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1 Definitions and Results

Let $f$ be a transcendental entire function and $f^{n}$ denote the n-th
iterate of $f$ . Recall that the Fatou set $F_{f}$ and the Julia set $J_{f}$ of $f$ are
defined as follows:

$F_{f}:=$ { $z\in \mathbb{C}|\{f^{n}\}_{n=1}^{\infty}$ is a normal family in a neighborhood of $z$},
$J_{f}:=\mathbb{C}\backslash F_{f}$ .

It is possible to consider the Julia set to be a subset of the Riemann sphere
$\overline{|}r_{:=}.\mathbb{C}\cup\{\infty\}$ by adding the point of infinity $\infty$ to it. This definition is
mainly adopted in the case of meromorphic functions (for example, see
[Ber] $)$ and also there are some researches on convergence phenomena of
Julia sets as subsets $\mathrm{o}\mathrm{f}\overline{\mathbb{C}}$ ([Ki], [Kr], $[\mathrm{K}\mathrm{r}\mathrm{K}]$ ). In this setting, $J_{f}$ is compact
in $\overline{\mathbb{C}}$ and hence $J_{f}$ is rather easy to handle. But for a transcendental entire
function the suitable phase space as a dynamical system is the complex
plane $\mathbb{C}$ , not the Riemann sphere $\overline{\mathbb{C}}$ , because $\infty$ is an essential singularity
of $f$ and there seems to be no reasonable way to define the value at $\infty$ .
So it is more natural to regard $J_{f}$ as a subset of $\mathbb{C}$ rather than of $\overline{\mathbb{C}}$ and
hence we define $J_{f}$ as above and write $J_{f}\cup \mathrm{t}\infty$ } when we consider $J_{f}$ to
be a subset of $\overline{\mathbb{C}}$ .

A connected component $U$ of $F_{f}$ is called a Fatou component. A Fatou
component is called a wandering domain if $f^{m}(U)\cap f^{n}(U)=\emptyset$ for every
$m,$ $n\in \mathrm{N}(m\neq n)$ . If there exists an $n_{0}\in \mathrm{N}$ with $f^{n_{0}}(U)\subseteq U,$ $U$ is called
a periodic component and it is well known that there are following four
possibilities:
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1. There exists a point $z_{0}\in U$ with $f^{n_{0}}(z_{0})--z_{0}$ and $|(f^{n_{0}})’(z\mathrm{o})|<1$

and every point $z\in U$ satisfies $f^{n_{0}k}(z)arrow z_{0}$ as $karrow\infty$ . The point $z_{0}$

$\wedge\cdot$

is called an attracting periodt,c point and the domain $U$ is called $an$

attracting basin. $*.1$
. $\mathrm{t}$

$\sim$

2. There exists a point $z_{0}\in\partial U$ with $f^{n_{0}}(z_{0})=z_{0}$ and $(f^{n_{0}})’(z_{0})=$

$e^{2\pi i\theta}(\theta\in \mathbb{Q})$ and every point $z\in U$ satisfies $f^{n_{0}k}(z)arrow z_{0}$ as $karrow\infty$ .
The point $z_{0}$ is called a parabolic periodic point and the domain $U$ is
called a parabolic basin.

3. There exists a $\sim \mathrm{p}\mathrm{o}\mathrm{i}\overline{\mathrm{n}}\mathrm{t}z_{0}\in U^{\vee}$ with $f^{n_{0}}(z_{0})=z_{0}$ and $(f^{n_{0}})’(z\mathrm{o})=$

$e^{2\pi i\theta}(\theta\in \mathbb{R}\backslash \mathbb{Q})$ and $f^{n_{0}}|U$ is conjugate to an irrational rotation
of a unit disk. The domain $U$ is called a Siegel disk. :

4. For every $z\in U,$ $f^{n_{0}k}(z)arrow\infty$ as $karrow\infty$ . The domain $U$ is called $a$

Baker domain.

In particular, if $n_{0}=1,$ $U$ is called an inva$7\dot{\mathrm{v}}ant$ component. $U$ is called
completely invariant if $U$ satisfies $f^{-1}(U)\subseteq U.$ $U$ is called a preperi-
odic component if $f^{m}(U)$ is a periodic component for an $m\geq 1$ . $U$ is
called eventually $per\dot{\mathrm{v}}$odic if $U$ is periodic or preperiodic. It is known
that eventually periodic components of a transcendental entire function
are simply connected $([\mathrm{B}\mathrm{e}\mathrm{r}], [\mathrm{E}\mathrm{L}1])$ while a wandering domain can be
multiply-connected ([Bal], [Ba2], [Ba5]).

The boundary of unbounded periodic Fatou component can be ex-
tremely complicated. For example, consider the exponential family
$E_{\lambda}(z):=\lambda e^{z}$ . If $\lambda$ satisfies $0< \lambda<\frac{1}{e},$ $E_{\lambda}(z)$ has a unique attracting
fixed point $p_{\lambda}$ with an unbounded simply connected completely invariant
basin $\Omega(p_{\lambda})$ and the Fatou set $F_{E_{\lambda}}$ is equal to this basin $([\mathrm{D}\mathrm{G}])$ . Let
$\varphi$ : $\mathrm{D}arrow\Omega(p_{\lambda})$ be a Riemann map of $\Omega(p_{\lambda})$ from a unit disk $\mathrm{D}$, then the
radial limit $\lim_{r\nearrow 1\varphi}(re^{i})\theta$ exists for all $e^{i\theta}\in\partial \mathrm{D}$ and moreover the set

$\Theta_{\infty}:=\{e^{i\theta}|\varphi(e^{i\theta}):=\lim_{r\nearrow 1}\varphi(rei\theta)--\infty\}$

is dense in $\partial \mathrm{D}([\mathrm{D}\mathrm{G}])$ . This implies that the Riemann map is highly
discontinuous and hence the boundary of $\Omega(p_{\lambda})$ , which is equal to $J_{E_{\lambda}}$ , is
extremely complicated. Rom this fact, it folows that $J_{E_{\lambda}}$ is disconnected
in $\mathbb{C}$ , since $\varphi$ is conformal the set

$\varphi(\{re^{i\theta_{1}}|0\leq r<1\}\cup\{re^{i\theta_{2}}|0\leq r<1\})\subset U$ $(\theta_{1}, \theta_{2}\in\Theta_{\infty}, \theta_{1}\neq\theta_{2})$
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is a Jordan arc in $\mathbb{C}$ and this separates $J_{E_{\lambda}}$ into two disjoint relatively open
subsets.

