Eisenstein cocycles for arithmetic groups and values of zeta functions

Robert Sczech（九州大理）

Let F be a totally real number field of degree n over \mathbb{Q} ，and f a conductor of a ray class group in \boldsymbol{F} ． By definition，$f=f_{\infty} f_{\text {fin }}$ is the product of the finite part $f_{\text {fin }}$ which is an integral ideal of \mathbb{Z}_{F} ，and the infinite part $f_{\infty}=\Pi \Re_{i}$ ，where \Re_{i} runs through a set of embeddings of F into \mathbb{R} ，indexed by a subset $S \subseteq\{1,2, \cdots, n\}$ ．Let $I(f)$ be the multiplicative group of fractional ideals in F generated by all prime ideals in \mathbb{Z}_{F} which do not divide $f_{\text {fin }}$ ．Two ideals $a, b \in I(f)$ belong to the same class $\bmod f$ iff $a b^{-1}$ is a principal ideal (α) generated by an element $\alpha \in 1+f_{\text {fin }} b^{-1}$ such that $\Re_{i}(\alpha)>0$ for all $i \in S$ ．Modulo this relation，$I(f)$ decomposes into finitely many classes $C \bmod f$ ．To every class C there is associated the partial zeta function

$$
\zeta(C, s)=\sum_{a \in C} N(a)^{-s}, \quad \operatorname{Re}(s)>1 .
$$

According to Hecke，this function has an analytic continuation to the whole complex s－plane except for a simple pole at $s=1$ ，and，by results of Klingen and Siegel，the special values of $\zeta(C, s)$ at non－positive integral $s=0,-1,-2, \ldots$ are all rational numbers which can be calculated explicitely using a well known formula of Shintani．In the simplest case，this is the classical formula of Euler，

$$
\zeta(1-k)=-\frac{B_{k}}{k}, k=1,2,3, \ldots
$$

for the special values of the Riemann zeta function $\zeta(s)$ ．Since the Bernoulli numbers B_{k} of an odd index $k>1$ are all zero，it follows that $\zeta(-2 k)=0$ for $k=1,2,3, \ldots$ ．This is in fact a general phenome－ non．Because of Gamma factors in Hecke＇s functional equation，$\zeta(C, s)$ vanishes at $s=-2 k$ of order

$$
\operatorname{ord}_{s=-2 k} \zeta(C, s) \geq r=n-|S|, k=0,1,2, \ldots .
$$

In particular，$\zeta(C,-2 k)=0$ if $r>0$ ．It is therefore of interest to investigate the coefficients

$$
\zeta^{(r)}(C,-2 k)=\left.\frac{d^{r}}{d s^{r}} \zeta(C, s)\right|_{s=-2 k}
$$

For instance，these numbers are the subject of the well known conjectures of Stark（ $k=0$ ）and Beilinson－ Gross $(k>0)$ ．In this report，we are interested in the cohomogical interpretation of these values in terms of the group cohomology of the unit group

$$
U=\left\{\eta \in \mathbb{Z}_{F} \mid \eta \in 1+f_{\text {fin }}, \mathfrak{P}_{i}(\eta)>0 \text { for all } i \in S\right\}
$$

It is convenient to assume that U is torsionfree．Then，according to Dirichlet，U is a free abelian group of rank $n-1$ ，and therefore，the homology as well as the cohomology groups of U are isomorphic to the （co）homology of the torus $T^{n-1}, T=\mathbb{R} / \mathbb{Z}$ ．In particular，the homology group $H_{n-1}(U, \mathbb{Z})$ is free abelian of rank one，so we can talk about a fundamental class Z of U ，which is a generator of $H_{n-1}(U, \mathbb{Z})$ ．（In the case $n=2, Z$ corresponds to a fundamental unit of U ）．

Theorem 1. There is a cohomology class $\varepsilon_{p}(C, k) \in H^{n-1}(U, \mathbb{R})$ such that the evaluation on Z gives

$$
\zeta^{(p)}(C,-k)=\varepsilon_{p}(C, k)(Z)
$$

provided that either $p=0$ and $k=1,3,5, \ldots$ or $p=n-|S|$ and $k=0,2,4 \ldots$ Moreover, ε_{p} is the restriction of a universal Eisenstein cohomology class in $H^{n-1}\left(G L_{n} \mathbb{Z}\right)$ which depends only on n and p, but not on the particular field F or ray class C.

