , and the set of all $S$-unit points of $X$ is denoted by $X(\mathcal{O}_{s}^{*})$ .
(3.2) Theorem. Let the notation be as above. If $\{M_{j}(Z_{1}, \ldots, Zn)\}_{j=}s1$ is n-admissible,

then there are only finitely many $S$ -unit points of $X$ for any $d\geq 1$ .
Remark. (i) Since the set $\{z_{12,3}, ZZ\}$ of monomials in the variables, $z_{1},$ $z_{2}$ , and $z_{3}$ , is 3-

admissible, Theorem (5.7) generalizes Mahler’s finiteness theorem ([$\mathrm{M}$ , p. 724, Folgerung
2]).

(ii) Here we like to emphasize the following. The Main Theorem is proved by making
use of Generalized Borel’s Lemma over function fields derived from the Second Main
Theorem with truncated counting functions over function fields ( $\mathrm{S}.\mathrm{M}$ .T.). The way of
the proof of the Main Theorem is completely parallel to that of the Main Theorem of
[MN] proving that if $X$ is defined over complex numbers, $a_{j}\in \mathrm{C}^{*}$ , then $X$ with (2.4) is
hyperbolic. The proof of Theorem (3.2) is also based on the same idea. Therefore, if any
of these key theorems was established over number fields, then $X$ defined over number
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fields would have only finitely many rational points. Especially, $\mathrm{S}.\mathrm{M}$.T. is naturally

translated over number fields to a statement similar to W. Schmidt’s linear subspace

theorem with coefficient $(q-m-1-\epsilon)$ of $\mathrm{h}\mathrm{t}((x_{j}))$ instead of $(q-m-1)$ and with

the sum of valuations truncated at order $n$ over the complement of a finite set of places

containing all infinite places, where $m+1$ is the number of variables (cf. [Sc], [S], and [V]

for W. Schmidt’s linear subspace theorem). We refer this as Arithmetic Second Main

Theorem (A.S.M.T.) conjecture. This is the natural generalization of $abc$-conjecture in

several variables. A.S.M.T. would imply that

$X(F)$ is finite !!

\S 4. Examples

We recall some examples from $[\mathrm{M}\mathrm{N}, \S 5]$ . In what follows, coefficients $t$ and $t_{i}$ are not
$0$ . The bounds for $d$ given below are those due to (2.4), by which the Main Theorem,

(i) holds.

a) In $\mathrm{P}^{3}(\mathrm{C})$ we have the following examples:

$z_{1}^{d}+\cdots+z_{4}^{d}+t(z_{1^{Z_{2}}}Z_{3})^{d}/3=0$ , $3|d\geq 24$ .

$z_{1}^{d}+\cdots+z_{4}^{d}+t(z1Z2z3^{Z_{4})^{d/4}=0},$ $4|d\geq 28$ .

The above $\mathrm{h}\mathrm{y}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{S}\mathrm{u}\mathrm{I}\{\mathrm{a}\mathrm{c}\mathrm{e}\mathrm{s}$ are defined by 4-admissible sets of monomials, so that they

are of admissible case. Here if we simply apply (2.4) for $d$ , we have $3|d\geq 48$ (resp.

$4|d\geq 64)$ in the case of the first (resp. second) example. By arguments similar to those

in $[\mathrm{M}\mathrm{N}, \S 5]$ we see that the above bounds suffice.

$z_{1}^{d}+\cdots+z_{4^{+}1}^{d}t(z_{1}z2)d/2+t_{2}(z_{2}z_{3})^{d}/2=0$, $2|d\geq 50$ .

This is not of admissible case, but of generic case. In the present example, one may put

$t_{1}=t_{2}=1$ .

b) In $\mathrm{P}^{4}(\mathrm{C})$ we have the following examples:

$z_{1}^{d}+\cdots+z_{\mathrm{s}}^{d}+t_{1}(\mathcal{Z}^{2}1^{Z_{2})}d/3+t_{2}(z^{2_{Z_{3})^{d}}}2/3+t_{3}(Z_{34}^{2}z)d/32_{Z_{1})^{d}}+t4(z4/3=0,$ $3|d\geq 192$ .

This is of generic case. One may put $(t_{j})=(-1, -1,1,1)$ .

$z_{1}^{d}+\cdots+z_{5^{+(z)+}}d2t_{1}z3^{Z}45d/4t2(_{Z}1^{Z^{2}}2z5)d/4+t3(_{Z_{1}z_{2}}z_{3}^{2})^{d}/4=0$ , $4|d\geq 196$ .

