Eisenstein cocycles for arithmetic groups and values of zeta functions

Robert Sczech (九州大理)

Let F be a totally real number field of degree n over \mathbb{Q} , and f a conductor of a ray class group in F. By definition, $f = f_{\infty} f_{\text{fin}}$ is the product of the finite part f_{fin} which is an integral ideal of \mathbb{Z}_F , and the infinite part $f_{\infty} = \prod \mathfrak{P}_i$, where \mathfrak{P}_i runs through a set of embeddings of F into \mathbb{R} , indexed by a subset $S \subseteq \{1, 2, \dots, n\}$. Let I(f) be the multiplicative group of fractional ideals in F generated by all prime ideals in \mathbb{Z}_F which do not divide f_{fin} . Two ideals $a, b \in I(f)$ belong to the same class mod f iff ab^{-1} is a principal ideal (α) generated by an element $\alpha \in 1 + f_{\text{fin}}b^{-1}$ such that $\mathfrak{P}_i(\alpha) > 0$ for all $i \in S$. Modulo this relation, I(f) decomposes into finitely many classes $C \mod f$. To every class C there is associated the partial zeta function

$$\zeta(C,s) = \sum_{a \in C} N(a)^{-s}, \ \operatorname{Re}(s) > 1.$$

According to Hecke, this function has an analytic continuation to the whole complex s-plane except for a simple pole at s=1, and, by results of Klingen and Siegel, the special values of $\zeta(C,s)$ at non-positive integral s=0, -1, -2,... are all rational numbers which can be calculated explicitly using a well known formula of Shintani. In the simplest case, this is the classical formula of Euler,

$$\zeta(1-k) = -\frac{B_k}{k}, \ k=1,2,3,...,$$

for the special values of the Riemann zeta function $\zeta(s)$. Since the Bernoulli numbers B_k of an odd index k > 1 are all zero, it follows that $\zeta(-2k) = 0$ for $k=1,2,3,\ldots$. This is in fact a general phenomenon. Because of Gamma factors in Hecke's functional equation, $\zeta(C,s)$ vanishes at s=-2k of order

$$\sup_{s=-2k} \zeta(C,s) \ge r = n - |S| , \ k=0,1,2,\dots$$

In particular, $\zeta(C, -2k)=0$ if r > 0. It is therefore of interest to investigate the coefficients

$$\zeta^{(r)}(C,-2k) = \frac{d^r}{ds^r} \zeta(C,s) \Big|_{s=-2k}$$

For instance, these numbers are the subject of the well known conjectures of Stark (k=0) and Beilinson-Gross (k > 0). In this report, we are interested in the cohomogical interpretation of these values in terms of the group cohomology of the unit group

$$U = \{ \eta \in \mathbb{Z}_F \mid \eta \in 1 + f_{\text{fin}}, \, \mathfrak{P}_i(\eta) > 0 \text{ for all } i \in S \}.$$

It is convenient to assume that U is torsionfree. Then, according to Dirichlet, U is a free abelian group of rank n-1, and therefore, the homology as well as the cohomology groups of U are isomorphic to the (co)homology of the torus T^{n-1} , $T=\mathbb{R}/\mathbb{Z}$. In particular, the homology group $H_{n-1}(U,\mathbb{Z})$ is free abelian of rank one, so we can talk about a fundamental class Z of U, which is a generator of $H_{n-1}(U,\mathbb{Z})$. (In the case n=2, Z corresponds to a fundamental unit of U). **Theorem 1.** There is a cohomology class $\varepsilon_p(C,k) \in H^{n-1}(U,\mathbb{R})$ such that the evaluation on Z gives

$$\zeta^{(p)}(C,-k) = \varepsilon_p(C,k)(Z)$$

provided that either p = 0 and k=1,3,5,... or p = n-|S| and k=0,2,4... Moreover, ε_p is the restriction of a universal Eisenstein cohomology class in $H^{n-1}(GL_n\mathbb{Z})$ which depends only on n and p, but not on the particular field F or ray class C.

This is a generalization of a previous result [1] which deals with the special case p=0. In that case, it can be shown that the cohomology class $\varepsilon_0(C,k)$ is in fact rational, $\varepsilon_0(C,k) \in H^{n-1}(U,\mathbb{Q})$. Moreover, a finite formula exists for $\varepsilon_0(C,k)$ which generalizes the classical Dedekind sum. In general, our method does not lead to any conclusion about the arithmetic nature of the cohomology classes $\varepsilon_p(C,k)$ for p > 0. The proof of the above theorem will be published elsewhere. In this report, we wish to illustrate the construction of the Eisenstein cocycle in the simplest non-trivial case: n=2, p=1, k even.