Taking these facts into account, we shall investigate the set $\Theta_{\infty}$ for a
genetal unbounded periodic component $U$ and also consider the following
problem

Problem : When is the Julia set of a transcendental entire function $f$

connected or disconnected as a subset of $\mathbb{C}$?

If $f$ is a polynomial, the following criterion is well known. (For example,
see [Bea] or [M] $)$ .

Proposition A Let $f$ be a polynomial of degree $d\geq 2$ . Then the Julia
set $J_{f}$ is connected if and only if no finite $c\dot{n}tiCa\iota$ values of $f$ tend to $\infty$

by the iterates of $f$ .

Here, a $crit8,cal$ value is a point $p:=f(c)$ for a point $c$ with $f’(c)=0$ .
This is a singularity of $f^{-1}$ . For polynomials we have only to consider this
type of singularities but there can be another type of singularities called
an asymptotic value for the transcendental case. A point $p$ is called an
asymptotic value if there exists a continuous curve $L(t)(0\leq t<1)$ called
an asymptotic path with

$\lim_{tarrow 1}L(t)=\infty$ and $\lim_{tarrow 1}f(L(t))=p$ .

A point $p$ is called a singular value if it is either a critical or an asymptotic
value and we denote the set of all singular values as sing $(f^{-}1)$ .

If $f$ is transcendental, however, the above criterion does not hold. For
example, let us consider the exponential family $E_{\lambda}(z):=\lambda e^{z}$ again. If $\lambda$

satisfies $0< \lambda<\frac{1}{e}$ , the unique singular value $z=0$ (this is an asymptotic
value) is attracted to the fixed point $p_{\lambda}$ and hence does not tend to $\infty$ but
the Julia set $J_{E_{\lambda}}$ is disconnected as we mentioned above.

For other values of $\lambda$ , for example $\lambda>\frac{1}{e}$ , the singular value $z=0$ may
tend to $\infty$ . If $f$ is a polynomial all of whose critical values tend to $\infty$ , then
$J_{f}$ is a Cantor set and especially disconnected. But on the other hand in
this case $J_{f}$ is equal to the entire plain $\mathbb{C}([\mathrm{D}])$ and hence connected.

Before considering the connectivity of $J_{f}$ in $\mathbb{C}$ , we investigate the
connectivity of $J_{f}\cup\{\infty\}$ in $\overline{\mathbb{C}}$ . $\ln$ this situation compactness of $J_{f}\cup\{\infty\}$

in $\overline{\mathbb{C}}$ makes the problem easier. Actually we can prove the following:
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Theorem 1 Let $f$ be a transcendental entire function. Then the set
$J_{f}\cup\{\infty\}$ in $\overline{\mathbb{C}}$ is connected if and only if $F_{f}$ has no multiply-connected
wandering domains.

Corollary 1 Under one of the following conditions, $J_{f}\cup\{\infty\}$ in $\overline{\mathbb{C}}$ is
connected.
(1) $f\in B:=$ { $f|\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}(f^{-}1)$ is bounded}.
(2) $F_{f}$ has an unbounded component.
(3) There exists a curve $\Gamma(t)(0\leq t<1)$ with $\lim_{tarrow 1}\Gamma(t)=\infty$ such that

$f|\Gamma$ is bounded. Especially $f$ has a finite asymptotic value.

Then how about $J_{f}$ in $\mathbb{C}$ itself? The results depend on whether $F_{f}$

admits an unbounded component or not. In the case when $F_{f}$ admits no
unbounded components, we obtain the following:

Theorem 2 Let $f$ be a transcendental entire function. If all the com-
ponents of $F_{f}$ are bounded and simply connected, then $J_{f}$ is connected.

The following is an easy consequence from Theorem 1 and 2.

Corollary 2 Let $f$ be a transcendental entire function. If all the compo-
nents of $F_{f}$ are bounded, then $J_{f}$ is connected in $\mathbb{C}$ if and only if $J_{f}\cup\{\infty\}$

is connected in $\overline{\mathbb{C}}$.

As we mentioned before, for the unbounded component $\Omega(p_{\lambda})$ of $F_{E_{\lambda}}$

the set of all angles where the Riemann map $\varphi$ : $\mathrm{D}arrow\Omega(p_{\lambda})$ admits the
radial limit $\infty$ is dense in $\partial \mathrm{D}$ and this leads to the disconnectivity of $J_{E_{\lambda}}$ .
The Main result of this paper is the generalization of this fact. Under
some conditions this result holds for various kinds of unbounded periodic
Fatou components. Here, a point $p\in\partial U$ is accessible if there exists a
continuous curve $L(t)(0\leq t<1)$ in $U$ with $\lim_{tarrow 1}L(t)=p$ .

Main Theorem Let $U$ be an unbounded $pe$riodic Fatou component of a
transcendental entire function $f,$ $\varphi$ : $\mathrm{D}arrow U$ be a Riemann map of $U$

from a unit disk $\mathrm{D}_{f}$ and

$P_{f^{n_{0}}}:= \bigcup_{n=0}^{\infty}(fn_{0})n(\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}((f^{n_{0}})-1))$ .

We assume one of the following four conditions:
(1) $U$ is an attracting basin ofperiod $n_{0}$ and $\infty\in\partial U$ is accessible. There
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exists a finite point $q\in\partial U$ with $q\not\in P_{f^{n_{0}}},$ $m_{0}\in \mathrm{N}$ and a continuous curue
$C(t)\subset U(0\leq t\leq 1)$ with $C(1)=q$ and satisfies $f^{m_{0}}(C)\supset C$ .
(2) $U$ is a parabolic basin of $per\dot{\mathrm{v}}odn0$ and $\infty\in\partial U$ is accessible. There
exists a finite point $q\in\partial U$ with $q\not\in P_{f^{n_{0_{f}}}}m_{0}\in \mathrm{N}$ and a continuous curve
$C(t)\subset U(0\leq t\leq 1)$ with $C(1)=q$ and satisfies $f^{m_{0}}(C)\supset C$ .
(3) $U$ is a Siegel disk of period $n0$ and $\infty\in\partial U$ is accessible.
(4) $U$ is a Baker domain of period $n0$ and $f^{n_{0}}|U$ is not univalent. There
exists a finite point $q\in\partial U$ with $q\not\in P_{f^{n_{0_{f}}}}m_{0}\in \mathrm{N}$ and a continuous curue
$C(t)\subset U(0\leq t\leq 1)$ with $C(1)=q$ and satisfies $f^{m_{0}}(C)\supset C$ .
Then the set

$\Theta_{\infty}:=\{e^{i\theta}|\varphi(e^{i\theta}):=\lim_{r\nearrow 1}\varphi(rei\theta)=\infty\}$

is dense in $\partial \mathrm{D}$ in the case of (1), (2) or (3). In the case of (4), the closure
$\overline{\Theta_{\infty}}$ contains a certain perfect set in $\partial \mathrm{D}$ . In particular, $J_{f}$ is disconnected
in all cases.

