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1. Introduction

In the theory of finite automata it is a central problem how we can built
difficult automata from simpler ones. For producing new automata from given
ones, different compositions and representations are used. One of the main rep-
resentations is the isomorphism. An important area of the researches is to char-
acterize those systems of automata which are isomorphically complete, i.e., every
automaton is an isomorphic image of a subautomaton of a product from them.
The first characterization of the isomorphically complete systems with respect to
the most general composition was given by V. M. Glushkov in [7]. As a gener-
alization of the cascade product or serial composition, a product hierarchy, the
$\alpha_{i}$-product, $\dot{i}=0,1,$ $\ldots$ , was introduced by F. G\’ecseg in [3]. Regarding the $\alpha_{i^{-}}$

products, the descriptions of the isomorphically complete systems were presented
in [9], furthermore, the characterizations of the isomorphically complete systems
for some special classes of aut.omata were studied in the works $[2],[10],[11]$ , and
[12]. A systematic summary of the results on this product hierarchy is given
in the monograph [4]. Another family of products, the $\nu_{i}$ -product, $\dot{i}=1,2,$ $\ldots$ ,
was introduced in [1] where the description of the isomorphically complete sys-
tems with respect to this family is presented as well. A further composition, the
cube-product, was introduced in [13], and it is proved that this composition is
equivalent to the general product with respect to the isomorphically complete sys-
tems. All of the investigations mentioned above concern deterministic automata.
On the other hand, as a consequence of parallel computation, the importance of
nondeterministic automata is increasing which gives a motivation to study the
isomorphically complete systems of nondeterministic automata. The first descrip-
tion of the isomorphically complete systems of nondeterministic automata with
respect to the general product was given in [5]. In the work [6], it is proved that
the cube-product is equivalent to the general product regarding the isomorphically
complete systems for nondeterministic case, too. It is not known whether there
exist finite isomorphically complete systems of nondeterministic automata for such
weaker products as $\alpha_{i}$-product or $\nu_{i}$ -product in nondeterministic case. Here, we

\dagger This work was supported by the the Hungarian National Foundation for Scientific
Research, Grant 014888, and by the Ministry of Culture and Education of Hungary,
Grant 223/95.

数理解析研究所講究録
960巻 1996年 44-53 44



recall the characterization of the isomorphically complete systems of nondetermin-
istic automata with respect to the general product, and introduce such a special
class of nondeterministic automata, namely, the class of definite nondeterministic
automata, for which there are finite isomorphically complete systems with respect
to the $\alpha_{0}$ -product.

2. Preliminaries

We recall some basic concepts of relational systems (see [8]), and introduce
the necessary notions of automata theory.

By a nondeterministic automaton we mean a couple A $=(X, A)$ where $X$

and $A$ are nonempty finite sets, furthermore, $x$ is realized as a binary relation $x^{\mathrm{A}}$

on $A$ , for all $x\in X$ . The elements of $A$ are called also states. For any $a\in A$ ,
$x\in X$ , we denote the set $\{a’ : a’\in A\ ax^{\mathrm{A}}a’\}$ by $ax^{\mathrm{A}}$ . Let $p\in X^{*}$ and $a\in A$

be an arbitrary word and state, respectively. Then, we define $ap^{\mathrm{A}}$ by $ap^{\mathrm{A}}=\{a\}$

if $p=\lambda$ where $\lambda$ denotes the empty word of $X^{*}$ and $ap^{\mathrm{A}}=\cup\{bx^{\mathrm{A}} : b\in aq^{\mathrm{A}}\}$ if
$p=qx$ for some $q\in X^{*}$ and $x\in X$ .

Let $\mathrm{A}=(X, A)$ and $\mathrm{B}=(X, B)$ be nondeterministic automata. $\mathrm{B}$ is called
a subautomaton of A if $B\subseteq A$ and $x^{\mathrm{B}}$ is the restriction of $x^{\mathrm{A}}$ to $B$ , for all $x\in X$ .
A mapping $\mu$ of $A$ into $B$ is called a homomorphism of A into $\mathrm{B}$ if the equality
$\mu(aX^{\mathrm{A}})=\mu(a)x^{\mathrm{B}}$ is valid, for all $a\in A$ and $x\in X$ . In particular, if $\mu$ is an onto
mapping, then we say that $\mathrm{B}$ is a homomorphic image of A. If $\mu$ is a $\mathrm{o}\mathrm{n}\mathrm{e}- \mathrm{t}_{\mathrm{o}^{-}\mathrm{o}\mathrm{n}\mathrm{e}}$

homomorphism of A onto $\mathrm{B}$ , then we call $\mu$ an isomorphism of A onto B. We
also say that A and $\mathrm{B}$ are isomorphic.

