On the Boundary of unbounded invariant Fatou Components of Entire Functions

Masashi KISAKA (木坂 正史)

Department of Mathematics, College of Integrated Arts and Science, University of Osaka Prefecture, Gakuen-cho 1-1, Sakai 593, Japan e-mail : kisaka@mathsun.cias.osakafu-u.ac.jp

1 Definitions and Results

Let f be a transcendental entire function and f^n denote the *n*-th iterate of f. Recall that the Fatou set F_f and the Julia set J_f of f are defined as follows:

 $F_f := \{z \in \mathbb{C} \mid \{f^n\}_{n=1}^{\infty} \text{ is a normal family in a neighborhood of } z\},$ $J_f := \mathbb{C} \setminus F_f.$

It is possible to consider the Julia set to be a subset of the Riemann sphere $\widehat{\mathbb{C}} := \mathbb{C} \cup \{\infty\}$ by adding the point of infinity ∞ to it. This definition is mainly adopted in the case of meromorphic functions (for example, see [**Ber**]) and also there are some researches on convergence phenomena of Julia sets as subsets of $\widehat{\mathbb{C}}$ ([**Ki**], [**Kr**], [**KrK**]). In this setting, J_f is compact in $\widehat{\mathbb{C}}$ and hence J_f is rather easy to handle. But for a transcendental entire function the suitable phase space as a dynamical system is the complex plane \mathbb{C} , not the Riemann sphere $\widehat{\mathbb{C}}$, because ∞ is an essential singularity of f and there seems to be no reasonable way to define the value at ∞ . So it is more natural to regard J_f as a subset of \mathbb{C} rather than of $\widehat{\mathbb{C}}$ and hence M_f as above and write $J_f \cup \{\infty\}$ when we consider J_f to be a subset of $\widehat{\mathbb{C}}$.

A connected component U of F_f is called a Fatou component. A Fatou component is called a wandering domain if $f^m(U) \cap f^n(U) = \emptyset$ for every $m, n \in \mathbb{N} \ (m \neq n)$. If there exists an $n_0 \in \mathbb{N}$ with $f^{n_0}(U) \subseteq U, U$ is called a periodic component and it is well known that there are following four possibilities:

- 1. There exists a point $z_0 \in U$ with $f^{n_0}(z_0) = z_0$ and $|(f^{n_0})'(z_0)| < 1$ and every point $z \in U$ satisfies $f^{n_0k}(z) \to z_0$ as $k \to \infty$. The point z_0 is called an attracting periodic point and the domain U is called an attracting basin.
- 2. There exists a point $z_0 \in \partial U$ with $f^{n_0}(z_0) = z_0$ and $(f^{n_0})'(z_0) = e^{2\pi i \theta}$ ($\theta \in \mathbb{Q}$) and every point $z \in U$ satisfies $f^{n_0 k}(z) \to z_0$ as $k \to \infty$. The point z_0 is called a parabolic periodic point and the domain U is called a parabolic basin.
- 3. There exists a point $z_0 \in U$ with $f^{n_0}(z_0) = z_0$ and $(f^{n_0})'(z_0) = e^{2\pi i \theta}$ $(\theta \in \mathbb{R} \setminus \mathbb{Q})$ and $f^{n_0}|U$ is conjugate to an irrational rotation of a unit disk. The domain U is called a Siegel disk.
- 4. For every $z \in U$, $f^{n_0k}(z) \to \infty$ as $k \to \infty$. The domain U is called a Baker domain.

In particular, if $n_0 = 1$, U is called an invariant component. U is called completely invariant if U satisfies $f^{-1}(U) \subseteq U$. U is called a preperiodic component if $f^m(U)$ is a periodic component for an $m \ge 1$. U is called eventually periodic if U is periodic or preperiodic. It is known that eventually periodic components of a transcendental entire function are simply connected ([**Ber**], [**EL1**]) while a wandering domain can be multiply-connected ([**Ba1**], [**Ba2**], [**Ba5**]).

The boundary of unbounded periodic Fatou component can be extremely complicated. For example, consider the exponential family $E_{\lambda}(z) := \lambda e^{z}$. If λ satisfies $0 < \lambda < \frac{1}{e}$, $E_{\lambda}(z)$ has a unique attracting fixed point p_{λ} with an unbounded simply connected completely invariant basin $\Omega(p_{\lambda})$ and the Fatou set $F_{E_{\lambda}}$ is equal to this basin ([**DG**]). Let $\varphi : \mathbb{D} \longrightarrow \Omega(p_{\lambda})$ be a Riemann map of $\Omega(p_{\lambda})$ from a unit disk \mathbb{D} , then the radial limit $\lim_{r \neq 1} \varphi(re^{i\theta})$ exists for all $e^{i\theta} \in \partial \mathbb{D}$ and moreover the set

$$\Theta_{\infty} := \{ e^{i\theta} \mid \varphi(e^{i\theta}) := \lim_{r \nearrow 1} \varphi(re^{i\theta}) = \infty \}$$

is dense in $\partial \mathbb{D}$ ([**DG**]). This implies that the Riemann map is highly discontinuous and hence the boundary of $\Omega(p_{\lambda})$, which is equal to $J_{E_{\lambda}}$, is extremely complicated. From this fact, it follows that $J_{E_{\lambda}}$ is disconnected in \mathbb{C} , since φ is conformal the set

$$\varphi(\{re^{i\theta_1} \mid 0 \le r < 1\} \cup \{re^{i\theta_2} \mid 0 \le r < 1\}) \subset U \quad (\theta_1, \theta_2 \in \Theta_{\infty}, \ \theta_1 \neq \theta_2)$$

is a Jordan arc in \mathbb{C} and this separates $J_{E_{\lambda}}$ into two disjoint relatively open subsets.