In the case of the exponential family, Devaney and Goldber$g([\mathrm{D}\mathrm{G}])$ ob-
tained the explicit expression

$\varphi^{-1}\circ E_{\lambda\varphi(z}\circ)=\exp i(\frac{\mu+\overline{\mu}z}{1+z})$ , $\mu\in\{z|1\mathrm{m}z>0\}$

for a suitable Riemann map $\varphi$ which was crucial to show the density of
$\Theta_{\infty}$ in $\partial \mathrm{D}$ . In general, of course, we cannot obtain the explicit form of
$\varphi^{-1}\mathrm{o}f^{n0}\mathrm{o}\varphi(z)$ so instead of it we take advantage of a property of inner
functions. In general analytic function $g$ : $\mathrm{D}arrow \mathrm{D}$ is called an inner
function if the radial limit $g(e^{i\theta}):= \lim_{r\nearrow 1g}(re^{i})\theta$ exists for almost every
$e^{i\theta}\in\partial \mathrm{D}$ and satisfies $|g(e^{i\theta})|=1$ . It is easy to see that $\varphi^{-1}\circ f^{n_{0}}\circ\varphi$

is an inner function. It is known that an inner function $g$ has a unique
fixed point.. $p\in\overline{\mathrm{D}}$ called a Denjoy-Wolffpoint and $g^{n}(z)$ tends to $p$ locally
uniformly on $\mathrm{D}([\mathrm{D}\mathrm{M}])$ . The following is an important lemma for the
proof of the Main Theorem.

Lemma 1 Let $g$ : $\mathrm{D}arrow \mathrm{D}$ be an inner function which is not a M\"obius

transformation and $p$ its Denjoy-Wolff point.
(1) If $p\in \mathrm{D},$ then $\overline{\bigcup_{n}^{\infty}=1g^{-n}(z_{0})}\supset\partial \mathrm{D}$ holds for every $z_{0}\in \mathrm{D}\backslash E$ where $E$

is a certain exceptional set of logarithmic capacity zero.
(2) If $p\in\partial \mathrm{D}_{f}$ then $\overline{\bigcup_{n1}^{\infty-n}=g(Z\mathrm{o})}\supset K$ holds for every $z_{0}\in \mathrm{D}\backslash E$ where $E$

is a certain exceptional set of loga$7\dot{\mathrm{v}}thmic$ capacity zero and $K$ is a certain
perfect set in $\partial \mathrm{D}$ .
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If $U$ is either an attracting basin or a parabolic basin and $g=\varphi^{-1}\circ f^{n_{0}}\circ\varphi$,
we can say more about the set $\bigcup_{n=1}^{\infty-n}g(Z0)$ .

Lemma 2 Let $U$ be either an attracting basin or a parabolic basin (not
necessarily unbounded) and $g=\varphi^{-1}\mathrm{o}f^{n_{0}}\circ\varphi$ . Then there exists a set
$E\subset \mathrm{D}$ of loga$r\dot{\mathrm{v}}thmic$ capacity zero such that

$\frac{\sigma_{n}(z_{0},A)}{\sigma_{n}(z_{0},\partial \mathrm{D})}arrow\frac{measA}{2\pi}$ $(narrow\infty)$

holds for every $z_{0}\in \mathrm{D}\backslash E$ and every arc $A$ in $\partial \mathrm{D}_{f}$ where $\sigma_{n}(z_{0}, A)=$

$\sum(1-|\zeta|^{2})$ and sum is taken over all $\zeta=|\zeta|e^{i\theta}$ with $g^{n}(\zeta)=z_{0}$ and
$e^{i\theta}\in A\zeta$

.

The conclusion of Lemma 2 is stronger than that of Lemma 1 (1), because
it implies not only that the inverse images $g^{-n}(z\mathrm{o})$ accumulate on all over
$\partial \mathrm{D}$ but also that their distribution is uniform on $\partial \mathrm{D}$. We shall not give
the definition of logarithmic capacity here (see [P2]). But we recall that
a set of logarithmic capacity zero is extremely thin: it cannot contain a
connected set with more than one point and its Haus,dorff dimension is
zero ([DM], [P2]).

$\ln$ \S 2 we prove Theorem 1 and Corolary 1. \S 3 consists of three sub-
sections. In \S 3.1 we prove Theorem 2 and make some remarks on the
sufficient conditions for $f$ to admit no unbounded Fatou components. $\ln$

\S 3.2 we prove Lemma 1 and Lemma 2 which are keys for the proof of the
Main Theorem. In \S 3.3 we prove the Main Theorem.

2 Connectivity of $J_{f}\cup\{\infty\}$ in $\overline{\mathbb{C}}$

(Proof of Theorem 1): The following criterion is well known. (See for
example [Bea], p.81, Proposition 5.1.5).

Proposition $\mathrm{B}$ Let $K$ be a compact subset in $\overline{\mathbb{C}}$ . Then $K$ is connected if
and only if each component of the complement $K^{c}$ is simply connected.

