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Second Betti numbers of semlgroup r1ngs

EEAEE SR (Naoki Teral)

Introduction

In this article we consider the second Betti numbers which appear in min-
imal free resolutions of certain affine semigroup rings. In particular, we
treat two kinds of affine semigroup rings. One is semigroup rings which are
associated with distributive lattices. And the other is a monomial curve
whose second Betti number is dependent on the base field.

Let L be a finite distributive lattice (see §1 for definitons) and A the
polynomial ring k[X,|a € L] over a field k with the standard grading, i.e.,
Deg X, =1 for each o € L. We define R;[L] to be the quotient algebra

RilL] = A/(XoXs — XangXavs | @ 7 B)

of A, where we write a % 8 if o and B are incomparable in L. ‘Then ’R,k[L]
is a typical example of an ASL as well as an affine semigroup ring. See
Hibi[Hi;] for detailed information. It has been conjectured that the second
Betti number of R;[L] is independent of a base field k. In this paper we give
a combinatorial formula for the second Betti numbers of ’R,k [L], when L 1s
a planar distributive lattice. In particular, we show that it is lndependent
of the base field k. The algebra Ry[L] associated with a planar distributive
lattice L can be viewed as a ladder determinantal ring of 2-minors. Hence
our result may be considered as a generahzatlon of the 2 -minor case of
Kurano’s result([Ku]).

The author would like to thank Professor T. Hibi a,nd Professor M.

Hashimoto for their valuable advice.

§1. Preliminaries

We recall basic definitions and properties in commutative ring theory
and in combinatorics concerning with the algebras Ry[L]. Refere to [Hi;] for
further information. See also [Bu-He], [Hi,] and [St,] as gereral references.

(1.1) Let A = k[X;, X;, ..., X,] denote the polynomial ring in v-variables
over a field k, which will be considered to be the graded algebra A =



D,.>0 A over k with the standard grading, i.e., Deg X; = 1 for each 1.
Let Z (resp. Q, N) denote the set of integers (resp. rational numbers,
non-negative integers). We write A(j), j € Z, for the graded module
A(j) = BnezlA(j)]n over A with [A(j)]n := Any;- Let I be an ideal of
A generated by homogeneous polynomials and R the quotient algebra A/I.
When R is regarded as a graded module over A with the quotient grading,
it has a graded finite free resolution

0— DA 2o DA 2 AL R — 0 ()

JEZ j€Z

where each @;cz A(—j)%7, 1 < i < h, is a graded free module of rank
0 # Yjez Bij < oo, and where every ¢; is degree-preserving. Moreover,
there exists a unique such resolution which minimizes each f;;; such a
resolution is called minimal. If a finite free resolution (1) is minimal, then

the homological dimension hd4(R) of R over A is the non-negative integer
h and B; = B#(R) := Tjez B is called the i-th Betti number of R over A.

(1.2) All partially ordered sets (“poset” for short) to be considered are
finite. A poset ideal in a poset P is a subset I such that a € I,3 € P and
B < a together imply 8 € I. A clutter is a poset in which no two elements
are comparable. A lattice is a poset L such that any two elements o and 3
of L have a greatest lower bound o A 3, and a least upper bound oV 8. A
subposet P of a lattice L is called a sublattice of L if both a A 8 and oV 8
belong to P for all a, § € P. We say that a lattice L is distributive if the
equalities a A (BV7Y) = (e AB)V(aAy)and aV (BAYy) = (aVB)A(aVy)

hold for all o, B, v € L. The following theorem is very importamt in lattice
theory. '

Fundamental theorem for finite distributive lattices. For every
finite distributive lattice L there exists a unique poset P such that D = J(P),
where J(P) is a poset which consists of all poset ideals of P, ordered by
inclusion.

A distributive lattice D = J(P) is called planar if P contains no three-
element clutter.