Let us consider the nondeterministic automata $\mathrm{A}=(X, A),$ $\mathrm{A}_{j}=(X_{j}, A_{j})$ ,
$j=1,$ $\ldots$ , $m$ and let $\Phi$ be a family of feed-back functions below

$\varphi_{j}$ : $A_{1}\cross\ldots\cross A_{m}\cross Xarrow X_{j},$ $j=1,$ $\ldots,$
$m$ .

It is said that A is the general product of $\mathrm{A}_{j},$ $j=1,$ $\ldots,$
$m$ , if the following

conditions are satisfied:
(1) $A= \prod_{j=1}^{m}A_{j}$ ,

(2) for any pair $(a_{1}, \ldots, a_{m}),$ $(b_{1}, \ldots, b_{m})\in$ $A$ and $x\in X$ , the rela-
tion $(a_{1}, \ldots, a_{m})x^{\mathrm{A}}(b_{1}, \ldots, b_{m})$ is valid if and only if $a_{j^{x_{j}^{\mathrm{A}_{j}}b}j}$ holds with $x_{j}=$

$\varphi_{j}(a1, \ldots, a_{m}, x)$ , for all $j\in\{1, \ldots, m\}$ .

For the general product introduced above, we use the notation

$\mathrm{A}=\prod_{j=1}^{m}\mathrm{A}_{j}(X, \Phi)$ .
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Let $\Sigma$ be a system of nondeterministic automata. It is said that $\Sigma$ is isomor-
phically complete with respect to the general product if, for any nondeterministic
automaton $\mathrm{B}$ , there exist nondeterministic automata $\mathrm{A}_{j}\in\Sigma,$ $j=1,$ $\ldots,$ $m$ , such
that $\mathrm{B}$ is isomorphic to a subautomaton of a general product of the automata $\mathrm{A}_{j}$ ,
$j=1,$ $\ldots,$ $m$ .

Now, we can recall the main result of [5]. Namely, the isomorphically com-
plete systems of nondeterministic automata with respect to the general product
can be characterized as follows.

Theorem $1.([5])$ A system $\Sigma$ of nondeterministic automata is isomorphi-
$cal\dot{l}y$ complete with respect to the general product if and only if $\Sigma$ contains (not
necessarily distinct) nondeterministic automata $\mathrm{A}_{t}=(X_{t}, A_{t}),$ $t=1,2$ , for which
there exist states $a_{t}\neq b_{t}\in A_{t},$ $t=1,2$ , and symbols $x_{t},$ $y_{t},$ $z_{t}\in X_{t},$ $t=1,2$ , such
that

$\{a_{t}, b_{t}\}\subseteq a_{t}x_{t}^{\mathrm{A}_{t}},$ $\{a_{t}, b_{t}\}\subseteq b_{t}y_{t}^{\mathrm{A}},$${}^{t}t=1,2$ ,
$\{a_{1}, b_{1}\}\cap a_{1}z_{1}^{\mathrm{A}_{1}}=\{b_{1}\},$ $\{a_{2}, b_{2}\}\cap a_{2}z_{2}^{\mathrm{A}_{2}}=\{a_{2}\}$ .

Applying another feed-back functions, we can define another compositions.
One of them is the cube-product which can be visualized as follows. We consider
an $n$-dimensional hypercube and $2^{n}$ nondeterministic automata. The considered
automata are taken in the vertices of the hypercube and the input symbol of any
vertex automaton depends on the imput symbol of the composition and on the
actual states of the neighbour automata of the considered one where the neighbours
are determined by the hypercube. The precise definition of this composition can
be found in [13] for deterministic case and in [6] for nondeterministic case. In
the last work, the isomorphically complete systems of nondeterministic automata
were characterized with respect to the cube-product and it turned out that they
are the same ones as in the case of the general product. Therefore, the cube-
product is equivalent to the general product with respect to the isomorphically
complete systems of nondeterministic automata. Since both the general product
and the cube-product are strong ones, it is an interesting problem, whether there
are finite isomorphically complete systems for weaker compositions. To study this
problem, we extend the notion of the $\alpha_{0}$ -product to nondeterministic automata
and investigate a special class of automata.