Since $J_{f}\cup\{\infty\}$ is compact in $\overline{\mathbb{C}}$ , we can apply Proposition B. As we
mentioned in \S 1, eventually periodic components are simply connected.
So if a Fatou component $U$ is not simply connected, then $U$ is necessarily

117



$\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{O}\mathrm{a}\mathrm{w}\mathrm{a}\mathrm{n}\mathrm{f}$.dering domain which is not simply connected. This completes
$\mathrm{t}\mathrm{h}\mathrm{e}$

(Proof of Corollary 1): Under the condition (1), $f^{n}$ cannot tend
to $\infty$ through $F_{f}([\mathrm{E}\mathrm{L}2])$ . On the other hand, $f^{n}$ tends to $\infty$ on any
multiply-connected wandering domains $([\mathrm{B}\mathrm{a}4], [\mathrm{E}\mathrm{L}1])$ . So all the Fatou
components are simply connected in this case. Under the condition (2) or
(3), it is known that all the Fatou components must be simply

$\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{C}\mathrm{t}\mathrm{e}\mathrm{d}\square$

([Ba4], [EL1], p.620 Corollary 1, 2).

Remark 1 (1) Let $S:=\{f|\#_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}(f)}-1<\infty\}\subset B$ . Then there is even
no wandering domain in $F_{f}$ for $f\in S([\mathrm{G}\mathrm{K}])$ . For $f\in B,$ $F_{f}$ may admit
a wandering domain $U$ but $U$ must be simply connected as we mentioned
above. Under an additional condition

$J_{f}\cap(\mathrm{d}\mathrm{e}\mathrm{r}\mathrm{i}_{\mathrm{V}}\mathrm{e}\mathrm{d}$ set of $\bigcup_{n=0}^{\infty}fn(\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}(f^{-}1)))=\emptyset$ ,

$f\in B$ has also no wandering domain ([BHKMT]).
(2) We can conclude that in general if $J_{f}\cup\{\infty\}$ is disconnected, all the
Fatou components are bounded and some of which are multiply-connected
wandering domains.

3 Connectivity of $J_{f}$ in $\mathbb{C}$

3.1 The case when all the Fatou components are bounded

Suppose that a closed connected subset $K$ in $\mathbb{C}$ is bounded. Then all
the components of the complement $K^{c}$ other than the unique unbounded
component $V$ are simply connceted. (Of course, $V\cup\{\infty\}\subset\overline{\mathbb{C}}$ is simply
connected). If $K$ is unbounded, then all the components of $K^{c}$ are simply
connected, but the converse is false as the example $J_{F_{\lrcorner\lambda}}(0< \lambda<\frac{1}{e})$ shows.
(Compare with the Proposition B). But note that $J_{E_{\lambda}}\cup\{\infty\}$ is connected
in $\overline{\mathbb{C}}$ . For the connectivity of a closed subset in $\mathbb{C}$ , the following criterion
holds.

Proposition 1 Let $K$ be a closed subset of C. Then $K$ is connected if
and only if the boundary of each component $U$ of the complement $K^{c}$ is
connected.
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(Proof): For the ‘only if’ part, see [New]. Suppose that $K$ is discon-
nected. Then there exist two closed sets $K_{1}$ and $K_{2}$ with $K=K_{1}\cup K_{2}$ and
$K_{1}\cap K_{2}=\emptyset$ . Take a point $z_{0}$ with $d(z_{0,1}K)=d(z0, K2)$ where $d$ denotes
the Euclid distance in C. Then $z_{0}\in K^{c}$ and so let $U_{0}$ be the connected
component of $K^{c}$ containing $z_{0}$ . Since $\partial U_{0}$ is connected by the assumption,
either $\partial U_{0}\subset K_{1}$ or $\partial U_{0}\subset K_{2}$ . Without loss of generality we can assume
$\partial U_{0}\subset K_{1}$ . On the other hand denote $r_{0}:=d(z_{0,1}K)=d(z_{0}, K_{2})$ and let
$D_{r_{0}}(\mathcal{Z}_{0}):=\{z||z-z\mathrm{o}|<r_{0}\}.$ Then $\overline{D_{r_{0}}(Z_{0})}\subset\overline{U_{0}}$ and there exists a point
$w\in K_{2}$ with $w\in\overline{U_{0}}$ . Since $w\in K_{2}\subset K$ , we have $w\in\partial U_{0}$ but this is a
contradiction since $\partial U_{0}\subset K_{1}$ and $K_{1}\cap K_{2}=\emptyset$ . This completes the

$\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{o}\mathrm{f}\square$

.

(Proof of Theorem 2): By Proposition 1, it is sufficient to to show
that the boundary $\partial U$ is connected for each Fatou component $U$ . Since $U$

is bounded, the boundary of $U$ as a subset of $\mathbb{C}$ and the one as the subset
$\mathrm{o}\mathrm{f}\overline{\mathbb{C}}$ coincide. Hence $U$ is simply connected if and only if $\partial U$ is

$\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{C}\mathrm{t}\mathrm{e}\mathrm{d}\square$

([Bea], p.81, Proposition 5.1.4). This completes the proof.

Remark 2 (1) Since a non-simply connected Fatou component is nec-
essarily a wandering domain, the assumption of Theorem 2 is equivalent
to that $\mathrm{a}\mathbb{I}$ the components of $F_{f}$ are bounded and $F_{f}$ admits no multiply-
connected wandering domains.
(2) Several sufficient conditions are known for a transcendental entire
function $f$ to admit no unbounded Fatou components as follows:
(i) $([\mathrm{B}\mathrm{a}3])\log M(r)=O((\log r.)^{p})$ (as $rarrow\infty$ ) where

$M(r)=|z|=r\mathrm{s}\mathrm{u}\mathrm{p}|f(Z)|$

and $1<p<3$ .

(ii) $([\mathrm{S}])$ There exists $\epsilon\in(0,1)$ such that log log $M(r)< \frac{(\log r)^{\frac{1}{2}}}{(\log\log r)^{\epsilon}}$ for

large $r$ .
(iii) $([\mathrm{S}])$ The order of $f$ is less than $\frac{1}{2}$ and $\frac{\log M(2r)}{\log M(r)}arrow c$ (finite constant)
as $rarrow\infty$ .
Note that the condition (ii) includes the condition (i).