Taking these facts into account, we shall investigate the set Θ_{∞} for a genetal unbounded periodic component U and also consider the following problem

Problem : When is the Julia set of a transcendental entire function f connected or disconnected as a subset of \mathbb{C} ?

If f is a polynomial, the following criterion is well known. (For example, see [Bea] or [M]).

Proposition A Let f be a polynomial of degree $d \ge 2$. Then the Julia set J_f is connected if and only if no finite critical values of f tend to ∞ by the iterates of f.

Here, a critical value is a point p := f(c) for a point c with f'(c) = 0. This is a singularity of f^{-1} . For polynomials we have only to consider this type of singularities but there can be another type of singularities called an asymptotic value for the transcendental case. A point p is called an asymptotic value if there exists a continuous curve L(t) $(0 \le t < 1)$ called an asymptotic path with

$$\lim_{t\to 1} L(t) = \infty \quad \text{and} \quad \lim_{t\to 1} f(L(t)) = p.$$

A point p is called a singular value if it is either a critical or an asymptotic value and we denote the set of all singular values as $sing(f^{-1})$.

If f is transcendental, however, the above criterion does not hold. For example, let us consider the exponential family $E_{\lambda}(z) := \lambda e^{z}$ again. If λ satisfies $0 < \lambda < \frac{1}{e}$, the unique singular value z = 0 (this is an asymptotic value) is attracted to the fixed point p_{λ} and hence does not tend to ∞ but the Julia set $J_{E_{\lambda}}$ is disconnected as we mentioned above.

For other values of λ , for example $\lambda > \frac{1}{e}$, the singular value z = 0 may tend to ∞ . If f is a polynomial all of whose critical values tend to ∞ , then J_f is a Cantor set and especially disconnected. But on the other hand in this case J_f is equal to the entire plain $\mathbb{C}([\mathbf{D}])$ and hence connected.

Before considering the connectivity of J_f in \mathbb{C} , we investigate the connectivity of $J_f \cup \{\infty\}$ in $\widehat{\mathbb{C}}$. In this situation compactness of $J_f \cup \{\infty\}$ in $\widehat{\mathbb{C}}$ makes the problem easier. Actually we can prove the following:

Theorem 1 Let f be a transcendental entire function. Then the set $J_f \cup \{\infty\}$ in $\widehat{\mathbb{C}}$ is connected if and only if F_f has no multiply-connected wandering domains.

Corollary 1 Under one of the following conditions, $J_f \cup \{\infty\}$ in $\widehat{\mathbb{C}}$ is connected.

(1) $f \in B := \{f \mid sing(f^{-1}) \text{ is bounded}\}.$

(2) F_f has an unbounded component.

(3) There exists a curve $\Gamma(t)$ $(0 \le t < 1)$ with $\lim_{t\to 1} \Gamma(t) = \infty$ such that $f|\Gamma$ is bounded. Especially f has a finite asymptotic value.

Then how about J_f in \mathbb{C} itself? The results depend on whether F_f admits an unbounded component or not. In the case when F_f admits no unbounded components, we obtain the following:

Theorem 2 Let f be a transcendental entire function. If all the components of F_f are bounded and simply connected, then J_f is connected.

The following is an easy consequence from Theorem 1 and 2.

Corollary 2 Let f be a transcendental entire function. If all the components of F_f are bounded, then J_f is connected in \mathbb{C} if and only if $J_f \cup \{\infty\}$ is connected in $\widehat{\mathbb{C}}$.

As we mentioned before, for the unbounded component $\Omega(p_{\lambda})$ of $F_{E_{\lambda}}$ the set of all angles where the Riemann map $\varphi : \mathbb{D} \longrightarrow \Omega(p_{\lambda})$ admits the radial limit ∞ is dense in $\partial \mathbb{D}$ and this leads to the disconnectivity of $J_{E_{\lambda}}$. The Main result of this paper is the generalization of this fact. Under some conditions this result holds for various kinds of unbounded periodic Fatou components. Here, a point $p \in \partial U$ is accessible if there exists a continuous curve L(t) ($0 \leq t < 1$) in U with $\lim_{t\to 1} L(t) = p$.

Main Theorem Let U be an unbounded periodic Fatou component of a transcendental entire function $f, \varphi : \mathbb{D} \longrightarrow U$ be a Riemann map of U from a unit disk \mathbb{D} , and

$$P_{f^{n_0}}:=\overline{igcup_{n=0}^\infty(f^{n_0})^n(\operatorname{sing}((f^{n_0})^{-1})))}.$$

We assume one of the following four conditions: (1) U is an attracting basin of period n_0 and $\infty \in \partial U$ is accessible. There exists a finite point $q \in \partial U$ with $q \notin P_{f^{n_0}}$, $m_0 \in \mathbb{N}$ and a continuous curve $C(t) \subset U$ $(0 \leq t \leq 1)$ with C(1) = q and satisfies $f^{m_0}(C) \supset C$.

(2) U is a parabolic basin of period n_0 and $\infty \in \partial U$ is accessible. There exists a finite point $q \in \partial U$ with $q \notin P_{f^{n_0}}$, $m_0 \in \mathbb{N}$ and a continuous curve $C(t) \subset U$ $(0 \leq t \leq 1)$ with C(1) = q and satisfies $f^{m_0}(C) \supset C$.

(3) U is a Siegel disk of period n_0 and $\infty \in \partial U$ is accessible.