(1.3) Let L be a finite distributive lattice and A the polynomial ring
k[X.|a € L] over a field k with the standard grading, i.e., Deg X, =1 for
each a € L. We define Ri[L] to be the quotient algebra

RilL] = A/(XaXs — XangXavs | @ 7 8)

of A, where we write @ # 3 if a and 3 are incomparable in L. The al-
gebra Ry[L] is a graded algebra with the quotient grading. A monomial
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Xay Xay +++ Xog of Ry[L] is called standard if oy < a; < --- < o, in L. The
set of standard monomials is a basis of R[L] as a vector space over k.
A minimal free resolution of Ri[L] over A is of the form

s o A(=3)720 @ A(—4)P4 — A(-2)P - A - Ri[L] — 0.

It is known that f;3 can be computed by combinatorics on L; in particular
B2,3 is independent of the base field k. We then focus our attention on Ba,4-

(1.4) We prepare some notation and terminology to state our result on
B2, Let L be a lattice. Let o and 8 with a < 8 be elements in L. We say
that o and B3 are changeable in L if there exist 4 and § with 4 £ § in L
such that Yy Ad = a and vV § = . A sublattice C of L is said to be closed
in L if the following condition is satisfied: if o, 8 € C and 4,6 € L, and if
YAd=a ,yV =P, then~,6§ € C. Let B be a subposet of L. We define
the closure C(B) of B in L to be the minimal closed sublattice including
Bin L.

We study two partial orders “ <.omp ” and “ <je, ” on N? defined by

(@, b) <comp (¢, d) & a<candb<d;
(a, ) <pex (¢, d) & b<d,orb=danda<ec.

Let L be a planar distributive latticeand a; < a3 < --- < oy, with each
a; € L, a “multichain” of L. Set C = Cr({e1, 2, ,0,}). We now define
type C (or type ayay -+ ) by

type C =min  {f(a,) € N?},
F <iex

where f : C < N? runs through all order-preserving inclusion maps with
respect to ¢ <comp ” from C to N? with a; — (1,1). We then fix an order-
preserving inclusion map f : C < N? with oy — (1,1) and o, — type C =
(¢,7). We identify C' with the image f(C) C N? and may regard C as a
sublattice of N2. We then say that C is a one-sided ladder if (i,1) € C or
(1,5) € C, which is independent of the choice of inclusion maps f satisfying
the above conditions.

§2. Main result

Now we state our main theorem:.

(2.1) THEOREM. Let L be a planar distributive lattice. Then B4 =
Bi4(Ri[L)) is equal to the number of sequences (cn,az,as,a4) € L* with
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a1 < ay < a3 < a4 such that (i) o1 and o, are changeable; (ii) oz and
a4 are changeable; (iii) Cp({oq,ay, a3, a4}) is not a one-sided ladder. In
particular, the second Betti number B4 (Ri[L]) is independent of the base
field k.

A combinatorial technique developed by Eagon and Roberts [Ea-Ro] is
1ndlspensable to prove Theorem (2. 1). Such technique is also essential in
Andersen [An], where she studies a counterexample to a certain problem on
a resolution of a determma,nta,l ideal of a generic symmetric matrix. .

(2.2) (See [Ha, pp. 48-49].) Let R = k[my,---,m,] C k[To,---,T;] be
a semigroup ring over a field k, where m; = Ta(’)0 -T2 is a monomial
foreach 1 <i<wv. Let A= k[Xl, -+, X,] be a polynomial ring. We define
deg X; = (a(?)o,- - - ,a(é),) € N™*1. Then A is an N"*1-graded algebra over
k, and the surjective map A — R given by X; — m, is a homomorphism of
Nr+l.graded algebras over k. Hence, there is a unique N"*!-graded minimal
free resolution of R as an A-module, and Tori(k, R) is also N"t!-graded
for every 7z > 0.

We express Tor? (k, R) in terms of reduced homology of a certain simpli-
cial complex. Let A = (Ag, -+, A;) € N™*1. We define a simplicial complex
X, as follows. The vertex set is (a subset of ) {Xy,-:-,X,}. A subset
{Xipy-+, Xi,} 1< <+ <1y L v) is an (s — 1)-face of X, if and only if
the monomial m;, - - - m;, divides T? = T .- T.* and T / mi, -+ -my, € R.