3.2 A property of inner functions

(Proof of Lemma 1): If $g$ is a finite Blaschke product, then $g$ is a
rational function of degree $d\geq 2$ . It is well known that in general the
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closure of the set of all the inverse images of $z_{0}$ by a rational function $R$

$\mathrm{o}\mathrm{f}_{\text{・}}\mathrm{d}\mathrm{e}\mathrm{g}\mathrm{r}\mathrm{e}\mathrm{e}d\geq 2$ contains its Julia set $J_{R}$ for any $z_{0}$ which is not a Fatou
exceptional point ([Bea], p.79, Theorem 4.2.7). If the Denjoy-Wolff point
$p$ is in $\mathrm{D}$ , then $J_{g}=\partial \mathrm{D}$ and if the Denjoy-Wolff point $p$ is in $\partial \mathrm{D}$ , then
$J_{g}=\partial \mathrm{D}$ or at least $J_{g}$ is a perfect set in $\partial \mathrm{D}$. In any cases all the inverse
images of $z_{0}$ are in $\mathrm{D}$ for every $z_{0}\in \mathrm{D}$ . So our assertion holds for

$E=E(g):=$ {$z|z$ is a Fatou exceptional point for $g$}

and we have $\#_{E(g)}\leq 2$ , which implies that $E$ is a set of $1\mathrm{o}g$arithmic
capacity zero.

lf $g$ is not a finite Blaschke product, then by Frostman’s theorem ([G],
p.79, Theorem 6.4) there exists a set $E_{1}\in \mathrm{D}$ of capacity zero such that

$z-a$
$T_{a}\circ g$ is a Blaschke product for every $a\in \mathrm{D}\backslash E_{1}$ , where $T_{a}(z):=-$ .

$1-\overline{a}z$

Therefore $B:=T_{a^{\circ}}g\circ Ta-1$ is also a Blaschke product. By applying
Frostinan’s theorem to each $g^{n}$ , we obtain the set $\bigcup_{n1}^{\infty}=E_{i}$ of logarithmic
capacity zero such that $\tau_{a}\mathrm{o}g^{n_{\mathrm{O}}}\tau a-1=B^{n}$ holds and each $B^{n}$ is a Blaschke
product for every $a \in \mathrm{D}\backslash (\bigcup_{n=1}^{\infty}Ei)$ . Now it is sufficient to prove our lemma
for $B$ , so we concentrate on a fixed $a \in \mathrm{D}\backslash (\bigcup_{n=1i}^{\infty}E)$ and corresponding
Blaschke product $B=T_{a}\mathrm{o}$ go $\tau_{a}-1$ . Let $A_{n}\subset\partial \mathrm{D}$ be the set of accumulation
points of $B^{-n}(0)$ , then $A_{n}$ is closed and $B^{n}$ can be analytically continued
to a meromorphic function on $\overline{\mathbb{C}}\backslash A_{n}$ by the reflection principle ([G], p.75,
Theorem 6.1). In other words, $A_{n}$ is equal to the set of singularities of $B^{n}$

(that is, points at which $B^{n}(z)$ does not extend analytically). There exists
a set $E_{B_{n}}$ of logarithmic capacity zero such that $A_{n}$ is equal to the set of
accumulation points of $B^{-n}(p)$ for $p\in \mathrm{D}\backslash E_{B_{n}}$ ( $[\mathrm{G}]$ , Theorem 6.6). Let
$E:= \bigcup_{n=1}^{\infty}EB_{n}$ , then $E$ is a set of capacity zero and for every $z_{0}\in \mathrm{D}\backslash E$

we have $\bigcup_{n=1}^{\infty}B^{-n}(z\mathrm{o})\supset\overline{\bigcup_{n1}^{\infty}=A_{n}}$ .
First let us consider the case when the Denjoy-Wolff point $p$ is in D.

Suppose that $\overline{\bigcup_{n=1}^{\infty}B^{-n}(Z\mathrm{o})}\supset\partial \mathrm{D}$ does not hold for a $z_{0}\in \mathrm{D}\backslash E$ , then there
exists a open set $V$ with $V\cap\partial \mathrm{D}\neq\emptyset$ such that $B^{n}$ can be defined on $V$

for every $n\in \mathrm{N}$ and $V \cap(\bigcup_{n=1}^{\infty}B^{-}n(z_{0}))=\emptyset$ . We take $V$ as the maximal
set satisfying this property. Let $W:=V\cap\partial \mathrm{D}$ . Since $B$ is not a finite
Blaschke product, we have $\#\{B^{-1}(0)\}=\infty$ and so $A_{1}\neq\emptyset$ . Hence for a
$z_{0}\in \mathrm{D}\backslash E$ we have $W\neq\partial \mathrm{D}$ . So there exists a point $\alpha\in\partial \mathrm{D}\backslash W$ . Since $B^{n}$

cannot take the values $z_{0},\overline{\overline{z_{0}}}1$ and $\alpha,$ $\{B^{n}|V\}^{\infty}n=1$ is a normal family. Then
by the dynamics of $B$ on $\mathrm{D}$ , we have $B^{n}|Varrow p$ locally uniformly. But on
the other hand $B^{n}|(V\cap(\overline{\mathrm{D}})^{C})arrow\overline{\overline{p}}1$ by the construction of the extension,
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which is a contradiction. Hence $\bigcup_{n=1}^{\infty}B^{-n}(z\mathrm{o})\supset\partial \mathrm{D}$ holds in this case.
Next we consider the case when the Denjoy-Wolff point $p$ is on the

boundary of D. Let $K:= \bigcup_{n=1}^{\infty}A_{n}$ and suppose that $K\neq\partial \mathrm{D}$. Then
$B^{n}$ is defined on $\overline{C}\backslash K$ for every $n\in$ N. Obviously $K$ is closed. If $K$

consists of a single point, say $\beta$ , then we have $B(\partial \mathrm{D}\backslash \{\beta\})\subset\partial \mathrm{D}\backslash \{\beta\}$ and
$B|(\partial \mathrm{D}\backslash \{\beta\})$ is one to one since $B$ is extended by the reflection principle.
It follows that $B$ is a M\"obius transformation, which is a contradiction.
By the similar argument, we can prove $\#_{K}\geq 3$ . Then $K$ cannot have
an isolated point. If this is not the case, let $\beta\in K$ be an isolated point.
Then $\beta$ is an essential singularity $\underline{\mathrm{a}}\mathrm{n}\mathrm{d}$ hence by Picard’s theorem, $B$ takes
all but $\mathrm{e}\mathrm{X}\mathrm{C}\mathrm{e}_{\underline{\mathrm{P}^{\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{a}}}}\mathrm{o}1$ two values in $\mathbb{C}$ infinitely often. This contradicts the
fact that $B(\mathbb{C}\backslash K)\subset\overline{\mathbb{C}}\backslash K$ and $\#_{K}\geq 3$ . Therefore it follows that $K$

is a perfect set: Since $\overline{\cup.n=1B^{-n}\infty(z\mathrm{o})}\supset K$ holds for every $z_{0}\in \mathrm{D}\backslash E$ , this
completes the proof. $\square$

(Proof of Lemma 2): In the case when $U$ is an attracting basin, the
result is a special case of Theorem 3 in [P1]. In the case when $U$ is a
parabolic basin, the result -follows by combining the series of theorems in
[DM] (Theorem 6.1, Theorem 4.2, Corollary 4.3, Theorem 3.1)

$\mathrm{t}\mathrm{o}\mathrm{g}\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{e}\coprod \mathrm{r}$

with the Theorem 3 in [P1].
$t$ .