(4) U is a Baker domain of period n_0 and $f^{n_0}|U$ is not univalent. There exists a finite point $q \in \partial U$ with $q \notin P_{f^{n_0}}$, $m_0 \in \mathbb{N}$ and a continuous curve $C(t) \subset U$ ($0 \leq t \leq 1$) with C(1) = q and satisfies $f^{m_0}(C) \supset C$. Then the set

$$\Theta_{\infty} := \{ e^{i\theta} \mid \varphi(e^{i\theta}) := \lim_{r \nearrow 1} \varphi(re^{i\theta}) = \infty \}$$

is dense in $\partial \mathbb{D}$ in the case of (1), (2) or (3). In the case of (4), the closure $\overline{\Theta_{\infty}}$ contains a certain perfect set in $\partial \mathbb{D}$. In particular, J_f is disconnected in all cases.

In the case of the exponential family, Devaney and Goldberg $([\mathbf{DG}])$ obtained the explicit expression

$$arphi^{-1}\circ E_\lambda\circarphi(z)=\exp{i\Big(rac{\mu+\mu z}{1+z}\Big)},\quad \mu\in\{z\mid {
m Im}\,\, z>0\}$$

for a suitable Riemann map φ which was crucial to show the density of Θ_{∞} in $\partial \mathbb{D}$. In general, of course, we cannot obtain the explicit form of $\varphi^{-1} \circ f^{n_0} \circ \varphi(z)$ so instead of it we take advantage of a property of inner functions. In general analytic function $g : \mathbb{D} \longrightarrow \mathbb{D}$ is called an inner function if the radial limit $g(e^{i\theta}) := \lim_{r \nearrow 1} g(re^{i\theta})$ exists for almost every $e^{i\theta} \in \partial \mathbb{D}$ and satisfies $|g(e^{i\theta})| = 1$. It is easy to see that $\varphi^{-1} \circ f^{n_0} \circ \varphi$ is an inner function. It is known that an inner function g has a unique fixed point $p \in \overline{\mathbb{D}}$ called a Denjoy-Wolff point and $g^n(z)$ tends to p locally uniformly on \mathbb{D} ([**DM**]). The following is an important lemma for the proof of the Main Theorem.

Lemma 1 Let $g : \mathbb{D} \longrightarrow \mathbb{D}$ be an inner function which is not a Möbius transformation and p its Denjoy-Wolff point.

(1) If $p \in \mathbb{D}$, then $\overline{\bigcup_{n=1}^{\infty} g^{-n}(z_0)} \supset \partial \mathbb{D}$ holds for every $z_0 \in \mathbb{D} \setminus E$ where E is a certain exceptional set of logarithmic capacity zero.

(2) If $p \in \partial \mathbb{D}$, then $\overline{\bigcup_{n=1}^{\infty} g^{-n}(z_0)} \supset K$ holds for every $z_0 \in \mathbb{D} \setminus E$ where E is a certain exceptional set of logarithmic capacity zero and K is a certain perfect set in $\partial \mathbb{D}$.

If U is either an attracting basin or a parabolic basin and $g = \varphi^{-1} \circ f^{n_0} \circ \varphi$, we can say more about the set $\bigcup_{n=1}^{\infty} g^{-n}(z_0)$.

Lemma 2 Let U be either an attracting basin or a parabolic basin (not necessarily unbounded) and $g = \varphi^{-1} \circ f^{n_0} \circ \varphi$. Then there exists a set $E \subset \mathbb{D}$ of logarithmic capacity zero such that

$$\frac{\sigma_n(z_0, A)}{\sigma_n(z_0, \partial \mathbb{D})} \to \frac{measA}{2\pi} \quad (n \to \infty)$$

holds for every $z_0 \in \mathbb{D} \setminus E$ and every arc A in $\partial \mathbb{D}$, where $\sigma_n(z_0, A) = \sum_{\zeta} (1 - |\zeta|^2)$ and sum is taken over all $\zeta = |\zeta|e^{i\theta}$ with $g^n(\zeta) = z_0$ and $e^{i\theta} \in A$.

The conclusion of Lemma 2 is stronger than that of Lemma 1 (1), because it implies not only that the inverse images $g^{-n}(z_0)$ accumulate on all over $\partial \mathbb{D}$ but also that their distribution is uniform on $\partial \mathbb{D}$. We shall not give the definition of logarithmic capacity here (see [**P2**]). But we recall that a set of logarithmic capacity zero is extremely thin: it cannot contain a connected set with more than one point and its Hausdorff dimension is zero ([**DM**], [**P2**]).

In §2 we prove Theorem 1 and Corollary 1. §3 consists of three subsections. In §3.1 we prove Theorem 2 and make some remarks on the sufficient conditions for f to admit no unbounded Fatou components. In §3.2 we prove Lemma 1 and Lemma 2 which are keys for the proof of the Main Theorem. In §3.3 we prove the Main Theorem.

2 Connectivity of $J_f \cup \{\infty\}$ in $\widehat{\mathbb{C}}$

(Proof of Theorem 1): The following criterion is well known. (See for example [Bea], p.81, Proposition 5.1.5).

Proposition B Let K be a compact subset in $\widehat{\mathbb{C}}$. Then K is connected if and only if each component of the complement K^c is simply connected.

Since $J_f \cup \{\infty\}$ is compact in $\widehat{\mathbb{C}}$, we can apply Proposition B. As we mentioned in §1, eventually periodic components are simply connected. So if a Fatou component U is not simply connected, then U is necessarily a wandering domain which is not simply connected. This completes the proof. $\hfill \Box$

(Proof of Corollary 1): Under the condition (1), f^n cannot tend to ∞ through F_f ([EL2]). On the other hand, f^n tends to ∞ on any multiply-connected wandering domains ([Ba4], [EL1]). So all the Fatou components are simply connected in this case. Under the condition (2) or (3), it is known that all the Fatou components must be simply connected ([Ba4], [EL1], p.620 Corollary 1, 2).

