Literal shuffle on ω -languages

守谷 哲夫, 国士舘大学

Tetsuo MORIYA

Department of Electrical Engineering, Faculty of Engineering

Kokushikan University

4-28-1 Setagaya, Setagaya-ku, Tokyo 154, Japan

山崎 秀記, 一ッ橋大学 Hideki YAMASAKI

Department of Mathematics, Hitotsubashi University

Kunitachi, Tokyo 186 Japan

Abstract

We consider literal shuffle on ω -languages. First, we show that a duo (a family of ω -languages closed under ϵ -free morphisms and inverse ϵ -free morphisms) is closed under literal shuffle if and only if it is closed under intersection. Next we investigate the closure properties of some classes of the ω -regular languages under literal shuffle and shuffle. Last the relation between literal shuffle and shuffle are presented.

Key words: shuffle; literal shuffle; ω -regular language; duo

1 Introduction

The literal shuffle operation is introduced in [1] as a more constrained form of the shuffle operation. It models the synchronous behavior while the shuffle corresponds asynchronous one.

In this paper, we study literal shuffle on ω -languages. In section 2 basic definitions and notations are given. In section 3 we prove that a duo (a family of ω -languages closed under ϵ -free morphisms and inverse ϵ -free morphisms) is closed under literal shuffle if and only if it is closed under intersection. For languages of finite words, an analogous result for shuffle has been given: a trio is closed under shuffle if and only if it is closed under intersection [2]. We also investigate the closure properties of some subclasses of the class of ω -regular languages under literal shuffle and shuffle. Last we consider the relation between literal shuffle and shuffle.

2 Preliminaries

Let Σ be an alphabet. Σ^* denotes the set of all finite words over Σ , and Σ^{ω} denotes the set of all ω -words over Σ , i.e., the set of all mappings α : $\{0,1,2,\ldots\} \to \Sigma$. An ω -word is written by $\alpha = a_0 a_1 \cdots$ where $a_n = \alpha(n)$, $(n=0,1,\ldots)$. We call a subset of $\Sigma^*(\Sigma^{\omega}, \text{resp.})$ a language (ω -language) over Σ .

A deterministic finite automaton (DA, for short) A over Σ is a 5-tuple $A = \langle S, \Sigma, \delta, s_0, F \rangle$, where S is a finite set of states, Σ is an alphabet, δ : $S \times \Sigma \to S$ is a next state function, $s_0 \in S$ is an initial state, and $F \subseteq S$ is a set of accepting states.

The run $Run(A, \alpha)$ of a DA A on an ω -word α is an ω -word $\gamma \in S^{\omega}$ such

that
$$\gamma(0) = s_0$$
 and $\gamma(n+1) = \delta(\gamma(n), \alpha(n)), (n = 0, 1, ...)$. For a run γ of A , let

$$Ex(\gamma) = \{ q \in S \mid q = \gamma(n) \text{ for some } n \},$$

$$Inf(\gamma) = \{q \in S \mid q = \gamma(n) \text{ for infinitely many } n\},\$$

and define the following six types of acceptance of the DA A,

$$E(A) = \{ \alpha \mid Ex(Run(A, \alpha)) \cap F \neq \phi \},\$$

$$E'(A) = \{ \alpha \mid Ex(Run(A, \alpha)) \subseteq F \},\$$

$$I(A) = \{ \alpha \mid Inf(Run(A, \alpha)) \cap F \neq \emptyset \},\$$

$$I'(A) = \{ \alpha \mid Inf(Run(A, \alpha)) \subseteq F \},\$$

$$L(A) = \{ \alpha \mid F \subseteq Inf(Run(A, \alpha)) \},\$$

$$L'(A) = \{ \alpha \mid F \not\subseteq Inf(Run(A, \alpha)) \}.$$

The class of ω -languages of the form E(A) (E'(A), I(A), I'(A), L(A), L'(A), resp.) for some automaton A over Σ is denoted by \mathbf{E}_{Σ} (\mathbf{E}'_{Σ} , \mathbf{I}_{Σ} , \mathbf{I}'_{Σ} , \mathbf{L}_{Σ} , \mathbf{L}'_{Σ}). All these classes are included in the class \mathbf{R}_{Σ} of ω -regular languages over Σ (For the definition of ω -regular languages and the inclusion relations among these classes, see [6, 8, 9]).