3.3 In the case when $F_{f}$ admits an unbounded component –On
the Boundary of unbounded invariant Fatou Components

(Proof of Main Theorem): In what follows we assume that $n_{0}=1$

(that is, $U$ is an invariant component) and $m_{0}=1$ for simplicity. This
causes no loss of generality, because we have only to consider $f^{m_{0}}$ instead
of $f$ in general cases.
Case (1) Since $\infty$ is accessible, there exists a continuous curve $L(t)(0\leq$

$t<1)$ in $U$ with $\lim_{tarrow 1}L(t)=\infty$ . By deforming $L(t)$ slightly, we construct
a new curve $\mathcal{L}(t)$ satisfying the following condition.

Lemma 3 There exists a curve $\mathcal{L}(t)(0\leq t<1)$ with $\lim_{tarrow 1}\mathcal{L}(t)=\infty$

such that every branch of $f^{-n}$ can be analytically continued along it for
every $n\in \mathrm{N}$ .

(Proof): We may assume that $L(0)\not\in P_{f}$ , since $q\not\in P_{f}$ we have $U\not\subset P_{f}$ .
Let $p_{0:=}L(\mathrm{o}),p_{1},p2,$ $\ldots$ be points on $L$ such that all the piecewise linear
line segments connecting $p_{0},p_{1,p_{2}},$ $\ldots$ lie in $U$ . Let $F_{n}^{(1)},$ $F_{n}(2),$

$\ldots$ , $F_{n}^{(m)},$
$\ldots$
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be all the branches of $f^{-n}$ which take values on $U$ . The range of the suffix
$m$ may be finite or infinite. Define

$\Theta_{n}^{(m)}(p_{0}):=\{e^{i\theta}|F_{n}^{(m)}\mathrm{c}\mathrm{a}\mathrm{n}$ be analyticaly continued along the ray
$|\mathrm{h}\mathrm{o}\mathrm{m}p_{0}$ in the direction $\theta$ } $(n=1,2, \ldots)$ .

Then by the next Gross’s Star Theorem $([\mathrm{N}\mathrm{e}\mathrm{v}])$ , it follows that $\Theta_{n}^{(m)}(p_{0})$

has full measure in $\partial \mathrm{D}$.

Lemma $\mathrm{C}$ (Gross’s Star Theorem) Let $f$ be an entire function and
$F$ a branch of $f^{-1}$ defined in the neighborhood of $p_{0}\in \mathbb{C}$ . Then $F$ can be
analytically continued along almost all rays from $p_{0}$ in the direction $\theta$ .

Then the set
$\Theta(p\mathrm{o}):=\bigcap_{n\geq 1,m\geq 1}\Theta_{n}(m)(p_{0})$

has also full measure in $\partial \mathrm{D}$ . Hence by changing $p_{1}$ slightly to a point $p_{1}’$ , the
segments $\overline{p_{0}p_{1}’}$ and $\overline{p_{1}’p_{2}}$ lie in $U$ and all the branches $F_{n}^{(m)}(n\geq 1, m\geq 1)$

can be analytically continued along $\overline{p_{0}p_{1}’}$ . By the same method, we can
find a point $p_{2}’$ close to $p_{2}$ such that the segment $\overline{p_{1p_{2}}^{\prime/}}$ lies in $U$ and has the
same property as above. By repeating this argument, we can prove

$\mathrm{t}\mathrm{h}\mathrm{e}\square$

Lemma 3.

Let $l_{n}^{(m)}(t):=F_{n}^{(m)}(\mathcal{L}(t))$ then we have $\lim_{tarrow 1}l_{n}^{(m)}(t)=\infty$ . For sup-
pose this is false, then there exist an increasing sequence of parameter
values $t_{1}<t_{2}<\cdots<t_{k}<\cdots$ and a finite point $\alpha$ with $\lim_{karrow\infty}\iota_{n}^{(m)}(\mathrm{t}_{k})=$

$\alpha\neq\infty$ . Then it follows that $\lim_{karrow\infty}\mathcal{L}(t_{k})=f^{n}(\alpha)\neq\infty$ and this contra-
dicts the fact $\lim_{karrow\infty}\mathcal{L}(t_{k})=\infty$ .

Let $\varphi$ : $\mathrm{D}\mapsto U$ be a Riemann map of $U$ . Then

$\Gamma(t):=\varphi^{-1}(\mathcal{L}(t))$ and $\gamma_{n}^{(m)}(t):=\varphi^{-1}(l_{n}^{(m})(t))$

are curves in $\mathrm{D}$ landing at a point in $\partial \mathrm{D}$ . This fact is not so trivial but
follows from the proposition in [P2](p.29, Proposition 2.14). We may
assume that $\Gamma(t)$ lands at $z=1\in\partial \mathrm{D}$ for simplicity. If $\lim_{tarrow 1\gamma n}(m0)(0t)=$

$e^{i\theta_{0}}$ , then since $\lim_{tarrow 1\varphi}(\gamma_{n_{0}}^{(}(m_{0})t))=\lim_{tarrow 1}l_{n_{0}}(m_{0})(t)=\infty$, it follows that
there exists the radial limit $\lim_{rarrow 1}\varphi(rei\theta_{0})$ and this is equal to $\infty$ . This
fact follows $\mathrm{h}\mathrm{o}\mathrm{m}$ the theorem in [P2] (p.34, Theorem 2.16). Therefore it
is sufficient to show that the set of all the landing points of $\gamma_{n}^{(m)}(t)(n\geq$