Remark 1 (1) Let $S := \{f \mid \# \operatorname{sing}(f^{-1}) < \infty\} \subset B$. Then there is even no wandering domain in F_f for $f \in S$ ([**GK**]). For $f \in B$, F_f may admit a wandering domain U but U must be simply connected as we mentioned above. Under an additional condition

$$J_f \cap \left(ext{derived set of } igcup_{n=0}^\infty f^n(ext{sing}(f^{-1}))
ight) = \emptyset,$$

 $f \in B$ has also no wandering domain ([**BHKMT**]).

(2) We can conclude that in general if $J_f \cup \{\infty\}$ is disconnected, all the Fatou components are bounded and some of which are multiply-connected wandering domains.

3 Connectivity of J_f in \mathbb{C}

3.1 The case when all the Fatou components are bounded

Suppose that a closed connected subset K in \mathbb{C} is bounded. Then all the components of the complement K^c other than the unique unbounded component V are simply connected. (Of course, $V \cup \{\infty\} \subset \widehat{\mathbb{C}}$ is simply connected). If K is unbounded, then all the components of K^c are simply connected, but the converse is false as the example $J_{E_{\lambda}}(0 < \lambda < \frac{1}{e})$ shows. (Compare with the Proposition B). But note that $J_{E_{\lambda}} \cup \{\infty\}$ is connected in $\widehat{\mathbb{C}}$. For the connectivity of a closed subset in \mathbb{C} , the following criterion holds.

Proposition 1 Let K be a closed subset of \mathbb{C} . Then K is connected if and only if the boundary of each component U of the complement K^c is connected.

(**Proof**): For the 'only if' part, see [New]. Suppose that K is disconnected. Then there exist two closed sets K_1 and K_2 with $K = K_1 \cup K_2$ and $K_1 \cap K_2 = \emptyset$. Take a point z_0 with $d(z_0, K_1) = d(z_0, K_2)$ where d denotes the Euclid distance in \mathbb{C} . Then $z_0 \in K^c$ and so let U_0 be the connected component of K^c containing z_0 . Since ∂U_0 is connected by the assumption, either $\partial U_0 \subset K_1$ or $\partial U_0 \subset K_2$. Without loss of generality we can assume $\partial U_0 \subset K_1$. On the other hand denote $r_0 := d(z_0, K_1) = d(z_0, K_2)$ and let $D_{r_0}(z_0) := \{z \mid |z - z_0| < r_0\}$. Then $\overline{D_{r_0}(z_0)} \subset \overline{U_0}$ and there exists a point $w \in K_2$ with $w \in \overline{U_0}$. Since $w \in K_2 \subset K$, we have $w \in \partial U_0$ but this is a contradiction since $\partial U_0 \subset K_1$ and $K_1 \cap K_2 = \emptyset$. This completes the proof.

(Proof of Theorem 2): By Proposition 1, it is sufficient to to show that the boundary ∂U is connected for each Fatou component U. Since Uis bounded, the boundary of U as a subset of \mathbb{C} and the one as the subset of $\widehat{\mathbb{C}}$ coincide. Hence U is simply connected if and only if ∂U is connected ([Bea], p.81, Proposition 5.1.4). This completes the proof. \Box

Remark 2 (1) Since a non-simply connected Fatou component is necessarily a wandering domain, the assumption of Theorem 2 is equivalent to that all the components of F_f are bounded and F_f admits no multiplyconnected wandering domains.

(2) Several sufficient conditions are known for a transcendental entire function f to admit no unbounded Fatou components as follows:

(i) ([**Ba3**]) $\log M(r) = O((\log r)^p)$ (as $r \to \infty$) where $M(r) = \sup_{|z|=r} |f(z)|$ and 1 .

(ii) ([S]) There exists $\varepsilon \in (0,1)$ such that $\log \log M(r) < \frac{(\log r)^{\frac{1}{2}}}{(\log \log r)^{\varepsilon}}$ for large r.

(iii) ([S]) The order of f is less than $\frac{1}{2}$ and $\frac{\log M(2r)}{\log M(r)} \to c$ (finite constant) as $r \to \infty$.

Note that the condition (ii) includes the condition (i).

3.2 A property of inner functions

(Proof of Lemma 1): If g is a finite Blaschke product, then g is a rational function of degree $d \ge 2$. It is well known that in general the

closure of the set of all the inverse images of z_0 by a rational function Rof degree $d \ge 2$ contains its Julia set J_R for any z_0 which is not a Fatou exceptional point ([**Bea**], p.79, Theorem 4.2.7). If the Denjoy-Wolff point p is in \mathbb{D} , then $J_g = \partial \mathbb{D}$ and if the Denjoy-Wolff point p is in $\partial \mathbb{D}$, then $J_g = \partial \mathbb{D}$ or at least J_g is a perfect set in $\partial \mathbb{D}$. In any cases all the inverse images of z_0 are in \mathbb{D} for every $z_0 \in \mathbb{D}$. So our assertion holds for

 $E = E(g) := \{z \mid z \text{ is a Fatou exceptional point for } g\}$

and we have ${}^{\#}E(g) \leq 2$, which implies that E is a set of logarithmic capacity zero.