Moreover, provided that a class \mathbf{C}_{Σ} of ω -languages over Σ is defined for each alphabet Σ , we use the notation (\mathbf{C}_{Σ}) for the family of all the classes \mathbf{C}_{Σ} . Note that a morphism $h: \Sigma^* \to \Delta^*$ can be extended to the mapping from Σ^{ω} to Δ^{ω} in the usual way. We say that a family (\mathbf{C}_{Σ}) is closed under a morphism h if $h(X) = \{h(x) \mid x \in X\} \in \mathbf{C}_{\Delta}$ for any $X \in \mathbf{C}_{\Sigma}$, and (\mathbf{C}_{Σ}) is closed under an inverse morphism h^{-1} if $h^{-1}(Y) = \{x \mid h(x) \in Y\} \in \mathbf{C}_{\Sigma}$ for any $Y \in \mathbf{C}_{\Delta}$.

A family (C_{Σ}) closed under ϵ -free morphisms and ϵ -free inverse morphisms is called a duo. Only three families (R_{Σ}) , (I'_{Σ}) and (E'_{Σ}) are duos among those mentioned above [5, 10].

For $\alpha, \beta \in \Sigma^{\omega}$, the shuffle $Sh(\alpha, \beta)$ and the literal shuffle $LSh(\alpha, \beta)$ are defined by

$$Sh(\alpha, \beta) = \{u_0v_0u_1v_1 \dots \mid u_0u_1 \dots = \alpha, v_0v_1 \dots = \beta, u_0 \in \Sigma^*, u_i, v_i \in \Sigma^+\}$$

and

$$LSh(\alpha, \beta) = \alpha(0)\beta(0)\alpha(1)\beta(1)\dots$$

Moreover, we define for $X, Y \subseteq \Sigma^{\omega}$, $Sh(X, Y) = \bigcup \{Sh(\alpha, \beta) \mid \alpha \in X, \beta \in Y\}$ and $LSh(X, Y) = \{LSh(\alpha, \beta) \mid \alpha \in X, \beta \in Y\}$.

Then the following properties are easily obtained.

Lemma 1 For any $X, Y \subseteq \Sigma^{\omega}$,

- 1. $LSh(X,Y) = LSh(X,\Sigma^{\omega}) \cap LSh(\Sigma^{\omega},Y)$.
- 2. $X \cap Y = h^{-1}(LSh(X,Y))$, where $h: \Sigma^{\omega} \to \Sigma^{\omega}$ is a morphism defined by h(a) = aa for any $a \in \Sigma$.
- 3. $LSh(X^c, \Sigma^\omega) = LSh(X, \Sigma^\omega)^c$ and $LSh(\Sigma^\omega, X^c) = LSh(\Sigma^\omega, X)^c$, where $X^c = \Sigma^\omega X$.

3 Closure properties under literal shuffle and shuffle

In this section we give a necessary and sufficient condition for a duo to be closed under literal shuffle, and investigate the closure properties for some subclasses of the ω -regular languages under literal shuffle and shuffle.

We say that a class \mathbf{C}_{Σ} is closed under shuffle (literal shuffle, resp.) if Sh(X,Y) $(LSh(X,Y)) \in \mathbf{C}_{\Sigma}$ for any $X,Y \in \mathbf{C}_{\Sigma}$. For a class \mathbf{C}_{Σ} of ω -languages, we define $\mathbf{C}_{\Sigma}^c = \{X^c \mid X \in \mathbf{C}_{\Sigma}\}$. We note that $\mathbf{E}'_{\Sigma} = \mathbf{E}_{\Sigma}^c$, $\mathbf{L}'_{\Sigma} = \mathbf{L}_{\Sigma}^c$, and $\mathbf{I}'_{\Sigma} = \mathbf{I}_{\Sigma}^c$.

Lemma 2 If (\mathbf{C}_{Σ}) or (\mathbf{C}_{Σ}^c) is a duo, then $LSh(X, \Sigma^{\omega}), LSh(\Sigma^{\omega}, X) \in \mathbf{C}_{\Sigma}$ for any $X \in \mathbf{C}_{\Sigma}$.