$1,$ $m\geq 1)$ is dense in $\partial \mathrm{D}$.
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Let $g:=\varphi^{-1}\mathrm{o}f\mathrm{o}\varphi$ : $\mathrm{D}arrow \mathrm{D}$ . Then by Fatou’s theorem $\varphi$ has radial
limit $\varphi(e^{i\theta})=\lim_{r\nearrow 1\varphi}(re^{i})\theta\in\partial U$ and non-constant for almost every $e^{i\theta}\in$

$\partial \mathrm{D}$. Hence $f\mathrm{o}\varphi(re^{i})\theta$ is a curve landing at a point in $\partial U\backslash \{\infty\}$ for almost
every $e^{i\theta}\in\partial \mathrm{D}$ . Therefore it follows that $\lim_{r\nearrow 1\varphi^{-1}}\circ f\circ\varphi(re^{i})\theta\in\partial \mathrm{D}\mathrm{a}.\mathrm{e}$.
and thus $g$ is an inner function. Let $\overline{C}:=\varphi^{-1}(C)$ then by the same reason
for $\Gamma(t),\overline{C}$ is a curve in $\mathrm{D}$ with an end point $\overline{q}\in\partial U\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{S}\mathfrak{h}\infty r$ing $g(\overline{C})\supset\overline{C}$.
Rom the dynamics of $g:\mathrm{D}arrow \mathrm{D}$ , it follows that the set $\bigcup_{n=0}g^{n}(\overline{c})\cup\{\overline{p},\overline{q}\}$

is compact in $\overline{\mathrm{D}}$ where $\overline{p}=\varphi^{-1}(p)$ and $\overline{p}$ is an attracting fixed point of $g$

and the distance between this set and $z=1$ is positive. Hence there exists
$\epsilon_{0}>0$ such that

$U_{\epsilon_{0}}(1) \cap\{\bigcup_{0=}gn(n\overline{C})\cup\infty\{\overline{p},\overline{q}\}\}=\emptyset$ (1)

Since $\Gamma(t)$ lands at $z=1$ , there exists $t_{0}\in[0,1)$ such that $\Gamma|[t_{0},1)\subset$

$U_{\epsilon_{0}}(1)$ . So by rewriting $\Gamma|[t_{0},1)$ to $\Gamma(t)(0\leq t<1)$ we may assume that
$\Gamma(t)\subset U_{\epsilon_{0}}(1)$ for $0\leq t<1$ ). Let $K:=\{z||z|\leq 1-\epsilon_{0}\}$ then since every
point in $\mathrm{D}$ tends to $\overline{p}$ under $g^{n}$ and $K$ is compact, there exists $n_{1}\in \mathrm{N}$ such
that for every $N\geq n_{1}$ we have $g^{N}(K)\subset U_{\epsilon}(\overline{p})$ . Then we have $\gamma_{N}^{(m)}(t)\subset K^{c}$

for every $N\geq n_{1}$ . For suppose that $\gamma_{N}^{(m)}(t)\cap K\neq\emptyset$ , then by operating
$f^{N}$ we have $\Gamma(t)\cap K\neq\emptyset$ which contradicts $\Gamma(t)\subset U_{\epsilon_{0}}(1)$ .

Now suppose that the conclusion does not hold. Then there exists
$(\theta_{1}, \theta_{2}):=\{e^{i\theta}|\theta_{1}<\theta<\theta_{2}\}\subset\partial \mathrm{D}$ with $\Theta_{\infty}\cap(\theta_{1}, \theta_{2})=\emptyset$ .

By changing the starting point $\Gamma(0)$ slightly, if necessary, we may as-
sume that the points $\gamma_{n}^{(m)}(0)(n, m=1,2, \cdots)$ accumulate to all over $\partial \mathrm{D}$

by Lemma 1 (1) while the end points $\gamma_{n}^{(m)}(1):=\lim_{tarrow 1}\gamma_{n}^{(}(m)t)(n,$ $m=$
$1,2,$ $\cdots)$ are not in $(\theta_{1}, \theta_{2})$ . Therefore there exists $\gamma_{n_{1}}^{(m_{1})}(t)$ such that
$\gamma_{n_{1}}^{(m_{1})}(t)\subset K^{c}$ and $\gamma_{n_{1}}^{(m_{1})}(1)\in\partial \mathrm{D}\backslash (\theta_{1}, \theta_{2})$

On the other hand there exist inverse images $g^{-n}(\overline{C})$ which have limit
points on $(\theta_{1}, \theta_{2})$ densely. The reason is as follows: Since $q\not\in P_{f}$ , there
$\mathrm{e}..\mathrm{x}.\mathrm{i}\mathrm{S}\mathrm{t}_{\mathrm{S}}\mathrm{a}\mathrm{n}\mathrm{c}\mathrm{a}\mathrm{n}\mathrm{b}\mathrm{e}\mathrm{d}\mathrm{e}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{b}_{\mathrm{o}\mathrm{r}}\mathrm{h}\mathrm{o}\mathrm{o}_{\mathrm{L}}\mathrm{d}V\mathrm{o}\mathrm{f}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{d}.\mathrm{e}\mathrm{t}V0\subset V\mathrm{i}\mathrm{S}\mathrm{a}\mathrm{n}\mathrm{e}\mathrm{i}q\mathrm{S}\mathrm{u}\mathrm{c}\mathrm{h}\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}\mathrm{a}\mathrm{n}_{\mathrm{h}}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{b}\mathrm{r}_{\mathrm{O}\mathrm{o}\mathrm{d}_{0}}\mathrm{a}\mathrm{n}\mathrm{c}\mathrm{h}\mathrm{e}\mathrm{s}F^{(1)},F\ldots,$$F^{(m}) \mathrm{g}\mathrm{b}\mathrm{o}\mathrm{r}\mathrm{h}\mathrm{f}q\mathrm{W}\mathrm{h}\frac{n(2)}{V_{0}’}\subset V.\mathrm{w}\mathrm{e}n_{\mathrm{i}\mathrm{t}}n$

’

may assume that $C\subset V_{0}$ . Define
$c_{n}^{(m)}(t):=F_{n}^{()}m(C(t))$ , $\overline{c}_{n}^{(m)}(t):=\varphi^{-}(1c^{()}(nmt))$ .