(2.3) LEMMA (cf. [St;,Theorem 7 9]). We have an zsomorphzsm
as vector spaces

[Tor(k, R)], & H;_ 1(2,\,k)
for alli >0 and all Ae N+

(2.4) We now apply Lemma (2 3) to our problem on R[L]. Let P =
{p1,p2,-" -, pr} be an arbitrary poset and L = J (P) the associated dlstrlbu-
tive lattlce It is known, e.g., [Hl] that - ' .

Re[L) & k[T ﬂ(a)HpieaTi | a is a poset ideal of P).

Here the right-hand side is an affine semigroup ring contained in the poly-

nomial ring k[To, Ty, -+, T, We define degT (0,-- «++, 0). Then
Ri[L] has a structure of N"*1-graded module over the polynomlal ring
A=k[X,|ae L =J(P) with each deg X, = deg(Ty+'~ ﬁ(o‘)I'[],, cali), and
there exists an N"*'-graded minimal free resolution of Rx[L] over A, We

define a simplicial complex ¥, as above and Deg T* = 2 +’\Tj_'1 =33 Hence,
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we have Deg X, = 1 for every a € L and the above NT‘+1—"g’rad'ed'r'ndA1imal
free resolution of Ri[L] over A can be regarded as N-graded minimal free
resolution of Ry[L] over A.

(2.5) LEMMA.

Boy = > dimy Hi(Zy; k).

Deg T*=4

We say that a simplicial complex X is spanned by {0y, --,0,} if ¥ =
291 U ---U 2%, where 2° is the family of all subsets of o.

Since there exists a natural bijection between {\ € N™*! | (R,[L])» # 0}
and the set of standard monomials {M = X, X, -+ X4, |01 S as < -+ <
a5} in Ri[L], we often write Zps or X, .., instead. of Ty, if deg M = A.

(2.6) LEMMA. The simplicial complez X is ‘spanned by all subsets
{B1, B2y .- B} C L such that [T5-,(Xp;)® = M in Ry[L] for some integers
e; > 0, 1 S] <t. .

(2.7) LEMMA. The vertez set of the simplicial complex X,,..., 15
Cr({ed, -, as}), where oy <--- <, in L.

In what follows, suppose that L is a planar distributive lattice.

(2.8) LEMMA. Let C be the closure Cr({ey,-+,a,}) of {dl, T ,a;}

with oy << ayin L. Iftype C is (a,b), then a,b< s.

We now give a sketch of proof of Theorem (2.1). First, by Lemma (2.5),

what we must compute is the reduced homology group Hi(Xs,apasas; k)

for every {a1, ag, @3, a4} with a3 < a; < az < a4 in L. Let C denote
Cr({a1,as,a3,04}). Then, by Lemma (2.8), type C is one of the following:
(1,1), (2,1), (2,2), (3,1), (3,2), (3,3), (4,1), (4, 2), (4, 3) and (4, 4).. For each
case, with one-by-one checking we easily see that lfll(EJOMQOM,‘1 k) =2 kif oy
and a, are changeable; a3 and a4 are changeable; and C is not a one-sided
ladder, and that ﬁl(Ealazasm; k) = 0 otherwise. Q. E. D.

§3. Examples

In this section we give some examples of affine semigroup rings whose
second Betti numbers depend on the characteristic of a base field k.
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(8.1) Ezample. We define an affine semigroup ring Rin B := k[t1, - -, t10]
as follows. Let a(?) (1 < ¢ < 16) be

a(1)
a(2)
a(3)
a(4)
a(5)
“a(6)
a(T)
a(8)
a(9)
a(10)
a(11)
a(12)
a(13)
a(14)
a(15)

a(16) =

(1,1,0,0,0,0,0,1,1,1),
(0,1,1,1,1,0,0,0,0,1),
(0,0,0,0,1,1,1,1,0,1),
(1,1,1,0,0,1,1,0,0,0),
(0,0,1,1,0,0,1,1,1,0),
(1,0,0,1,1,1,0,0,1,0),
(1,0,0,0,1,2,1,0,0,0),
(0,0,1,0,0,1,2,1,0,0),
(0,0,1,2,1,0,0,0,1,0),
(0,1,2,1,0,0,1,0,0,0),
(0,0,0,1,2,1,0,0,0,1),
(1,0,0,1,0,0,0,1,2,0),
(2,1,0,0,0,1,0,0,1,0),
(0,0,0,0,0,0,1,2,1,1),
(1,2,1,0,0,0,0,0,0,1),
(0,1,0,0,1,0,0,1,0,2).