Let $G = GL_2\mathbb{R}$ and H be the subspace of homogenous polynomials in $\mathbb{R}[x_1, x_2]$. The set $M = \{f : H \times \mathbb{R}^2 \to \mathbb{C}\}$ is then a G-module under the action

$$(Af)(P,x) = \det(A) f(A^t P, xA) , A \in G , f \in M.$$

Here, $A^t P$ denotes the polynomial defined by $(A^t P)(y) = P(yA^t)$. We first construct a homogenous 1-cocycle ψ for G with values in M. By definition, ψ is a map $\psi: G \times G \to M$ satisfying the properties

$$\psi(A_1, A_2) + \psi(A_2, A_3) = \psi(A_1, A_3), \tag{1}$$

$$\psi(AA_1, AA_2) = A\psi(A_1, A_2) \; ; \; A, A_j \in G.$$
⁽²⁾

For $A_i \in G$, we denote the *j*th column of the matrix A_i by A_{ij} . Then the cocycle ψ is defined for $x \neq 0$ by

$$\psi(A_1, A_2)(P, x) = P(\partial_{x_1}, \partial_{x_2}) \left(\frac{\det(A_{11}, A_{21})}{\langle x, A_{11} \rangle \langle x, A_{21} \rangle} \right)$$
(3)

where $P(\partial_{x_1}, \partial_{x_2})$ denotes the differential operator formed with the partial derivatives with respect to x_1 and x_2 . The definition needs a modification if one of the scalar products $\langle x, y \rangle = x_1y_1 + x_2y_2$ in the denominator vanishes. For instance, if $\langle x, A_{11} \rangle = 0$, then $\langle x, A_{12} \rangle \neq 0$ since $x \neq 0$; assuming that the second scalar product $\langle x, A_{21} \rangle$ in (3) does not vanish, the right side of (3) must be replaced in that case by

$$P(\partial_{x_1}, \partial_{x_2}) \Big(\frac{\det(A_{12}, A_{21})}{\langle x, A_{12} \rangle \langle x, A_{21} \rangle} \Big).$$

A similar modification applies in all other cases except when x=0 in which case we set $\psi=0$. For details of this construction and the proof that the so defined map ψ does indeed represent a cohomology class in $H^1(G, M)$, we refer the reader to [1].

The basic idea behind the construction of the Eisenstein cocycle $\varepsilon = \varepsilon_1$ is to average the values of ψ with respect to the variable x over the lattice \mathbb{Z}^2 . Let $\Gamma = GL_2\mathbb{Z}$ and let N be the set of complex valued functions f(P, Q, u, v) on $H \times H \times \mathbb{R}^2 \times (\mathbb{R}/\mathbb{Z})^2$. N is a left Γ -module under the action

$$(Af)(P,Q,u,v) = \det(A)f(A^{t}P,A^{-1}Q,A^{-1}u,A^{-1}v).$$

For $A_i \in \Gamma$, the Eisenstein cocycle ε is the map $\varepsilon : \Gamma \times \Gamma \to N$ defined by $(\mathbf{e}(z) = \exp(2\pi i z))$

$$\varepsilon(A_1,A_2)(P,Q,u,v) = \sum_{x \in \mathbb{Z}^2} \operatorname{sign}(xu) \operatorname{e}(-xv) \psi(A_1,A_2)(P,x) \bigg|_Q,$$

where the "Q-limit" notation on the right has to be understood as

$$\sum_{x} h(x) \Big|_{Q} \stackrel{=}{=} \lim_{t \to \infty} \left(\sum_{|Q(x)| < t} h(x) \right).$$

Theorem 2. The map $\varepsilon : \Gamma \times \Gamma \to N$ is well defined and has the properties

$$\begin{split} \varepsilon(A_1,A_2)+\varepsilon(A_2,A_3) &= \varepsilon(A_1,A_3) \ , \ A_i\in \Gamma \\ \varepsilon(AA_1,AA_2) &= A\varepsilon(A_1,A_2) \ , \ A\in \Gamma. \end{split}$$

Moreover, ε represents a non trivial cohomology class in $H^1(\Gamma, N)$.

For the proof, see [2]. We return now to the partial zeta function of the introduction and consider the case of a real quadratic field F with one distinguished real embedding $\mathfrak{P}: F \to \mathbb{R}$ such that $f_{\infty} = \mathfrak{P}$. Let $b \in C$ be a fixed representative of the ray class C and choose a \mathbb{Z} -basis W for $f_{\text{fin}}b^{-1} = \mathbb{Z}W_1 + \mathbb{Z}W_2$. The trace form in F determines the dual basis V by $\text{tr}(V_iW_j) = \delta_{ij}$. Define P, Q, v by

$$P(x) = \mathrm{N}(\sum x_i W_i) \ , \ Q(x) = \mathrm{N}(\sum x_i V_i) \ , \ v_j = \mathrm{tr}(V_j), \ j{=}1,2.$$

P and *Q* are normforms determined by the bases *W* resp. *V*. Finally, let $A \in \Gamma$ be the hyperbolic matrix corresponding to a generator of *U* under the regular representation of *U* with respect to the basis *V*. Then, as a special case of of Theorem 1, we have the explicit relation

$$\zeta'(C, -2k) = \pm (2\pi i)^{-1-4k} \varepsilon(1, A)(P^{2k}, Q, \mathfrak{P}(V), v).$$

The sign ambiguity is due to the fact that the right side changes its sign when A is replaced by A^{-1} .

Acknowledgement. This report is based on work partly supported by the NSF.

References

- [1] Sczech, R.: Eisenstein group cocycles for GL_n and values of L-functions, Invent. math. 113, 581-616 (1993)
- [2] Sczech, R.: Polylogarithms and values of zeta functions in real quadratic number fields, preprint 1995

Kyushu University 33 Fukuoka 812, Japan

Rutgers University Newark NJ 07102, USA

email: sczech@math.kyushu-u.ac.jp