Proof. Let $\Sigma' = \{\sigma' \mid \sigma \in \Sigma\}$ and $\# \notin \Sigma$. We define ϵ -free morphisms

$$h_1: \Sigma^{\omega} \to (\Sigma \cup \{\#\})^{\omega}$$
 defined by $h_1(a) = a' \#$ for any $a \in \Sigma$,

$$h_2: \Sigma^{\omega} \to (\Sigma \cup \{\#\})^{\omega}$$
 defined by $h_2(a) = \#a'$ for any $a \in \Sigma$,

 $g: (\Sigma \cup \Sigma')^{\omega} \to (\Sigma \cup \{\#\})^{\omega}$ defined by g(a) = # and g(a') = a' for any $a \in \Sigma$,

$$f: (\Sigma \cup \Sigma')^{\omega} \to \Sigma^{\omega}$$
 defined by $f(a) = f(a') = a$ for any $a \in \Sigma$.

Then it is obvious that for any $X \in C_{\Sigma}$, $LSh(X, \Sigma^{\omega}) = f(g^{-1}(h_1(X)))$ and $LSh(\Sigma^{\omega}, X) = f(g^{-1}(h_2(X)))$. Hence, we have shown the lemma if (C_{Σ}) is a duo. If (C_{Σ}^{c}) is a duo, we can prove the lemma using Lemma 1.3.

Theorem 3 Assume that (C_{Σ}) or (C_{Σ}^c) is a duo. Then C_{Σ} is closed under literal shuffle if and only if it is closed under intersection.

Proof. If part is a direct consequence of Lemma 2 and Lemma 1.1.

Only if part is obtained directly from Lemma 1.2 and the observation that $U - h^{-1}(X) = h^{-1}(V - X)$ for any mapping $h: U \to V$ and $X \subseteq V$.

From this theorem, we have the following, since \mathbf{R}_{Σ} , \mathbf{I}_{Σ} , \mathbf{I}'_{Σ} , \mathbf{E}_{Σ} and \mathbf{E}'_{Σ} are closed under intersection [8, 9].

Theorem 4 For any alphabet Σ , R_{Σ} , I_{Σ} , I'_{Σ} , E_{Σ} and E'_{Σ} are closed under literal shuffle.

Next, we show that L_{Σ} and L'_{Σ} are not closed under literal shuffle.

Theorem 5 L_{Σ} is not closed under literal shuffle, provided that Σ has at least two elements.

Proof. Let X = LSh(L(A), L(A)), where $A = \langle \{q_0, q_1, q_2, q_3\}, \{a, b\}, \delta, q_0, \{q_0\} \rangle$ is the automaton described in Fig. 1. Suppose that X = L(M) with $M = \langle S, \Sigma, \tau, s_0, F \rangle$. It is obvious that $baba^{\omega} = LSh(bba^{\omega}, a^{\omega}) \in X$ and $b^{\omega} = LSh(b^{\omega}, b^{\omega}) \in X$. Since $F \subseteq Inf(Run(M, baba^{\omega})) \cap Inf(Run(M, b^{\omega}))$, $\tau(s_0, baba^n) = \tau(s_0, b^m) \in F$ for some n > 1 and m because it is obvious that $F \neq \phi$. It means that $baba^n b^{\omega} \in X$. But, for any k, $baba^{2k+1} b^{\omega} = LSh(bba^k b^{\omega}, a^{k+2} b^{\omega}) \notin X$ and $baba^{2k+2} b^{\omega} = LSh(bba^{k+1} b^{\omega}, a^{k+2} b^{\omega}) \notin X$ since $\delta(q_0, bba^k) \neq \delta(q_0, a^{k+2})$ and $\delta(q_0, bba^{k+1}) \neq \delta(q_0, a^{k+2})$.

