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Let $F$ be a totally real number field of degree $n$ over $\mathrm{Q}$ , and $f$ a conductor of a ray class group in $F$ .
By definition, $f=f_{\infty}f_{\mathrm{f}_{\mathrm{l}}\mathrm{n}}$ is the product of the finite part $f_{\mathrm{f}_{\mathrm{l}}\mathrm{n}}$ which is an integral ideal of $\mathbb{Z}_{F}$ , and the

infinite part $f_{\infty}= \prod \mathfrak{P}_{i}$ , where $\mathfrak{P}_{i}$ runs through a set of embeddings of $F$ into $\mathbb{R}$ , indexed by a subset

$S\subseteq\{1,2, \cdots, n\}$ . Let $I(f)$ be the multiplicative group of fractional ideals in $F$ generated by all prime

ideals in $\mathbb{Z}_{F}$ which do not divide $f_{\mathrm{f}_{\mathrm{l}}\mathrm{n}}$ . Two ideals $a,$ $b\in I(f)$ belong to the same class mod $f$ iff $ab^{-1}$ is

a principal ideal $(\alpha)$ generated by an element $\alpha\in 1+f_{\mathrm{f}\ln}b^{-1}$ such that $\mathfrak{P}_{i}(\alpha)>0$ for all $i\in S$ . Modulo

this relation, $I(f)$ decomposes into finitely many classes $C$ mod $f$ . To every class $C$ there is associated

the partial zeta function
$\zeta(C, s)=\sum_{Ca\in}N(a)^{-s},$

${\rm Re}(S)>1$ .

According to Hecke, this function has an analytic continuation to the whole complex $s$-plane except for

a simple pole at $\mathrm{s}=1$ , and, by results of Klingen and Siegel, the special values of $\zeta(C, s)$ at non-positive

integral $s=0,$ $-1,$ $-2,$ $\ldots$ are all rational numbers which can be calculated explicitely using a well known

formula of Shintani. In the simplest case, this is the classical formula of Euler,

$\zeta(1-k)=-\frac{B_{k}}{k},$ $k=1,2,3,$ $\ldots$ ,

for the special values of the Riemann zeta function $\zeta(s)$ . Since the Bernoulli numbers $B_{k}$ of an odd

index $k>1$ are all zero, it follows that $\zeta(-2k)=0$ for $k=1,2,3,\ldots$ . This is in fact a general phenome-

non. Because of Gamma factors in Hecke’s functional equation, $((C, s)$ vanishes at $s=-2k$ of order

$s=20\underline{\mathrm{r}}\mathrm{d}\zeta(C, S)k\geq r=n-|S|$ , $k=0,1,2,$ $\ldots$ .

In particular, $((C, -2k)=0$ if $r>0$ . It is therefore of interest to investigate the coefficients

$\zeta^{(f)}(c, -2k)=\frac{d^{f}}{ds^{r}}((C, s)|_{s=-2k}$ .

For $\mathrm{i}\mathrm{n}\mathrm{s}\mathrm{t}\dot{\mathrm{a}}\mathrm{n}\mathrm{c}\mathrm{e}$ , these numbers are the subject of the well known conjectures of Stark $(k=0)$ and Beilinson-

Gross $(k>0)$ . In this report, we are interested in the cohomogical interpretation of these values in

terms of the group cohomology of the unit group

$U=$ { $\eta\in \mathbb{Z}_{F}|\eta\in 1+f_{\mathrm{f}_{\mathrm{l}}\mathrm{n}},$ $\mathfrak{P}_{i}(\eta)>0$ for all $i\in S$ }.