If g is not a finite Blaschke product, then by Frostman's theorem ($[\mathbf{G}]$, p.79, Theorem 6.4) there exists a set $E_1 \in \mathbb{D}$ of capacity zero such that $T_a \circ g$ is a Blaschke product for every $a \in \mathbb{D} \setminus E_1$, where $T_a(z) := \frac{z-a}{1-\overline{a}z}$. Therefore $B := T_a \circ g \circ T_a^{-1}$ is also a Blaschke product. By applying Frostman's theorem to each g^n , we obtain the set $\bigcup_{n=1}^{\infty} E_i$ of logarithmic capacity zero such that $T_a \circ g^n \circ T_a^{-1} = B^n$ holds and each B^n is a Blaschke product for every $a \in \mathbb{D} \setminus (\bigcup_{n=1}^{\infty} E_i)$. Now it is sufficient to prove our lemma for B, so we concentrate on a fixed $a \in \mathbb{D} \setminus (\bigcup_{n=1}^{\infty} E_i)$ and corresponding Blaschke product $B = T_a \circ g \circ T_a^{-1}$. Let $A_n \subset \partial \mathbb{D}$ be the set of accumulation points of $B^{-n}(0)$, then A_n is closed and B^n can be analytically continued to a meromorphic function on $\mathbb{C} \setminus A_n$ by the reflection principle ([G], p.75, Theorem 6.1). In other words, A_n is equal to the set of singularities of B^n (that is, points at which $B^n(z)$ does not extend analytically). There exists a set E_{B_n} of logarithmic capacity zero such that A_n is equal to the set of accumulation points of $B^{-n}(p)$ for $p \in \mathbb{D} \setminus E_{B_n}$ ([G], Theorem 6.6). Let $E := \bigcup_{n=1}^{\infty} E_{B_n}$, then E is a set of capacity zero and for every $z_0 \in \mathbb{D} \setminus E$ we have $\overline{\bigcup_{n=1}^{\infty}B^{-n}(z_0)}\supset\overline{\bigcup_{n=1}^{\infty}A_n}.$

First let us consider the case when the Denjoy-Wolff point p is in \mathbb{D} . Suppose that $\overline{\bigcup_{n=1}^{\infty} B^{-n}(z_0)} \supset \partial \mathbb{D}$ does not hold for a $z_0 \in \mathbb{D} \setminus E$, then there exists a open set V with $V \cap \partial \mathbb{D} \neq \emptyset$ such that B^n can be defined on V for every $n \in \mathbb{N}$ and $V \cap \left(\bigcup_{n=1}^{\infty} B^{-n}(z_0)\right) = \emptyset$. We take V as the maximal set satisfying this property. Let $W := V \cap \partial \mathbb{D}$. Since B is not a finite Blaschke product, we have $\#\{B^{-1}(0)\} = \infty$ and so $A_1 \neq \emptyset$. Hence for a $z_0 \in \mathbb{D} \setminus E$ we have $W \neq \partial \mathbb{D}$. So there exists a point $\alpha \in \partial \mathbb{D} \setminus W$. Since B^n cannot take the values $z_0, \frac{1}{z_0}$ and $\alpha, \{B^n | V\}_{n=1}^{\infty}$ is a normal family. Then by the dynamics of B on \mathbb{D} , we have $B^n | V \longrightarrow p$ locally uniformly. But on the other hand $B^n | (V \cap (\overline{\mathbb{D}})^c) \longrightarrow \frac{1}{\overline{p}}$ by the construction of the extension, which is a contradiction. Hence $\overline{\bigcup_{n=1}^{\infty} B^{-n}(z_0)} \supset \partial \mathbb{D}$ holds in this case.

Next we consider the case when the Denjoy-Wolff point p is on the boundary of \mathbb{D} . Let $K := \overline{\bigcup_{n=1}^{\infty} A_n}$ and suppose that $K \neq \partial \mathbb{D}$. Then B^n is defined on $\widehat{\mathbb{C}} \setminus K$ for every $n \in \mathbb{N}$. Obviously K is closed. If K consists of a single point, say β , then we have $B(\partial \mathbb{D} \setminus \{\beta\}) \subset \partial \mathbb{D} \setminus \{\beta\}$ and $B|(\partial \mathbb{D} \setminus \{\beta\})$ is one to one since B is extended by the reflection principle. It follows that B is a Möbius transformation, which is a contradiction. By the similar argument, we can prove $\#K \geq 3$. Then K cannot have an isolated point. If this is not the case, let $\beta \in K$ be an isolated point. Then β is an essential singularity and hence by Picard's theorem, B takes all but exceptional two values in $\widehat{\mathbb{C}}$ infinitely often. This contradicts the fact that $B(\widehat{\mathbb{C}} \setminus K) \subset \widehat{\mathbb{C}} \setminus K$ and $\#K \geq 3$. Therefore it follows that K is a perfect set. Since $\overline{\bigcup_{n=1}^{\infty} B^{-n}(z_0)} \supset K$ holds for every $z_0 \in \mathbb{D} \setminus E$, this completes the proof.

(Proof of Lemma 2): In the case when U is an attracting basin, the result is a special case of Theorem 3 in [P1]. In the case when U is a parabolic basin, the result follows by combining the series of theorems in [DM] (Theorem 6.1, Theorem 4.2, Corollary 4.3, Theorem 3.1) together with the Theorem 3 in [P1].

3.3 In the case when F_f admits an unbounded component — On the Boundary of unbounded invariant Fatou Components

(Proof of Main Theorem): In what follows we assume that $n_0 = 1$ (that is, U is an invariant component) and $m_0 = 1$ for simplicity. This causes no loss of generality, because we have only to consider f^{m_0} instead of f in general cases.

Case (1) Since ∞ is accessible, there exists a continuous curve L(t) $(0 \le t < 1)$ in U with $\lim_{t\to 1} L(t) = \infty$. By deforming L(t) slightly, we construct a new curve $\mathcal{L}(t)$ satisfying the following condition.

Lemma 3 There exists a curve $\mathcal{L}(t)$ $(0 \leq t < 1)$ with $\lim_{t\to 1} \mathcal{L}(t) = \infty$ such that every branch of f^{-n} can be analytically continued along it for every $n \in \mathbb{N}$.