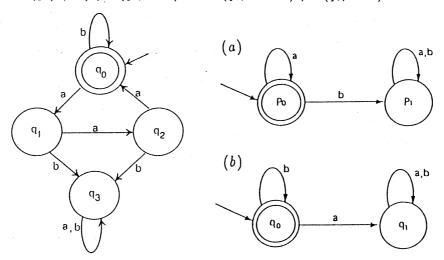


Fig. 1. DA A in Theorem 5 Fig. 2. (a) DA A₁ (b) DA A₂ in Theorem 6

Theorem 6 L'_{Σ} is not closed under literal shuffle, provided that Σ has at least two elements.

Proof. Let $\Sigma = \{a, b\}$, $X_1 = L'(A_1)$ and $X_2 = L'(A_2)$ where A_1 and A_2 are defined in Fig.2. Suppose that $X = LSh(X_1, X_2) = L'(A)$ with $A = \langle Q, \{a, b\}, \delta, s_0, F \rangle$.

Since a^{ω} and b^{ω} are not in X, they are in L(A). It means that for some $n \geq 2$ and m, $\delta(s_0, a^n) = \delta(s_0, b^m) \in F$ and $a^n b^{\omega} \in L(A)$ because it is obvious that $F \neq \phi$. It contradicts the fact that $a^2 a^* b^{\omega} \subseteq LSh(aa^* b^{\omega}, aa^* b^{\omega}) \subseteq X$. \square

We also study the closure properties of ω -regular languages under shuffle.

Theorem 7 $\mathbf{E'}_{\Sigma}$, \mathbf{L}_{Σ} , $\mathbf{L'}_{\Sigma}$, \mathbf{I}_{Σ} and $\mathbf{I'}_{\Sigma}$ are not closed under shuffle, provided that Σ has at least two elements.

Proof. Let $\Sigma = \{a, b\}$, and take ω -languages $a^{\omega} \in \mathbf{E'}_{\Sigma} \cap \mathbf{L}_{\Sigma}$, $b^{\omega} \cup b^* a^{\omega} \in \mathbf{E'}_{\Sigma}$, and $b^* a^{\omega} \in \mathbf{L}_{\Sigma}$. It is shown in [8, 9] that $Sh(a^{\omega}, b^* a^{\omega}) = \Sigma^* a^{\omega} \notin \mathbf{I}_{\Sigma}$ and $Sh(a^{\omega}, b^{\omega} \cup b^* a^{\omega}) = (b^* a)^{\omega} \notin \mathbf{I'}_{\Sigma}$. This completes the proof, since $\mathbf{E'}_{\Sigma} \subseteq \mathbf{L'}_{\Sigma} \subseteq \mathbf{I'}_{\Sigma}$ and $\mathbf{L}_{\Sigma} \subseteq \mathbf{I}_{\Sigma}$.

Theorem 8 \mathbf{E}_{Σ} and \mathbf{R}_{Σ} are closed under shuffle.

Proof. Note that any $X \in \mathbf{E}_{\Sigma}$ can be written as $X = R\Sigma^{\omega}$ for some regular language $R \subseteq \Sigma^*$ [8, 9], and $Sh(R_1\Sigma^{\omega}, R_2\Sigma^{\omega}) = Sh(R_1\Sigma^*, R_2\Sigma^*)\Sigma^{\omega}$. Thus the theorem for \mathbf{E}_{Σ} is obtained form the fact that the class of regular languages are closed under shuffle.

It is proved in [7] that \mathbf{R}_{Σ} is closed under shuffle. \Box

The closure properties proved in this section are summarized in the following table.

		\mathbf{E}_{Σ}	$\mathbf{E'}_{\Sigma}$	\mathbf{I}_{Σ}	$\mathbf{I'}_{\Sigma}$	\mathbf{L}_{Σ}	$\mathbf{L'}_{\Sigma}$	${f R}_{\Sigma}$
Ls	sh	0	0	0	0	×	×	0
S	'h	0	×	×	×	×	×	0

As shown in the above table, the closure results for $\mathbf{E'}_{\Sigma}$, \mathbf{I}_{Σ} and $\mathbf{I'}_{\Sigma}$ are different between shuffle and literal shuffle. We consider the relation between shuffle and literal shuffle. More precisely, we show that literal shuffle is represented by shuffle through ϵ -free morphisms and ϵ -free inverse morphisms. On the other hand, shuffle is represented by literal shuffle through ϵ -free morphisms and inverse morphisms (not necessarily ϵ -free).