Let $\mathrm{A}=(X, A),$ $\mathrm{A}_{j}=(X_{j}, Aj),$ $j=1,$ $\ldots,$ $m$ , be nondeterministic automata
and let $\Phi$ be a family of the following feed-back functions

$\varphi_{1}$ : $Xarrow X_{1}$ ,

$\varphi_{j}$ : $A_{1}\cross\ldots \mathrm{x}A_{j-1}\cross Xarrow X_{j},$ $j=2,$ $\ldots,$
$m$ .

It is said that A is the $\alpha_{0}$ -product of $\mathrm{A}_{j},$ $j=1,$ $\ldots,$ $m$ , if the following conditions
are satisfied:
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(3) $A= \prod_{j=1}^{m}A_{j}$ ,

(4) for any pair $(a_{1}, \ldots, a_{m}),$ $(b_{1}, \ldots , b_{m})\in$ $A$ and $x\in X$ , the rela-
tion $(a_{1}, \ldots, a_{m})x^{\mathrm{A}}(b_{1}, \ldots, b_{m})$ is valid if and only if $a_{j^{x_{j}^{\mathrm{A}_{j}}b}j}$ holds with $x_{j}=$

$\varphi_{j}(a_{1}, \ldots, a_{j}-1, X)$ , for all $j\in\{1, \ldots, m\}$ .
The proof of the following statement can be given in a straightforward way.

Lemma 1. If a nondeterministic automaton A can be embedded isomorphi-
cally into an $\alpha_{0}$ -product of nondeterministic automata $\mathrm{A}_{t},$ $t=1,$ $\ldots,$

$k$ , and $\mathrm{A}_{t}$

can be embedded isomorphically into an $\alpha_{0}$ -product of nondeterministic automata
$\mathrm{B}_{tj},$ $j=1,$ $\ldots,$

$s_{t}$ , for all $t,$ $t=1,$ $\ldots,$
$k$ , then A can be embedded isomorphically

into an $\alpha_{0}$ -product of $\mathrm{B}_{11},$

$\ldots,$
$\mathrm{B}_{1}s_{1}’ \mathrm{B}_{21},$

$\ldots,$
$\mathrm{B}2S2’\cdots,k\mathrm{B}1,$

$\ldots,$
$\mathrm{B}ks_{k}$ .

Finally, let $$ be an arbitrary class of nondeterministic automata. It is said
that a system $\Sigma$ of nondeterministic automata is isomorphically complete for $$

with respect to the $\alpha_{0}$ -product if, for any nondeterministic automaton $\mathrm{B}\in\Theta$ ,
there exist $\mathrm{A}_{j}\in\Sigma,$ $j=1,$ $\ldots,$

$m$ , such that $\mathrm{B}$ is isomorphic to a subautomaton of
an $\alpha_{0}$ -product of the automata $\mathrm{A}_{j},$ $j=1,$ $\ldots,$

$m$ .

In what follows, we introduce a special class of nondeterministic automata
and show that there exist finite isomorphically complete systems for this special
class with respect to the $\alpha_{0}$-product.

3. Definite nondeterministic automata

A nondeterministic automaton $\mathrm{A}=(X, A)$ is called definite if the following
conditions are satisfied by $\mathrm{A}$ :

(i) $ax^{\mathrm{A}}\neq\emptyset$ , for all $x\in X$ and $a\in A$ ,

(ii) there exists a nonnegative integer $n$ such that $|p|\geq n$ implies $|Ap^{\mathrm{A}}|=1$

for any $p\in X^{*}$ where $Ap^{\mathrm{A}}=\cup\{ap^{\mathrm{A}} : a\in A\}$ .
Let us observe that (1) immediately yields $ap^{\mathrm{A}}\neq\emptyset$ , for all $a\in$ $A$ and