(**Proof**): We may assume that $L(0) \notin P_f$, since $q \notin P_f$ we have $U \not\subset P_f$. Let $p_0 := L(0), p_1, p_2, \ldots$ be points on L such that all the piecewise linear line segments connecting p_0, p_1, p_2, \ldots lie in U. Let $F_n^{(1)}, F_n^{(2)}, \ldots, F_n^{(m)}, \ldots$ be all the branches of f^{-n} which take values on U. The range of the suffix m may be finite or infinite. Define

$$egin{array}{lll} \Theta_n^{(m)}(p_0) := \{e^{i heta} \mid F_n^{(m)} ext{can be analytically continued along the ray} \ \mid ext{ from } p_0 ext{ in the direction } heta\} \quad (n=1,2,\ldots). \end{array}$$

Then by the next Gross's Star Theorem ([Nev]), it follows that $\Theta_n^{(m)}(p_0)$ has full measure in $\partial \mathbb{D}$.

Lemma C (Gross's Star Theorem) Let f be an entire function and F a branch of f^{-1} defined in the neighborhood of $p_0 \in \mathbb{C}$. Then F can be analytically continued along almost all rays from p_0 in the direction θ .

Then the set

$$\Theta(p_0) := \bigcap_{n \ge 1, m \ge 1} \Theta_n^{(m)}(p_0)$$

has also full measure in $\partial \mathbb{D}$. Hence by changing p_1 slightly to a point p'_1 , the segments $\overline{p_0p'_1}$ and $\overline{p'_1p_2}$ lie in U and all the branches $F_n^{(m)}$ $(n \ge 1, m \ge 1)$ can be analytically continued along $\overline{p_0p'_1}$. By the same method, we can find a point p'_2 close to p_2 such that the segment $\overline{p'_1p'_2}$ lies in U and has the same property as above. By repeating this argument, we can prove the Lemma 3.

Let $l_n^{(m)}(t) := F_n^{(m)}(\mathcal{L}(t))$ then we have $\lim_{t\to 1} l_n^{(m)}(t) = \infty$. For suppose this is false, then there exist an increasing sequence of parameter values $t_1 < t_2 < \cdots < t_k < \cdots$ and a finite point α with $\lim_{k\to\infty} l_n^{(m)}(t_k) = \alpha \neq \infty$. Then it follows that $\lim_{k\to\infty} \mathcal{L}(t_k) = f^n(\alpha) \neq \infty$ and this contradicts the fact $\lim_{k\to\infty} \mathcal{L}(t_k) = \infty$.

Let $\varphi : \mathbb{D} \longmapsto U$ be a Riemann map of U. Then

$$\Gamma(t):=arphi^{-1}(\mathcal{L}(t)) \quad ext{and} \quad \gamma_n^{(m)}(t):=arphi^{-1}(l_n^{(m)}(t))$$

are curves in \mathbb{D} landing at a point in $\partial \mathbb{D}$. This fact is not so trivial but follows from the proposition in [**P2**](p.29, Proposition 2.14). We may assume that $\Gamma(t)$ lands at $z = 1 \in \partial \mathbb{D}$ for simplicity. If $\lim_{t\to 1} \gamma_{n_0}^{(m_0)}(t) = e^{i\theta_0}$, then since $\lim_{t\to 1} \varphi(\gamma_{n_0}^{(m_0)}(t)) = \lim_{t\to 1} l_{n_0}^{(m_0)}(t) = \infty$, it follows that there exists the radial limit $\lim_{r\to 1} \varphi(re^{i\theta_0})$ and this is equal to ∞ . This fact follows from the theorem in [**P2**] (p.34, Theorem 2.16). Therefore it is sufficient to show that the set of all the landing points of $\gamma_n^{(m)}(t)$ ($n \ge 1, m \ge 1$) is dense in $\partial \mathbb{D}$. Let $g := \varphi^{-1} \circ f \circ \varphi : \mathbb{D} \longrightarrow \mathbb{D}$. Then by Fatou's theorem φ has radial limit $\varphi(e^{i\theta}) = \lim_{r \nearrow 1} \varphi(re^{i\theta}) \in \partial U$ and non-constant for almost every $e^{i\theta} \in \partial \mathbb{D}$. Hence $f \circ \varphi(re^{i\theta})$ is a curve landing at a point in $\partial U \setminus \{\infty\}$ for almost every $e^{i\theta} \in \partial \mathbb{D}$. Therefore it follows that $\lim_{r \nearrow 1} \varphi^{-1} \circ f \circ \varphi(re^{i\theta}) \in \partial \mathbb{D}$ a.e. and thus g is an inner function. Let $\widetilde{C} := \varphi^{-1}(C)$ then by the same reason for $\Gamma(t)$, \widetilde{C} is a curve in \mathbb{D} with an end point $\widetilde{q} \in \partial U$ satisfying $g(\widetilde{C}) \supset \widetilde{C}$. From the dynamics of $g : \mathbb{D} \to \mathbb{D}$, it follows that the set $\bigcup_{n=0}^{\infty} g^n(\widetilde{C}) \bigcup \{\widetilde{p}, \ \widetilde{q}\}$ is compact in $\overline{\mathbb{D}}$ where $\widetilde{p} = \varphi^{-1}(p)$ and \widetilde{p} is an attracting fixed point of gand the distance between this set and z = 1 is positive. Hence there exists $\varepsilon_0 > 0$ such that

$$U_{\varepsilon_0}(1) \cap \left\{ \bigcup_{n=0}^{\infty} g^n(\widetilde{C}) \bigcup \{ \tilde{p}, \ \tilde{q} \} \right\} = \emptyset$$
(1)

Since $\Gamma(t)$ lands at z = 1, there exists $t_0 \in [0,1)$ such that $\Gamma|[t_0,1) \subset U_{\varepsilon_0}(1)$. So by rewriting $\Gamma|[t_0,1)$ to $\Gamma(t)$ $(0 \leq t < 1)$ we may assume that $\Gamma(t) \subset U_{\varepsilon_0}(1)$ for $0 \leq t < 1$). Let $K := \{z \mid |z| \leq 1 - \varepsilon_0\}$ then since every point in \mathbb{D} tends to \tilde{p} under g^n and K is compact, there exists $n_1 \in \mathbb{N}$ such that for every $N \geq n_1$ we have $g^N(K) \subset U_{\varepsilon}(\tilde{p})$. Then we have $\gamma_N^{(m)}(t) \subset K^c$ for every $N \geq n_1$. For suppose that $\gamma_N^{(m)}(t) \cap K \neq \emptyset$, then by operating f^N we have $\Gamma(t) \cap K \neq \emptyset$ which contradicts $\Gamma(t) \subset U_{\varepsilon_0}(1)$.