Proposition 9 Let $\Sigma' = \{a' \mid a \in \Sigma\}$ and define the ϵ -free morphisms

$$h_1, h_2: \Sigma^{\omega} \to (\Sigma \cup \Sigma')^{\omega}$$
 by $h_1(a) = a$ and $h_2(a) = a'$ for any $a \in \Sigma$,

$$g: (\Sigma \times \Sigma')^{\omega} \to (\Sigma \cup \Sigma')^{\omega}$$
 by $g(\langle a, b' \rangle) = ab'$ for any $\langle a, b' \rangle \in (\Sigma \times \Sigma')$,

$$f: (\Sigma \times \Sigma')^{\omega} \to \Sigma^{\omega} \ by \ f(\langle a, b' \rangle) = ab \ for \ any \ \langle a, b' \rangle \in (\Sigma \times \Sigma').$$

Then for any
$$X,Y\subseteq \Sigma^{\omega}$$
, $LSh(X,Y)=f(g^{-1}(Sh(h_1(X),h_2(Y))))$

Proof. It is immediate from the definition of the morphisms h_1, h_2 , g and f. \square

Proposition 10 Let $\# \notin \Sigma$ and define the morphisms

$$h: (\Sigma \cup \{\#\})^{\omega} \to \Sigma^{\omega} \ by \ h(a) = a \ and \ h(\#) = \epsilon,$$

$$g: (\Sigma \times \Sigma \cup \Sigma \times \{\#\} \cup \{\#\} \times \Sigma)^{\omega} \to (\Sigma \cup \{\#\})^{\omega} \text{ by } g(\langle a, b \rangle) = ab \text{ for any}$$
$$\langle a, b \rangle \in (\Sigma \times \Sigma \cup \Sigma \times \{\#\} \cup \{\#\} \times \Sigma),$$

$$f: (\Sigma \times \Sigma \cup \Sigma \times \{\#\} \cup \{\#\} \times \Sigma)^{\omega} \to \Sigma^{\omega} \ by \ f(\langle a, b \rangle) = h(a)h(b) \ for \ any$$
$$\langle a, b \rangle \in (\Sigma \times \Sigma \cup \Sigma \times \{\#\} \cup \{\#\} \times \Sigma),$$

Then for any $X,Y\subseteq \Sigma^{\omega}$, $Sh(X,Y)=f(g^{-1}(LSh(h^{-1}(X),h^{-1}(Y))))$

Proof. It is immediate from the definition of the morphisms h, g and f.

Note that h^{-1} is an (not ϵ -free) inverse morphism while h_1 and h_2 are ϵ -free morphisms.

References

- [1] B.Berard, Literal shuffle, Theoret. Comput. Sci. 51 (1987) 281-299.
- [2] S.Ginsburg, Algebraic and automata-theoretic properties of formal languages, North-Holand (1975).
- [3] F.Gire, Une extension aux mots inifinis de lanotion de tranduction ratinnele, Lecture Notes in Computer Science 145 (1983) 123-139.
- [4] M.Latteux and J.Timmerman, Two characterizations of adherences, Thoeret. Comput. Sci. 154 (1983) 420-432.
- [5] T.Moriya, Closure properties of some subclasses of ω -regular languages under morphism and inverse morphism, Intern. J. of Computer Math., 43 (1993) 139-146.
- [6] T.Moriya and H.Yamasaki, Accepting condition for automata on ω -languages, Thoeret. Comput. Sci. 61 (1988) 137-147.
- [7] D.Park, Concurrency and automata on infinite sequences, Lecture Notes in Computer Science 104, Springer (1981), 167-183.
- [8] L.Steiger and K.Wagner, Automatatheoretische und automaten-freie Characterisierunger topologischer Klasses regularer Forgenmengen, Elekton Informationverarb. Kyvernet. 10 (1974) 379-392.
- [9] M.Takahashi and II.Yamasaki, A note on ω -regular languages, Theoret. Comput. Sci. 23 (1983) 217–225.

[10] T.Timmerman, The three subfamilies of rational ω -languages closed under ω -transduction, Thoeret. Comput. Sci. 76 (1990) 243-250.