This is a generalization of a previous result [1] which deals with the special case $p=0$. In that case, it can be shown that the cohomology class $\varepsilon_{0}(C, k)$ is in fact rational, $\varepsilon_{0}(C, k) \in H^{n-1}(U, \mathbb{Q})$. Moreover, a finite formula exists for $\varepsilon_{0}(C, k)$ which generalizes the classical Dedekind sum. In general, our method does not lead to any conclusion about the arithmetic nature of the cohomology classes $\varepsilon_{p}(C, k)$ for $p>0$. The proof of the above theorem will be published elsewhere. In this report, we wish to illustrate the construction of the Eisenstein cocycle in the simplest non-trivial case: $n=2, p=1, k$ even.

Let $G=G L_{2} \mathbb{R}$ and H be the the subspace of homogenous polynomials in $\mathbb{R}\left[x_{1}, x_{2}\right]$. The set $M=\left\{f: H \times \mathbb{R}^{2} \rightarrow \mathbb{C}\right\}$ is then a G-module under the action

$$
(A f)(P, x)=\operatorname{det}(A) f\left(A^{t} P, x A\right), A \in G \quad, f \in M
$$

Here, $A^{t} P$ denotes the polynomial defined by $\left(A^{t} P\right)(y)=P\left(y A^{t}\right)$. We first construct a homogenous $1-$ cocycle ψ for G with values in M. By definition, ψ is a map $\psi: G \times G \rightarrow M$ satisfying the properties

$$
\begin{gather*}
\psi\left(A_{1}, A_{2}\right)+\psi\left(A_{2}, A_{3}\right)=\psi\left(A_{1}, A_{3}\right) \tag{1}\\
\psi\left(A A_{1}, A A_{2}\right)=A \psi\left(A_{1}, A_{2}\right) ; A, A_{j} \in G \tag{2}
\end{gather*}
$$

For $A_{i} \in G$, we denote the j th column of the matrix A_{i} by $A_{i j}$. Then the cocycle ψ is defined for $x \neq 0$ by

$$
\begin{equation*}
\psi\left(A_{1}, A_{2}\right)(P, x)=P\left(\partial_{x_{1}}, \partial_{x_{2}}\right)\left(\frac{\operatorname{det}\left(A_{11}, A_{21}\right)}{\left\langle x, A_{11}><x, A_{21}>\right.}\right) \tag{3}
\end{equation*}
$$

where $P\left(\partial_{x_{1}}, \partial_{x_{2}}\right)$ denotes the differential operator formed with the partial derivatives with respect to x_{1} and x_{2}. The definition needs a modification if one of the scalar products $<x, y>=x_{1} y_{1}+x_{2} y_{2}$ in the denominator vanishes. For instance, if $\left\langle x, A_{11}\right\rangle=0$, then $\left\langle x, A_{12}\right\rangle \neq 0$ since $x \neq 0$; assuming that the second scalar product $\left\langle x, A_{21}\right\rangle$ in (3) does not vanish, the right side of (3) must be replaced in that case by

$$
P\left(\partial_{x_{1}}, \partial_{x_{2}}\right)\left(\frac{\operatorname{det}\left(A_{12}, A_{21}\right)}{\left\langle x, A_{12}><x, A_{21}>\right.}\right)
$$

A similar modification applies in all other cases except when $x=0$ in which case we set $\psi=0$. For details of this construction and the proof that the so defined map ψ does indeed represent a cohomology class in $H^{1}(G, M)$, we refer the reader to [1].