Then $c_{n}^{(m)}(t)$ is a curve in $U$ landing at a point in $\partial U$ and $\overline{c}_{n}^{(m)}(t)$ is a
curve in $\mathrm{D}$ landing at a point in $\partial \mathrm{D}$ by the same reason as before. Let
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$(\underline{\theta}_{3}, \theta_{4})\subset(\theta_{1}, \theta_{2})$ be any subarc of $(\theta_{1}, \theta_{2})$ . By changing the starting point
$C(\mathrm{O})$ slightly, if necessary, we may assume that the points $\overline{c}_{n}^{(m)}(0)(n,$ $m=$

$1,2,$ $\cdots)$ accumulate to $(\theta_{3}, \theta_{4})$ by Lemma 1 (1). Since radial limits of $\varphi$

exist and non-constant almost everywhere, by changing $\theta_{3}$ and $\theta_{4}$ slightly
if necessary, we may assume that there exist the finite values $\varphi(e^{i\theta_{3}})$

and $\varphi(e^{i\theta_{4}})$ with $\varphi(e^{i\theta_{3}})\neq\varphi(e^{i\theta_{4}})$ . Then $c_{n}^{(m)}(0)$ accumulate on $\partial U\cap$

$\varphi(\{re^{i\theta}|\theta_{3}<\theta<\theta_{4},0\leq r\leq 1\})$ . In general the family of single-valued
analytic branch of $f^{-n}(n=1,2, \ldots)$ on a domain $U_{0}$ is normal and further-
more if $U_{0}\cap J_{f}\neq\emptyset$ , any local uniform limit of a subsequence in the family
is constant ([Bea], p.193, Theorem 9.2.1, Lemma 9.2.2). So the family
$\{F_{n}^{(m)}|V\mathrm{o}\}$ is normal and all its limit functions are constant and hence for a
suitable subsequence the diameter of $c_{n_{k}}(m_{k})(t)$ tends to zero, that is, $c_{n_{k}}(m_{k})(t)$

must land at a point in $\partial U\cap\varphi(\{re^{i\theta}|\theta_{3}<\theta<\theta_{4},0\leq r\leq 1\})$ if the con-
stant limit is finite. Therefore $\overline{C}_{n_{k}}^{(m_{k})}(t)$ must land at a point in $(\theta_{3}, \theta_{4})$ . If the
constant limit is $\infty$ , for large enough $n_{k}$ the curves $c_{nk}^{(m_{k})}$ cannot intersect
both $\{\varphi(re^{i\theta}3)|0\leq r\leq 1\}$ and $\{\varphi(re^{i\theta}4)|0\leq r\leq 1\}$ which are bounded
set, since the convergence is uniform on $V_{0}$ . Hence $\mathrm{a}g$ain we can conclude
that $C_{n_{k}}^{(m_{k})}(t)$ must land at a point in $\partial U\cap\varphi(\{re^{i}\theta|\theta_{3}<\theta<\theta_{4},0\leq r\leq 1\})$

and therefore $\overline{c_{n_{k}}.}(m_{k})(t)$ must land at a point in $(\theta_{3}, \theta_{4})$ . This proves the as-
sertion.

Then there exists $\overline{c}_{N1}^{(M_{1})}$ such that $\gamma_{n_{1}}^{(m_{1})}\cap\overline{c}_{N1}^{(M_{1})}\neq\emptyset$ . We may as-
sume that $n_{1}>N_{1}$ . Let $u\in\gamma_{n_{1}}^{(m)}1\cap\overline{c}_{N1}^{(M_{1})}$ then since $u\in\gamma_{n_{1}}^{(m)}1$ , we have
$g^{n_{1}}(u)\in U_{\epsilon_{0}}(1)$ . On the other hand since $u\in\overline{c}_{N1}^{(M_{1})}$ and $n_{1}>N_{1}$ , we have
$g^{n_{1}}(u) \in\bigcup_{n=0}^{\infty}g^{n}(\overline{c})$ which contradicts (1). Therefore $\Theta_{\infty}$ is dense in $\partial \mathrm{D}$ .
Disconnectivity of $J_{f}$ easily follows by the same argument as in the

$\mathrm{c}\mathrm{a}\mathrm{s}\mathrm{e}\square$

of $E_{\lambda}$ in \S 1. This completes the proof in the case of (1).

$\mathrm{C}\underline{\mathrm{a}\mathrm{s}\mathrm{e}(2)}$The proof is quite parallel to the case (1). Note that by Lemma
2, $\bigcup_{n=1}^{\infty}g^{-n}(Z0)\supset\partial \mathrm{D}(z_{0}\in \mathrm{D}\backslash E)$ holds for $g=\varphi^{-1}\mathrm{o}f\mathrm{o}\varphi$ in this case. $\square$

$\mathrm{C}\mathrm{a}\mathrm{s}\mathrm{e}(3)-n$ Since $g(z)=e^{2\pi i\theta_{0}}$ with $\theta_{0}\in \mathbb{R}\backslash \mathbb{Q}$ , the inverse image of $\Gamma(t)$

by $g$ is unique and denote it by $\gamma_{n}(t)$ . Then it is obvious that the end
points of $\gamma_{n}(t)$ are dense in $\partial \mathrm{D}$ and $\varphi$ attains radial limit $\infty$ there, since
$g(z)$ is an irrational rotation and

$\lim_{tarrow 1}\varphi(\gamma n(t))=\lim f-1(tarrow 1\varphi(\Gamma(t)))=\infty$. $\square$

Case (4) $\ln$ this case we need not assume the accessibility of $\infty$ , because
this condition is automaticaly satisfied $([\mathrm{B}\mathrm{a}6])$ . The set $\bigcup_{n=0}^{\infty}fn(C)$ is a
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curve which may have $\mathrm{s}\mathrm{e}\mathrm{l}\dot{\mathrm{f}}$-intersections and tends to $\infty$ . It is not difficult
to take $L$ satisfying $L \cap(\bigcup_{n0}^{\infty}f=n(c))=\emptyset$. Hence we have $\mathcal{L}\cap(\bigcup_{n0}^{\infty}f=n(c))=$

$\emptyset$ . The rest of the proof is quite parallel to the case (1) if the conclusion of
Lemma 2 (1) holds for $g$ . If we have only the conclusion of Lemma 2 (2),
then we can prove that for every arc $A\subset\partial \mathrm{D}$ with $A\cap K\neq\emptyset,$

$A\cap\Theta_{\infty}\neq\emptyset\square$

holds by the similar argument.
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