It is convenient to assume that $U$ is torsionfree. Then, according to Dirichlet, $U$ is a free abelian group

of rank $n-1$ , and therefore, the homology as well as the cohomology groups of $U$ are isomorphic to the

(co)homology of the torus $T^{n-1},$ $T=\mathbb{R}/\mathbb{Z}$ . In particular, the homology group $H_{n-1}(U, \mathbb{Z})$ is free abelian

of rank one, so we can talk about a fundamental class $Z$ of $U$ , which is a generator of

$H_{n-1}(U, \mathbb{Z})$ . (In the case $n=2,$ $Z$ corresponds to a fundamental unit of $U$).
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Theorem 1. There is a cohomology class $\epsilon_{p}(C, k)\in H^{n-1}(U,\mathbb{R})$ such that the evaluation on $Z$ gives

$\zeta^{(p)}(C, -k)=\mathcal{E}_{p}(C,k)(z)$

provided that either $p=0$ and $k=1,3,5,$ $\ldots$ or $p=n-|S|$ and $k=0,2,4\ldots$ . Moreover, $\epsilon_{p}$ is the
restriction of a universal Eisenstein cohomology class in $H^{n-1}(GL_{n}\mathbb{Z})$ which depends only on $n$ and $p$ ,
but not on the particular field $F$ or ray class $C$ .

This is a generalization of a previous result [1] which deals with the special case $p=0$ . In that
case, it can be shown that the cohomology class $\epsilon_{0}(C, k)$ is in fact rational, $\epsilon_{0}(C, k)\in H^{n-1}(U,\mathrm{Q})$.
Moreover, a finite formula exists for $\epsilon_{0}(C, k)$ which generalizes the classical Dedekind sum. In general,
our method does not lead to any conclusion about the arithmetic nature of the cohomology classes
$\epsilon_{p}(C, k)$ for $p>0$ . The proof of the above theorem will be published elsewhere. In this report, we wish

to illustrate the construction of the Eisenstein cocycle in the simplest non-trivial case: $n=2,$ $p=1,$ $k$ even.

Let $G=GL_{2}\mathbb{R}$ and $H$ be the the subspace of homogenous polynomials in $\mathbb{R}[x_{1}, X_{2}]$ . The set
$M=\{f:H\cross \mathbb{R}^{2}arrow \mathbb{C}\}$ is then a $G$-module under the action

$(Af)(P,x)=\det(A)f(A^{t}P, XA)$ , $A\in G$ , $f\in M$ .
Here, $A^{t}P$ denotes the polynomial defined by $(A^{c}P)(y)=P(yA^{t})$ . We first construct a homogenous
1-cocycle $\psi$ for $G$ with values in $M$ . By definition, $\psi$ is a map $\psi:G\cross Garrow M$ satisfying the properties

$\psi(A_{1}, A_{2})+\psi(AA2’ 3)=\psi(A_{1}, A_{3})$ , (1)

$\psi(AA_{1}, AA_{2})=A\psi(A_{1}, A_{2})$ ; $A,$ $A_{j}\in G.$ (2)

For $A_{i}\in G$ , we denote the $j\mathrm{t}\mathrm{h}$ column of the matrix $A_{i}$ by $A_{ij}$ . Then the cocycle $\psi$ is defined for
$x\neq 0$ by

$\psi(A_{1}, A_{2})(P, X)=P(\partial\partial)x_{1}’ x_{2}(\frac{\det(A_{11},A_{2})1}{<x,A_{11}><X,A21>})$ (3)

where $P(\partial_{x_{1}}, \partial_{x_{2}})$ denotes the differential operator formed with the partial derivatives with respect to
$x_{1}$ and $x_{2}$ . The definition needs a modification if one of the scalar products $<x,$ $y>=x_{1}y_{1}+x_{2}y_{2}$ in
the denominator vanishes. For instance, if $<x,$ $A_{11}>=0$ , then $<x,$ $A_{12}>\neq 0$ since $x\neq 0$ ; assuming that
the second scalar product $<x,$ $A_{21}>$ in (3) does not vanish, the right side of (3) must be replaced in
that case by

$P( \partial_{x_{1}}, \partial_{x_{2}})(\frac{\det(A_{12},A_{2})1}{<x,A_{12}><X,A21>})$ .