$p\in X^{*}$ . Let us suppose that $|A|\geq 2$ . Let us denote the set of all subsets of
$A$ with at least two elements by $T$ and define a binary relation on $T$ as follows.
For any $U,$ $V\in T,$ $U\leq V$ if and only if there exists a word $p\in X^{*}$ satisfying
$Up^{\mathrm{A}}=V$ . Obviously, the defined relation is reflexive and transitive, furthermore,
it is antisynumetric since A is definite. Consequently, it is a partial ordering on $T$ .
Let $Q=\{V : V\in T \ A\leq V\}$ . Since $A\in Q$ , we have $Q\neq\emptyset$ . Restricting the
introduced relation to $Q$ , we obtain a partial ordering on $Q$ . Let $(Q, \leq)$ denote the
corresponding partially ordered set. Then, we have that $p\in X^{+}$ implies $|Vp^{\mathrm{A}}|=1$

for any maximal element of $(Q, \leq)$ . Indeed, since $V$ is a maximal element of $(Q, \leq)$ ,
we have $|Vp^{\mathrm{A}}|\leq 1$ . On the other hand, $|Vp^{\mathrm{A}}|\geq 1$ is valid by (i).
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Let $V\in Q$ be an arbitrary maximal element of $(Q, \leq)$ and define the equiv-
alence relation $\rho$ on $A$ as follows: for any $a,$ $b\in A$ ,

$a\rho b$ if and only if $\{a, b\}\subseteq V$ or $a=b$ .

Now, we can define a new nondeterministic automaton $\mathrm{A}’=(X, A/\rho)$ as follows.
For any $a$ $\in A\backslash V$ and $x\in X$ ,

$ax^{\mathrm{A}’}=\{$

$ax^{\mathrm{A}}$ if $ax^{\mathrm{A}}\cap V=\emptyset$ ,
$(ax^{\mathrm{A}}\backslash V)\cup\{V\}$ otherwise,

furthermore,

$Vx^{\mathrm{A}’}=\{$

$V$ if $ux^{\mathrm{A}}\cap V\neq\emptyset$ ,
$ux^{\mathrm{A}}$ otherwise,

where $u$ is an arbitrarily fixed element of $V$ . We note that the definition is in-
dependent of the choice of $u$ . Indeed, $Vx^{\mathrm{A}}$ is singleton, moreover, $ux^{\mathrm{A}}\neq\emptyset$ and
$vx^{\mathrm{A}}\neq\emptyset$ from (1), and therefore, $Vx^{\mathrm{A}}=ux^{\mathrm{A}}=vx^{\mathrm{A}}$ for any $v\in V$ .

Lemma 2. If A $=(X, A)$ is a definite nondeterministic automaton with
$|A|\geq 2$ , then $\mathrm{A}’=(X, A/\rho)$ is a definite nondeterministic automaton as well.

Proof. Since $Q\neq\emptyset$ , there exists at least one maximal element of $(Q, \leq)$

which is denoted by $V$ . If $V=A$ , then the statement is obvious. Now, let us
suppose that $V\subset A$ . Let us consider the mapping $\mu$ of $A$ onto $A/\rho$ defined by

$a\mu=\{$
$a$ if $a\not\in V$ ,
$V$ otherwise.

We prove that $\mu$ is a homomorphism of A onto $\mathrm{A}’$ . For this purpose, let $a\in A$ ,
$x\in X$ be arbitrary elements. We distinguish the following cases.

Case 1: $a\in A\backslash V$ and $ax^{\mathrm{A}}\cap V=\emptyset$ . Then, $a\mu=a$ and $ax^{\mathrm{A}}\mu=ax^{\mathrm{A}}$ .
Therefore, we obtain that $ax^{\mathrm{A}}\mu=ax^{\mathrm{A}}=ax^{\mathrm{A}’}=a\mu x^{\mathrm{A}’}$

Case 2: $a\in A\backslash V$ and $ax^{\mathrm{A}}\cap V=\{u_{1}, \ldots, u_{r}\}$ . Then, we have the following
equalities: $ax^{\mathrm{A}}\mu\subset((ax^{\mathrm{A}}\backslash V)\cup\{u_{1}, \ldots, u_{r}\})\mu=(ax^{\mathrm{A}}\backslash V)\cup\{V\}=ax^{\mathrm{A}’}=a\mu x^{\mathrm{A}’}$

Case 3: $a\in V$ and $ax^{\mathrm{A}}\cap V\neq\emptyset$ . Now, $a\mu=V$ and $ax^{\mathrm{A}}=Vx^{\mathrm{A}}=\{u\}$ for
some $u\in V$ . Thus, $ax^{\mathrm{A}}\mu=\{u\}\mu=V=VX^{\mathrm{A}}’=a\mu x^{\mathrm{A}’}$