Now suppose that the conclusion does not hold. Then there exists

$$(heta_1, heta_2):=\{e^{i heta}\mid heta_1< heta< heta_2\}\subset\partial\mathbb{D}\quad ext{with}\quad\Theta_\infty\cap(heta_1, heta_2)=\emptyset.$$

By changing the starting point $\Gamma(0)$ slightly, if necessary, we may assume that the points $\gamma_n^{(m)}(0)$ $(n, m = 1, 2, \cdots)$ accumulate to all over $\partial \mathbb{D}$ by Lemma 1 (1) while the end points $\gamma_n^{(m)}(1) := \lim_{t\to 1} \gamma_n^{(m)}(t)$ $(n, m = 1, 2, \cdots)$ are not in (θ_1, θ_2) . Therefore there exists $\gamma_{n_1}^{(m_1)}(t)$ such that $\gamma_{n_1}^{(m_1)}(t) \subset K^c$ and $\gamma_{n_1}^{(m_1)}(1) \in \partial \mathbb{D} \setminus (\theta_1, \theta_2)$

On the other hand there exist inverse images $g^{-n}(\widetilde{C})$ which have limit points on (θ_1, θ_2) densely. The reason is as follows: Since $q \notin P_f$, there exists a neighborhood V of q such that all the branches $F_n^{(1)}, F_n^{(2)}, \ldots, F_n^{(m)},$ \ldots can be defined. Let $V_0 \subset V$ is a neighborhood of q with $\overline{V_0} \subset V$. We may assume that $C \subset V_0$. Define

$$c_n^{(m)}(t) := F_n^{(m)}(C(t)), \quad \tilde{c}_n^{(m)}(t) := \varphi^{-1}(c_n^{(m)}(t)).$$

Then $c_n^{(m)}(t)$ is a curve in U landing at a point in ∂U and $\tilde{c}_n^{(m)}(t)$ is a curve in \mathbb{D} landing at a point in $\partial \mathbb{D}$ by the same reason as before. Let

 $(\theta_3, \theta_4) \subset (\theta_1, \theta_2)$ be any subarc of (θ_1, θ_2) . By changing the starting point $\widetilde{C}(0)$ slightly, if necessary, we may assume that the points $ilde{c}_n^{(m)}(0)$ (n,m= $(1, 2, \cdots)$ accumulate to (θ_3, θ_4) by Lemma 1 (1). Since radial limits of φ exist and non-constant almost everywhere, by changing θ_3 and θ_4 slightly if necessary, we may assume that there exist the finite values $\varphi(e^{i\theta_3})$ and $\varphi(e^{i\theta_4})$ with $\varphi(e^{i\theta_3}) \neq \varphi(e^{i\theta_4})$. Then $c_n^{(m)}(0)$ accumulate on $\partial U \cap$ $\varphi(\{re^{i\theta} \mid \theta_3 < \theta < \theta_4, \ 0 \le r \le 1\})$. In general the family of single-valued analytic branch of f^{-n} (n = 1, 2, ...) on a domain U_0 is normal and furthermore if $U_0 \cap J_f \neq \emptyset$, any local uniform limit of a subsequence in the family is constant ([Bea], p.193, Theorem 9.2.1, Lemma 9.2.2). So the family $\{F_n^{(m)}|V_0\}$ is normal and all its limit functions are constant and hence for a suitable subsequence the diameter of $c_{n_k}^{(m_k)}(t)$ tends to zero, that is, $c_{n_k}^{(m_k)}(t)$ must land at a point in $\partial U \cap \varphi(\{re^{i\theta} \mid \theta_3 < \theta < \theta_4, 0 \le r \le 1\})$ if the constant limit is finite. Therefore $\tilde{c}_{n_k}^{(m_k)}(t)$ must land at a point in (θ_3, θ_4) . If the constant limit is ∞ , for large enough n_k the curves $c_{n_k}^{(m_k)}$ cannot intersect both $\{\varphi(re^{i\theta_3}) \mid 0 \leq r \leq 1\}$ and $\{\varphi(re^{i\theta_4}) \mid 0 \leq r \leq 1\}$ which are bounded set, since the convergence is uniform on V_0 . Hence again we can conclude that $c_{n_k}^{(m_k)}(t)$ must land at a point in $\partial U \cap \varphi(\{re^{i\theta} \mid \theta_3 < \theta < \theta_4, \ 0 \le r \le 1\})$ and therefore $\tilde{c}_{n_k}^{(m_k)}(t)$ must land at a point in (θ_3, θ_4) . This proves the assertion.

Then there exists $\tilde{c}_{N_1}^{(M_1)}$ such that $\gamma_{n_1}^{(m_1)} \cap \tilde{c}_{N_1}^{(M_1)} \neq \emptyset$. We may assume that $n_1 > N_1$. Let $u \in \gamma_{n_1}^{(m_1)} \cap \tilde{c}_{N_1}^{(M_1)}$ then since $u \in \gamma_{n_1}^{(m_1)}$, we have $g^{n_1}(u) \in U_{\varepsilon_0}(1)$. On the other hand since $u \in \tilde{c}_{N_1}^{(M_1)}$ and $n_1 > N_1$, we have $g^{n_1}(u) \in \bigcup_{n=0}^{\infty} g^n(\widetilde{C})$ which contradicts (1). Therefore Θ_{∞} is dense in $\partial \mathbb{D}$. Disconnectivity of J_f easily follows by the same argument as in the case of E_{λ} in §1. This completes the proof in the case of (1).