A similart modification applies in all other cases except when $x=0$ in which case we set $\psi=0$ . For details

of this construction and the proof that the so defined map $\psi$ does indeed represent a cohomology class
in $H^{1}(G, M)$ , we refer the reader to [1].

The basic idea behind the construction of the Eisenstein cocycle $\epsilon=\epsilon_{1}$ is to average the values

of $\psi$ with respect to the variable $x$ over the lattice $\mathbb{Z}^{2}$ . Let $\Gamma=GL_{2}\mathbb{Z}$ and let $N$ be the set of complex

valued functions $f(P, Q, u, v)$ on $H\cross H\cross \mathbb{R}^{2}\cross(\mathbb{R}/\mathbb{Z})^{2}$ . $N$ is a left $\Gamma$-module under the action
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(A$f$ ) $(P, Q,u,v)=\det(A)f(A\iota_{P}, A-1Q, A-1u, A-1v)$ .

For $A_{i}\in\Gamma$ , the Eisenstein cocycle $\epsilon$ is the map $\epsilon$ : $\Gamma\cross\Gammaarrow N$ defined by $(\mathrm{e}(z)=\exp(2\pi iz))$

$\epsilon(A_{1’ 2}A)(P,Q, u, v)\overline{\overline{\mathrm{d}\mathrm{e}}}\mathrm{f}\sum_{x\in}\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(Xu)\mathrm{e}\mathbb{Z}^{2}(-Xv)\psi(AA1’ 2)(P, X)|_{Q}$

,

where the ” $Q$-limit” notation on the right has to be understood as

$\sum_{x}h(X)\iota\overline{\overline{\mathrm{d}\mathrm{e}}}\mathrm{f}$ $\lim_{tarrow\infty}(\sum_{|Q(x)|<\iota}h(X))$ .

$\mathrm{T}\mathrm{h}\infty \mathrm{r}\mathrm{e}\mathrm{m}2$. The map $\epsilon$ : $\Gamma\cross\Gammaarrow N$ is well defined and has the properties

$\epsilon(A_{1}, A_{2})+\epsilon(A_{2’ 3}A)=\epsilon(A_{1}, A_{3})$ , $A_{i}\in\Gamma$

$\epsilon(AA_{1}, AA_{2})=A\epsilon(AA)1’ 2$ , $A\in\Gamma$ .
Moreover, $\epsilon$ represents a non trivial cohomology class in $H^{1}(\Gamma, N)$ .

For the proof, see [2]. We return now to the partial zeta function of the introduction and consider the

case of a real quadratic field $F$ with one distinguished real embedding $\mathfrak{P}:Farrow \mathbb{R}$ such that $f_{\infty}=\mathfrak{P}$ . Let

$b\in C$ be a fixed representative of the ray class $C$ and choose a $\mathbb{Z}$-basis $W$ for $f_{\mathrm{f}_{\mathrm{l}}\mathrm{n}}b^{-1}=\mathbb{Z}W_{1}+\mathbb{Z}W_{2}$.

The trace form in $F$ determines the dual basis $V$ by $\mathrm{t}\mathrm{r}(V_{i}W_{j})=\delta_{ij}$ . Define $P,$ $Q,$ $v$ by

$P(x)= \mathrm{N}(\sum x_{i}W_{i})$ , $Q(x)= \mathrm{N}(\sum x_{i}V_{i})$ , $v_{j}=\mathrm{t}\mathrm{r}(V_{j}),$ $j=1,2$ .

$P$ and $Q$ are normforms determined by the bases $W$ resp. $V$ . Finally, let $A\in\Gamma$ be the hyperbolic

matrix corresponding to a generator of $U$ under the regular representation of $U$ with respect to the

basis $V$ . Then, as a special case of of Theorem 1, we have the explicit relation

$\zeta’(c, -2k)=\pm(2\pi i)^{-14k}-\epsilon(1, A)(P^{2k}, Q, \mathfrak{P}(V),v)$.

The sign ambiguity is due to the fact that the right side changes its sign when $A$ is replaced by $A^{-1}$ .
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