Case 4: $a\in V$ and $ax^{\mathrm{A}}\cap V=\emptyset$ . Then $a\mu=V$ and $ax^{\mathrm{A}}=\{b\}$ for some
$b\in A\backslash V$ . Thus, $ax^{\mathrm{A}}\mu=\{b\}\mu=\{b\}=Vx^{\mathrm{A}’}=a\mu x^{\mathrm{A}^{J}}$

Since A is definite, there is a nonnegative integer $n$ for which $|Ap^{\mathrm{A}}|=1$ ,

for all $p\in X^{*}$ with $|p|\geq n$ . Now, let $p\in X^{*}$ be arbitrary word with $|p|\geq n$ .
Then, $|Ap^{\mathrm{A}}|=1$ . On the other hand, $(Ap^{\mathrm{A}})\mu=(A\mu)p^{\mathrm{A}^{J}}=(A/\rho)p^{\mathrm{A}’}$ since $\mu$ is
a homomorphism of A onto $\mathrm{A}’$ . Therefore, $(A/\rho)p^{\mathrm{A}’}$ is also singleton, and thus,
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$|(A/\rho)p^{\mathrm{A}’}|=1$ if $|p|\geq n$ , i.e., (ii) is valid for $\mathrm{A}’$ . Finally, let $a’\in A/\rho$ and $x\in X$

be arbitrary state and input symbol, respectively. Then, there is a state $a,\in A\mathrm{A}$

’such that $a\mu=a’$ . Since $\mu$ is a homomorphism, we have $ax^{\mathrm{A}}\mu=a\mu x^{\mathrm{A}’}=ax$

Now, let us observe that $ax^{\mathrm{A}}\neq\emptyset$ from (i), and thus, $a’X^{\mathrm{A}}$
$\neq\emptyset$ , yielding the

validity of (i) for $\mathrm{A}’$ . Consequently, $\mathrm{A}’$ is a definite nondeterministic automaton.
Remark. Let us observe that choosing an arbitrary nonsingleton subset $V’$

of some maximal element of $(Q, \leq)$ , the above construction can be applied for $V’$ ,
furthermore, Lemma 2 is valid for the nondeterministic automaton determined by
$V’$ .

Theorem 2. A system $\Sigma$ of nondeterministic automata is isomorphically
complete for the class of definite nondeterministic automata with respect to the

$\alpha_{0}$ -product $\dot{i}f\Sigma$ contains two (not necessarily distinct) nondeterministic automata
$\mathrm{A}_{1}=(X_{1}, A_{1})$ and $\mathrm{A}_{2}=(X_{2}, A_{2})$ for which there exist states $a_{t}\neq b_{t}\in A_{t}$ ,
$t=1,2$ , and symbols $x_{t},$ $z_{t}\in X_{t},$ $t=1,2$ , such that

$\{a_{t}, b_{t}\}\subseteq a_{t}x_{t}^{\mathrm{A}_{t}},$ $\{a_{t}, b_{t}\}\subseteq b_{t^{X_{t}^{\mathrm{A}}}},$${}^{t}t=1,2$ ,
$\{a_{1}, b_{1}\}\cap a_{1}z_{1}^{\mathrm{A}_{1}}=\{b_{1}\},$ $\{a_{2}, b_{2}\}\cap a_{2}z_{2}^{\mathrm{A}_{2}}=\{a_{2}\}$ .

Proof. We prove that every nondeterministic automaton can be embedded
isomorphically into an $\alpha_{0}$-product of nondeterministic automata from $\Sigma$ . We
proceed by induction on number of states which is denoted by $n$ . If $n=1$ , then the
statement is obvious. Now, let us consider an arbitrary definite nondeterministic
automaton $\mathrm{A}=(X, A)$ having two states. Let us denote the states of A by $a$ and
$b$ . From (i) and (ii) it follows, that either $ax^{\mathrm{A}}=bx^{\mathrm{A}}=\{a\}$ or $ax^{\mathrm{A}}=bx^{\mathrm{A}}=\{b\}$ ,
for all $x\in X$ . Let us define the $\alpha_{0}$ -product $\mathrm{D}=\mathrm{A}_{1}\cross \mathrm{A}_{1}\cross \mathrm{A}_{2}\cross \mathrm{A}_{1}\cross \mathrm{A}_{2}(X, \Phi)$

as follows. For any $(c_{1}, \ldots ; c_{5})\in\{(a1, a1, b2, b1, a2), (b_{1}, b_{1,2}a, a_{1}, b_{2})\}$ and $x\in X$ ,
let