This is of generic case, and one may put $t1=t2=t3=1$ .

$z^{d}+1\ldots+z^{d}+5(t_{1}zZ2)^{d}1+/3t_{2}(2Z2_{Z)t(z}23d/32_{Z)t(_{Z_{45}}}+334d/3\mathrm{z}_{z})d/3t_{5}z2+4+(5Z_{1})^{d}/3=0$,

$3|d\geq 243$ .
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This is of generic case, too, and one may put all $t_{j}=1$ .

$z_{1}^{d}+\cdots+z5^{+}dt_{1}(Z_{1}z32)d/4+t_{2}(_{Z^{3}z)^{d}}23/4+t3(_{Z^{3}z)^{d}}34/4+t_{4}(_{Zz}41)^{d}/2=0,$ $4|d\geq 256$

This is of admissible case.

c) In $\mathrm{P}^{5}(\mathrm{C})$ we have the following examples.

$z_{1}^{d}+\cdots+z_{6}^{d}+t_{1}(_{Z}1z^{3}2)^{d}/4t_{2}+(_{Z}2z_{3}^{3})^{d}/4t+3(z3z4)^{d/4}3$

$+t_{4}(z_{4}z^{3}5)^{d}/4+t5(z5^{Z}13)^{d}/4+t_{6}(Z_{13}Z)^{d/}2$

$+t_{7}(z_{2}z_{4})d/2d+t8(Z3^{Z_{5})}/2+t_{9}(Z_{4}Z_{1})^{d}/2=0$ ,

$4|d\geq 784$ .

This is of generic case, and one may put $t_{1}=-1$ and other $t_{j}=1$ .

$z_{1}^{d}+\cdots+z_{6}d$

$+t_{1}(z_{1}z_{2}4)^{d/5}+t2(z^{2})^{d}2^{Z_{3}}3/5+t_{3}(_{Z^{2}}34)^{d/}z+35t4(Z4z_{5}^{4})^{d}/5+t_{5}(Z_{5}z_{1})^{d}32/5$

$+t_{6()+}z_{13}^{4}zd/54t7(z2^{Z_{4})t(_{Z^{3}})}d/52d+83Z_{5}/5=0$ ,

$5|d\geq 845$ .

This is of generic case, and one may put all $t_{j}=1$ .

$z_{1}^{d}+\cdots+z_{6}^{d}+t_{1}(z_{1}\mathcal{Z}_{2}^{3})^{d}/4t+2(z_{23}z^{3})^{d/}4+t3(z3z_{4}^{3})^{d}/4$

$+t_{4}(z_{4}z_{5})^{d/}34+t5(z5z)^{d/}134+t6(z_{1}z_{3})d/2+t_{7}(z2Z4)d/2$

$+t_{8}(_{Z}3z_{5})^{d}/2t_{9}+(z_{1}z_{4})^{d}/2t10(z2z_{5})^{d}/+=20$ ,

$4|d\geq 900$ .

This is of generic case, and one may put $t_{1}=-1$ and other $t_{j}=1$ .

$z_{1}^{d}+\cdots+z_{6}^{d}$

$+t_{1}(z1z_{2}^{5})^{d/}6+t2(_{Zz_{3}}25)^{d/}6+t_{s}(z_{3}z_{4}^{5})^{d/}6+t_{4}(z4z^{2}5)d/3t+5(z5z_{1}2)^{d}/3$

$+t_{6}(z_{1}z_{3})^{d}/2+t7(z2z_{4})d/2t8(z_{3}z_{5})^{d}/+=^{0}2$ ,

$6|d\geq 1014$ .

This is of generic case, and one may put all $t_{j}=1$ .

$z_{1}^{d}+\cdots+Z_{6}+t_{1}d(_{Z_{1}z}2)4d/5+t_{2}(z_{2}z_{3})^{d}/45t+3(Z3Z4)4+d/5t4(_{Z}4z^{4}5)^{d/}5+t_{5}(z_{5}z^{4})1d/5$

$+t_{6}(_{Z_{1}^{2}}Z_{3})3d/523d/t_{7}+83d53/523d/53d+(Z_{2}z)4t(_{Z^{2_{Z_{5})t(_{Z_{4}z_{1})+t_{10}(_{Z^{2}})}}}}+95Z_{2}/5=0$ ,

$5|d\geq$ 1125.

This is of admissible case.
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