
ON THE SOLUTIONS OF THUE EQUATIONS

MASAMI FUJIMOIU $(\mathrm{r}*\mathrm{a}_{i}\not\in L$ $(\# 2\llcorner \mathrm{x}\mathfrak{X}_{-})$

Let $k/\mathbb{Q}$ be a finite extension, $p(X, \mathrm{Y})\in k[X, \mathrm{Y}]$ a homogeneous polynomial of
degree $n>3$ with non-zero discriminant, and $a\in k^{\mathrm{x}}=k\backslash \{0\}$ . The equation

$p(x, Y)=aZ^{n}$

defines a regular curve $C$ in $\mathrm{P}_{k}^{2}$ of genus $g=(n-1)(n-2)/2$ .
Here we obtain an estimate for the number of integral solutions and a certain

information about rational points.

Remark 0.1. In [2], we required that $p(X, Y)$ be divisible by a linear element in
$k1^{X,\mathrm{Y}}]$ , but it is easily seen we do not have to assume that. The same results
follow if we replace the map $f^{a}$ there by the map $f:Carrow J=\mathrm{t}\mathrm{h}\mathrm{e}$ Jacobian of $C_{\text{ノ}}$ ,

$C(\overline{k})\ni P\mapsto O_{C}$ ( $(2g-2)P-\mathrm{a}$ canonical divisor) $\in$
$\mathrm{P}\mathrm{i}\mathrm{c}^{}$

$(C_{\overline{k}})\simeq J(\overline{k})$

which is defined over $k$ , noting that this map equals $2g-2$ times $f^{a}$ .

1. INTECRAL SOLUTIONS

For simplicity, we state the result only in the case of rational integral solutions.
As for the algebraic $S$-integer version, we refer the reader to [2, Theorem 5.4].

In this section we assume that $a$ and the coefficients of $p(X, Y)$ are in Z.
In 1983, Silverman used the Jacobian variety $J$ of $C$ to estimate the number of

integral solutions from above:

Theorem 1.1 (Silverman [4]). If all the exponents of prime factors of $a$ are less
than $n$ , and $|a|$ is sufficiently large, then

$\#\{(x, y)\in \mathbb{Z}^{2}|p(x, y)=a\}<n^{2n^{2}}(8n^{3})^{R}$ ,

where $R=\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}J(\mathbb{Q})$ .
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We can think of $J(\mathbb{Q})\otimes_{\mathrm{Z}}\mathbb{R}$ as a Euclidean space with some height function. He
mapped $C(\mathbb{Q})$ to $J(\mathbb{Q})$ and counted the number of lattice points which lie in a ball
of $J(\mathbb{Q})\otimes \mathrm{z}\mathbb{R}$ .

On the other hand, Mumford had asserted in 1965 paper [3] that in general, the
heights of rational points on the Jacobian which come from a curve under a certain
map increase at least exponentially if the genus is greater than 1.

Putting the above two results together, we obtain

Theorem 1.2. If all the exponents of prime factors of $a$ are less than $n$ , and $|a|$

is sufficiently large, then

$\#\{(x, y)\in \mathbb{Z}^{2}|p(_{X}, y)=a\}\leq 4\cdot 7^{R}$,

where $R=\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}J(\mathbb{Q})$ .

2. RATIONAL POINTS

For a general curve $C$ over $k$ of genus $g>1$ , there is a result of Vojta about the
distribution of the rational points of $C$ in the Jacobian variety $J$ .

Let $\langle\cdot, \cdot\rangle$ and $||\cdot||$ be respectively the inner product and the norm on $J(k)\otimes_{\mathrm{Z}}\mathbb{R}$

induced by the N\’eron-Tate height attached to the $$-divisor.

Theorem 2.1 (Vojta [5], cf. [1]). Assume $C(k)\neq\emptyset$ . Regard $C\subset J$ by an
appropriate map. For $\epsilon>0$ , there exists a constant $\gamma=\gamma(C, \epsilon)\mathit{8}uch$ that if
$P,$ $Q\in C(k)$ satisfy the inequalities $||P||>\gamma$ and $||Q||>\gamma||P||$ , then

$\langle P, Q\rangle/||P||||Q||<1/\sqrt{g}+\in$ .

If we have a non-trivial automorphism of the curve, what can we say about the
distribution of the rational points of the curve? When asking this question, we
prefer to use the morphism $f:Carrow J$ given by

$C(\overline{k})\ni Prightarrow \mathcal{O}_{C}$ ( $(2g-2)P-\mathrm{a}$ canonical divisor) $\in$
$\mathrm{P}\mathrm{i}\mathrm{c}^{}$

$(C_{\overline{k}}.)\simeq J(\overline{k})$ ,

where $\overline{k}$ is an algebraic closure of $k$ and $C_{\overline{k}}=C\cross_{k}\mathrm{S}_{\mathrm{P}^{\mathrm{e}\mathrm{C}}}\overline{k}$ . Automorphisms of $C$

induce norm preserving morphisms of $J$ compatible with the above map. In other
words, there exists a canonically defined representation of $\mathrm{A}\mathrm{u}\mathrm{t}_{k}C$ on the Euclidean
space $(J(k)\otimes_{\mathrm{Z}}\mathbb{R}, ||\cdot||)$ which leaves the image of $C(k)$ stable.

In the case of Thue curves, we obtain the following result: Let $C$ be the Thue
curve as before. For an n-th root $\zeta$ of unity in $k$ , we have an automorphism of $C$

defined as
$C(\overline{k})\ni P=(x : y : z)-\rangle$ $P\zeta:=(_{X} : y : \zeta z)\in C(\overline{k})$ .
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Proposition 2.2. For $P\in C(k)$ , if $\zeta\neq 1$ and $||fP||\neq 0$ , then

$(fP_{\zeta}, fP\rangle/l|\mathrm{f}P_{\zeta}|||| fP||=-1/(n-1)$ .

As an application of this kind of results, if $C$ is a twisted Fermat curve of degree
4, for example, we can see the rational points lie in an intersection of quadric
hypersurfaces in $J(k)\otimes_{\mathrm{Z}}\mathbb{R}$ . The author will explain it elsewhere.
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