$\varphi_{1}(x)--x_{1}$ ,

$\varphi_{2}(_{C_{1}}, x)=\{$
$z_{1}$ if $c_{1}=a_{1}$ & $ax^{\mathrm{A}}=\{b\}$ ,
$x_{1}$ otherwise,

$\varphi \mathrm{s}(c_{1}, c_{2}, x)=\{$
$z_{2}$ if $c_{1}=b_{1}$ $\ ax^{A}=\{b\}$ ,
$x_{2}$ otherwise,

$\varphi_{4}(_{C_{12\mathrm{s}}}, c, C, X)=\{$
$z_{1}$ if $c_{1}=b_{1}$ & $bx^{\mathrm{A}}=\{a\}$ ,
$x_{1}$ otherwise,

$\varphi_{5}(c_{12,3}, cC, c_{4}, x)=\{$
$z_{2}$ if $c_{1}=a_{1}$ $\ bx^{A}=\{a\}$ ,
$x_{2}$ otherwise.

In all the remaining cases, let us define the feed-back functions arbitrarily in
accordance with the definition of the $\alpha_{0}$-product.

Let us consider the subautomaton of $\mathrm{D}$ determined by the following subset
$\{(a_{1}, a_{1,2}b, b_{1}, a_{2}), (b_{1}, b_{1,2,1}aa, b_{2})\}$ of $A_{1}\cross A_{1}\cross A_{2}\cross A_{1}\cross A_{2}$ . It is easy to
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see that this subautomaton is isomorphic to A under the isomorphism $\mu(a)=$

$(a_{1}, a_{1}, b2, b_{1}, a_{2})$ and $\mu(b)=(b_{1}, b_{1,2,1}aa, b_{2})$ .
We note that from the above proof it follows that any two-state reset au-

tomaton can be embedded isomorphically into an $\alpha_{0}$ -product of nondeterministic
automata from $\Sigma$ .

Now, let $n>2$ and let us suppose that the statement is valid for any $1\leq$

$k<n$ . Let $\mathrm{A}=(X, A)$ be an arbitrary definite nondeterministic automaton with
$|A|=n$ . Let us construct the corresponding partially ordered set $(Q, \leq)$ for A.

If $Q=\{A\}$ , then $|Ax^{\mathrm{A}}|=1$ from (i) and the definition of $Q$ , for all $x\in X$ ,
$\mathrm{i}.\mathrm{e}.$ , A is a reset automaton. On the other hand, it is well-known that any reset au-
tomaton can be embedded isomorphically into a quasi-direct product of two-state
reset automata. By the observation above, any two-state reset automaton can be
embedded isomorphically into an $\alpha_{0}$-product of nondeterministic automata from
$\Sigma$ . Therefore, by Lemma 1, we obtain that A can be embedded isomorphically
into an $\alpha_{0}$-product of nondeterministic automata from $\Sigma$ .

Now, let us suppose that $Q\neq\{A\}$ . Let $U$ denote an arbitrarily fixed maxi-
mal element of $(Q, \leq)$ . Then, there are $u\neq v\in U$ . Let $V=\{u, v\}$ . Without loss
of generality, we may assume that $A=\{a_{1}, \ldots, a_{n}\}$ and $V=\{a_{n-1}, a_{n}\}$ . Let us
construct the corresponding definite nondeterministic automaton $\mathrm{A}’$ according to
the preliminaries of Lemma 2.

Then $|A’|=n-1$ , and thus, by our induction hypothesis, $\mathrm{A}’$ can be embed-
ded isomorphically into an $\alpha_{0}$-product of nondeterministic automata from $\Sigma$ . In
what follows, we define a nondeterministic automaton $\mathrm{B}$ and prove that A can be
embedded isomorphically into an $\alpha_{0}$-product of $\mathrm{A}’$ and B. Furthermore, we show
that $\mathrm{B}$ can be embedded isomorphically into an $\alpha_{0}$-product of nondeterministic
automata from $\Sigma$ . Then, by Lemma 1, we obtain that A can be embedded isomor-
phically into an $\alpha_{0}$-product of nondeterministic automata from $\Sigma$ which completes
the proof.