Case (2) The proof is quite parallel to the case (1). Note that by Lemma 2, $\overline{\bigcup_{n=1}^{\infty} g^{-n}(z_0)} \supset \partial \mathbb{D}$ $(z_0 \in \mathbb{D} \setminus E)$ holds for $g = \varphi^{-1} \circ f \circ \varphi$ in this case. \Box

Case (3) Since $g(z) = e^{2\pi i \theta_0}$ with $\theta_0 \in \mathbb{R} \setminus \mathbb{Q}$, the inverse image of $\Gamma(t)$ by g^{-n} is unique and denote it by $\gamma_n(t)$. Then it is obvious that the end points of $\gamma_n(t)$ are dense in $\partial \mathbb{D}$ and φ attains radial limit ∞ there, since g(z) is an irrational rotation and

$$\lim_{t \to 1} \varphi(\gamma_n(t)) = \lim_{t \to 1} f^{-1}(\varphi(\Gamma(t))) = \infty.$$

Case (4) In this case we need not assume the accessibility of ∞ , because this condition is automatically satisfied ([**Ba6**]). The set $\bigcup_{n=0}^{\infty} f^n(C)$ is a

curve which may have self-intersections and tends to ∞ . It is not difficult to take L satisfying $L \cap (\bigcup_{n=0}^{\infty} f^n(C)) = \emptyset$. Hence we have $\mathcal{L} \cap (\bigcup_{n=0}^{\infty} f^n(C)) = \emptyset$. The rest of the proof is quite parallel to the case (1) if the conclusion of Lemma 2 (1) holds for g. If we have only the conclusion of Lemma 2 (2), then we can prove that for every arc $A \subset \partial \mathbb{D}$ with $A \cap K \neq \emptyset$, $A \cap \Theta_{\infty} \neq \emptyset$ holds by the similar argument. \Box

References

- [Ba1] I. N. Baker, Multiply connected domains of normality in iteration theory, Math. Z. 81, (1963), 206–214.
- [Ba2] I. N. Baker, An entire function which has a wandering domain, J. Austral. Math. Soc Ser. A 22, (1976), 173–176.
- [Ba3] I. N. Baker, The iteration of polynomials and transcendental entire functions, J. Austral. Math. Soc. Ser. A 30 (1981), 483–495.
- [**Ba4**] I. N. Baker, Wandering domains in the iteration of entire functions, Proc. London Math. Soc.(3) **49**, (1984), 563–576.
- [Ba5] I. N. Baker, Some entire functions with multiply-connected wandering domains, Erg. Th. & Dyn. Sys. 5 (1985), 163–169.
- [Ba6] I. N. Baker, Infinite limits in the iterations of entire functions, Ergod. Th. & Dynam. Sys. 8 (1988), 503–507.
- [Bea] A. F. Beardon, *Iteration of Rational Functions*, Springer Verlag, New York, Berlin and Heiderberg, 1991.
- [Ber] W. Bergweiler, Iteration of meromorphic functions, Bull. AMS, 29 (1993) No.2, 151–188.
- [BHKMT] W. Bergweiler, M. Haruta, H. Kriete, H.-G. Meier and N. Terglance, On the limit functions of iterates in wandering domains, Ann. Acad. Sci. Fenn. Ser. A I Math 18 (1993), 369–375.
- [D] R. L. Devaney, e^z : Dynamics and bifurcations, Internat. J. Bif. & Chaos, 1 (1991), 287–308.
- [DG] R. L. Devaney and L. R. Goldberg, Uniformization of attracting

<u>d</u>

basins for exponential maps, Duke. Math. J., 55 No.2 (1987), 253-266.

- [DM] C. I. Doering and R. Mañé, The Dynamics of Inner Functions, Ensaios Matemáticos 3 (1991).
- [EL1] A. E. Eremenko and M. Yu. Lyubich, The dynamics of analytic transformations, Leningrad Math. J. 1 (1990), 563-634
- [EL2] A. E. Eremenko and M. Yu. Lyubich, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble) 42 (1992), 989-1020.
- [G] J. B. Garnett, *Bounded analytic functions*, Academic Press, New York, (1981).
- [GK] L. R. Goldberg and L. Keen, A finiteness theorem for a dynamical class of entire functions, Ergod. Th. & Dynam. Sys. 6 (1986), 183–192.
- [Ki] M. Kisaka, Local uniform convergence and convergence of Julia sets, Nonlinearity 8 (1995) 273–281.
- [Kr] B. Krauskopf, Convergence of Julia sets in the approximation of λe^z by $\lambda (1 + \frac{z}{d})^d$, Internat. J. Bif. & Chaos, **3** (1993), 257–270.
- [KrK] B. Krauskopf and H. Kriete, Hausdorff convergence of Julia sets, Preprint.
- [M] J. Milnor, Dynamics in one complex variable, Introductory lectures, , Preprint SUNY Stony Brook, 1990/5.
- [Nev] R. Nevanlinna Analytic functions, Springer 1970
- [New] M. Newman, *Elements of the Topology of Plane Sets*, Cambridge Univ. Press, 1939
- [P1] Ch. Pommerenke, On Ergodic Properties of Inner Functions, Math. Ann. 256 (1981), 43–50.
- [P2] Ch. Pommerenke, Boundary Behavior of Conformal Maps, Springer Verlag, New York, Berlin and Heiderberg, 1992.
- [S] G. M. Stallard, The iteration of entire functions of small growth, Math. Proc. Camb. Phil. Soc. 114 (1993), 43–55.