The basic idea behind the construction of the Eisenstein cocycle $\varepsilon=\varepsilon_{1}$ is to average the values of ψ with respect to the variable x over the lattice \mathbb{Z}^{2}. Let $\Gamma=G L_{2} \mathbb{Z}$ and let N be the set of complex valued functions $f(P, Q, u, v)$ on $H \times H \times \mathbb{R}^{2} \times(\mathbb{R} / \mathbb{Z})^{2} . N$ is a left Γ-module under the action

$$
(A f)(P, Q, u, v)=\operatorname{det}(A) f\left(A^{t} P, A^{-1} Q, A^{-1} u, A^{-1} v\right)
$$

For $A_{i} \in \Gamma$, the Eisenstein cocycle ε is the map $\varepsilon: \Gamma \times \Gamma \rightarrow N$ defined by $(\mathbf{e}(z)=\exp (2 \pi i z))$

$$
\left.\varepsilon\left(A_{1}, A_{2}\right)(P, Q, u, v) \quad \overline{\overline{\operatorname{def}}} \sum_{x \in \mathbb{Z}^{2}} \operatorname{sign}(x u) \mathbf{e}(-x v) \psi\left(A_{1}, A_{2}\right)(P, x)\right|_{Q}
$$

where the " Q-limit" notation on the right has to be understood as

$$
\left.\sum_{x} h(x)\right|_{Q} \overline{\overline{\text { def }}} \lim _{t \rightarrow \infty}\left(\sum_{|Q(x)|<t} h(x)\right)
$$

Theorem 2. The map $\varepsilon: \Gamma \times \Gamma \rightarrow N$ is well defined and has the properties

$$
\begin{gathered}
\varepsilon\left(A_{1}, A_{2}\right)+\varepsilon\left(A_{2}, A_{3}\right)=\varepsilon\left(A_{1}, A_{3}\right), A_{i} \in \Gamma \\
\varepsilon\left(A A_{1}, A A_{2}\right)=A \varepsilon\left(A_{1}, A_{2}\right), A \in \Gamma .
\end{gathered}
$$

Moreover, ε represents a non trivial cohomology class in $H^{1}(\Gamma, N)$.
For the proof, see [2]. We return now to the partial zeta function of the introduction and consider the case of a real quadratic field F with one distinguished real embedding $\mathfrak{P}: F \rightarrow \mathbb{R}$ such that $f_{\infty}=\Re$. Let $b \in C$ be a fixed representative of the ray class C and choose a \mathbb{Z}-basis W for $f_{\text {fin }} b^{-1}=\mathbb{Z} W_{1}+\mathbb{Z} W_{2}$. The trace form in F determines the dual basis V by $\operatorname{tr}\left(V_{i} W_{j}\right)=\delta_{i j}$. Define P, Q, v by

$$
P(x)=\mathrm{N}\left(\sum x_{i} W_{i}\right), Q(x)=\mathrm{N}\left(\sum x_{i} V_{i}\right), v_{j}=\operatorname{tr}\left(V_{j}\right), j=1,2
$$

P and Q are normforms determined by the bases W resp. V. Finally, let $A \in \Gamma$ be the hyperbolic matrix corresponding to a generator of U under the regular representation of U with respect to the basis V. Then, as a special case of of Theorem 1 , we have the explicit relation

$$
\zeta^{\prime}(C,-2 k)= \pm(2 \pi i)^{-1-4 k} \varepsilon(1, A)\left(P^{2 k}, Q, \mathfrak{\beta}(V), v\right) .
$$

The sign ambiguity is due to the fact that the right side changes its sign when A is replaced by A^{-1}.

Acknowledgement. This report is based on work partly supported by the NSF.

References

[1] Sczech, R.: Eisenstein group cocycles for GL_{n} and values of L-functions, Invent. math. 113, 581-616 (1993)
[2] Sczech, R.: Polylogarithms and values of zeta functions in real quadratic number fields, preprint 1995

Kyushu University 33
Fukuoka 812, Japan
Rutgers University
Newark NJ 07102, USA
email: sczech@math.kyushu-u.ac.jp