Let $\mathrm{B}=(W, B)$ where $B=\{h, a_{n-1}, a_{n}\},$ $W=\{w_{1}, \ldots, w_{10}\}$ , and let us
define the realization of the symbols as follows. Let

$hw_{1}^{\mathrm{B}}=\{h\},$ $hw_{2}^{\mathrm{B}}=B,$ $hw_{3}^{\mathrm{B}}=\{h, a_{n-1}\},$ $hw_{4}^{\mathrm{B}}=\{h, a_{n}\},$ $hw_{5}^{\mathrm{B}}=\{a_{n-1}\}$ ,
$hw_{6}^{\mathrm{B}}=\{a_{n}\},$ $hw_{7}^{\mathrm{B}}=\{a_{n-1}, a_{n}\},$ $a_{n-1}w_{8}\mathrm{B}=a_{n}w_{8}^{\mathrm{B}}=\{a_{n}\}$ ,
$a_{n}w_{9}^{\mathrm{B}}=a_{n-1}w^{\mathrm{B}}9=\{a_{n-1}\},$ $anw_{10}\mathrm{B}=a_{n-1}w_{10}^{\mathrm{B}}=\{h\}$ .

In all the remaining cases, let $bw^{\mathrm{B}}=B$ where $b\in B$ and $w\in W$ .

We note that $\mathrm{B}$ is not a definite nondeterministic automaton. Now, let us
define the $\alpha_{0}$-product $\mathrm{A}’\cross \mathrm{B}$

. $(X, \Phi)$ as follows. For any $x\in X$ and $1\leq j\leq n-2$ ,
let

$\varphi_{1}(x)=x$ ,
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$\varphi_{2}(a_{j}, x)=\{$

$w_{1}$ if $a_{j}x^{\mathrm{A}}\cap V=\emptyset$ ,
$w_{5}$ if $a_{j}x^{\mathrm{A}}=\{a_{n-1}\}$ ,
$w_{6}$ if $a_{j}x^{\mathrm{A}}=\{a_{n}\}$ ,
$w_{7}$ if $a_{j}x^{\mathrm{A}}=\{a_{n-1}, a_{n}\}$ ,
$w_{3}$ if $a_{j}x^{\mathrm{A}}\cap V=\{a_{n-1}\}\ a_{j}x^{\mathrm{A}}\not\in V$ ,
$w_{4}$ if $a_{j}x^{\mathrm{A}}\cap V=\{a_{n}\}\ a_{j}x^{\mathrm{A}}\not\subset V$,
$w_{2}$ if $a_{j}x^{\mathrm{A}}\cap V=\{a_{n-1}, a_{n}\}\ a_{j}x^{\mathrm{A}}\not\in V$ ,

furthermore,

$\varphi_{2}$ ( $\{a_{n-}1,$ a}n’ $X$ ) $=\{$

$w_{10}$ if $a_{n}x^{\mathrm{A}}\not\in V$ ,
$w_{8}$ if $a_{n}x^{\mathrm{A}}=\{a_{n}\}$ ,
$w_{9}$ if $a_{n}x^{\mathrm{A}}=\{a_{n}-1\}$ .

Let us consider the $\mathrm{o}\mathrm{n}\mathrm{e}- \mathrm{t}_{\mathrm{o}^{-}\mathrm{o}\mathrm{n}\mathrm{e}}$ mapping $\mu$ of $A$ into $A/\rho\cross\{h, a_{n-1}, a_{n}\}$ which
is defined by

$\mu(a_{j})=\{$

$(a_{j}, h)$ if $1\leq j\leq n-2$ ,
( $\{a_{n-1},$ an}, $a_{n-1}$ ) if $j=n-1$ ,
$(\{a_{n-1}, a_{n}\}, a_{n})$ if $j=n$ .

Using the equalities $Vx^{\mathrm{A}}=a_{n}x^{\mathrm{A}}=a_{n-1}x^{\mathrm{A}}$ and $|Vx^{\mathrm{A}}|=1$ , it is easy to see that
$\mu$ is an isomorphism of A into $\mathrm{A}’\cross \mathrm{B}(X, \Phi)$ .