Let R := k[My,---, M), where M; = t*)(1 < i < 16), and A :=

k[.’l?l, e IIG]-

“Then B,(R) depends on the base field k, where 85(R) is the second Betti
number of a minimal free resolution of R as an A-module.

Proof. Let Ap (resp. Az) be the simplicial complex which has the
following 10 (resp.-5) maximal faces. '

{501,-'327375,507}, {$1,$2,$6,$8}, {331,-’1'3,$4,$9},{$1,$3,$6,$1o},
{$1,$4,.’L‘5,$11}, {1'2,1'37'1"471712}7 {.‘IJQ,.’L‘3,$5,.’E13},{$2,$4,$6,$14},

{23, z5, 26 215}, {24, T5, T6, T16}-

resp.
{-T'z, Z9,T14, 5'315},

{537, T10,T12, 5316}, {3?8, Tg, 13, 1"16}7 )

{-7"87 Z11,T12, 3715}a {5310, Z11, T13, 5314}-

Then the geometric realization of A; is homotopy-equivalent with the
real projective plane PZ(R). Note that the simplicial complex with the

following maximal faces



{1, 22,25}, {21, %2, %6}, {21, 23,24}, {21, 23, T6},
{-7"1,-7743 335}’ {1132}, 3313:4}; {wg,wa,is},{$2,$4,$6},
{z3, s, 26}, {134,:35;?6}_".
is a triangulation of P?(R) (see, e.g. [Tr-Hol).
And the geometric realization of A; is homotopy-equivalent with that
of the complete graph with 5 vertices.
Let X = (2,2,---,2) € N, With the same situation as in (2.2), we can

easily check that
Xy =A1UA,,

and A; N A; is a set of finite points. Then we have the reduced Mayer-
Vietoris sequence .
0= .E[l(A1 nAz; k) — I‘;{l’(Al; k) & ﬁl(A2; k)
Thus
dimk f{l(z)\; k)
= dimg Hi(Ags k) +  dimy Hy(Ag; k) + dimy, Ho(Aq N Ag; k).
Since dimy }~I1(A2; k) and dimy ﬂo(AI N Ag; k) are indepedent of k, and
since o _, N :
dimg Hy(A1;k) = dimy By (P?(R); k)
0 if chark # 2
-1 if chark = 2,

dim;, I;II(E 3 k) depends on the characteristic vof k. By Lemma 2.3 we have
the desired result. - Q.E.D.

Remark. In fact we can compute the second Betti number Fy(R) of

the above example by the computer software “Macaulay.” According to
“Macaulay” we have 5 (R) = 75 and '

588 if chark =0
P(R) = { 589 if chark = 2.

(3.2) Example. We define a monomial curve R to be k[t*1,---,1%¢] in
k[t], where
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a; = 11100000111,
a; = 10111100001,
as = 10000111101,
s = 11110011000,
as = 10011001110,
ag = 11001110010,
ap. = 11000121000
as = 10010012100,
as = 10012100010,
a0 = 10121001000,
a;; = 10001210001,
a1, = 11001000120,
- a3 = 12100010010,
aie = 10000001211,
ais = 11210000001,
aie = 10100100102.

Then ﬂz(R)vdep'ends‘ on the base field %.

Pfobf. Put u = 42222222222. It is éasy to éee that ¥, is equal to ¥ in
Example 3.1. Then as in Example 3.1, we have the desired result by Lemma
2.3. N : Q.E.D.
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