Finally, we have to prove that $\mathrm{B}$ can be embedded isomorphically into an
$\alpha_{0}$-product of nondeterministic automata from $\Sigma$ . For this purpose, let us consider
the $\alpha_{0}$ -product

$\mathrm{A}_{2}\cross \mathrm{A}_{2}\cross \mathrm{A}_{2}\cross \mathrm{A}_{2}\mathrm{x}\mathrm{A}_{2}\mathrm{x}\mathrm{A}_{2}\cross \mathrm{A}_{1}\cross \mathrm{A}_{1}\cross \mathrm{A}_{1}\cross \mathrm{A}_{1}\cross(W, \Phi)$

where the feed-back functions are defined as follows.
$\varphi_{1}(w_{i})=x_{2},\dot{i}=1,$

$\ldots,$
$10$ ,

$\varphi_{2}(a_{2}, w_{1})=z_{2}$ ,
$\varphi_{3}(a_{2}, a_{2}, W3)=z_{2}$ ,
$\varphi_{4}(a_{2}, a_{2}, a2, w_{4})=z_{2},$ $\varphi_{4}(b_{2}, b_{2}, b_{2}, w_{8})=z_{2}$ ,
$\varphi_{5}(b_{2}, b_{2}, a2, b_{2}, w8)=z_{2},$ $\varphi_{5}(b_{2}, b_{2}, a2, b_{2}, W_{9})=z_{2}$ ,
$\varphi_{5}(b_{2}, b2, b2, a2, w8)=z_{2},$ $\varphi_{5}(b_{2}, b_{2}, b_{2}, a_{2}, w9)=z_{2}$ ,
$\varphi_{6}(b_{2,2}b, a_{2}, b_{2}, a2, w_{9})=z_{2}$ ,
$\varphi_{7}(a_{22}, a, a_{2}, a2, b2, a2, w_{5})=z_{1}$ ,
$\varphi_{7}(b_{2}, b_{2}, b_{2}, a2, a2, b_{2}, w_{9})=z_{1}$ ,
$\varphi_{8}(a_{2}, a_{2}, a_{2}, a_{2}, b_{2,2}a, a_{1}, w6)=z_{1}$ ,
$\varphi_{8}(b_{2}, b_{2}, a_{2,2}b, a2, a_{2}, b1, w_{8})=z_{1}$ ,
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$\varphi_{9}(a_{2}, a_{2}, a2, a2, b2, a2, a_{1,1,7}aw)=z_{1}$ ,
$\varphi 10(b_{2}, b_{2}, a2, b2, a2, a2, b1, a1, b1, w_{1}\mathrm{o})=z_{1}$ ,
$\varphi_{10}(b_{2}, b_{2}, b2, a2, a2, b2, a1, b1, b1, w10)=z_{1}$ .

In all the remaining cases, let

$\varphi_{i}(u_{1}, \ldots, u_{i}-1, w)=\{$
$x_{2}$ if $2<_{\dot{i}<}7$ ,
$x_{1}$ if $7\leq-\dot{i}\leq 10$ ,

where $w\in W,$ $u_{t}\in A_{2}$ if $1\leq t<7$ , and $u_{t}\in A_{1}$ if $7\leq t\leq 10$ .

Considering the defined $\alpha_{0}$ -product, it can be seen by an easy computation
that the subautomaton determined by the states

$(b_{2}, b_{2}, a_{2}, b2, a_{2}, a_{2}, b_{1}, a1, b_{1}, a1)$ ,

$(b_{2}, b_{2}, b2, a_{2}, a2, b_{2}, a_{1}, b_{1}, b_{1}, a1)$ ,

$(a_{2}, a_{2}, a_{2}, a2, b2, a2, a1, a1, a_{1}, b_{1})$ ,

is isomorphic to $\mathrm{B}$ under the isomorphism $\mu$ which is defined by

$\mu(a_{n-1})=(b_{2}, b_{2}, a_{2}, b2, a_{2}, a_{2}, b_{1}, a1, b1, a1)$,

$\mu(a_{n})=(b2, b2, b2, a2, a2, b2, a_{1}, b_{1}, b1, a1)$ ,

$\mu(h)=(a_{2}, a_{2}, a_{2}, a_{2}, b_{2}, a_{2}, a_{1}, a_{1}, a_{1}, b_{1})$ .

This completes the proof of Theorem 2.
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