D－BOUNDED DISTANCE－REGULAR GRAPHS

Chih－wen Weng＊

Let $\Gamma=(X, R)$ denote a distance－regular graph with distance function δ and diameter $D \geq 3$ ．A（vertex）subgraph $\Delta \subseteq X$ is said to be weak－geodetically closed whenever for all vertices $x, y \in \Delta$ and for all $z \in X$ ，

$$
\delta(x, z)+\delta(z, y) \leq \delta(x, y)+1 \quad \longrightarrow \quad z \in \Delta .
$$

It turns out that if Δ is weak－geodetically closed and regular then Δ is distance－ regular．For each integer $i \quad(0 \leq i \leq D), \Gamma$ is said to be i－bounded whenever for all $x, y \in X$ at distance $\delta(x, y) \leq i, x, y$ are contained in a common regular weak－geodetically closed subgraph of Γ of diameter $\delta(x, y)$ ．In［3］，we assume $c_{2}>1, a_{1} \neq 0$ ，and characterize such Γ in terms of forbidden configurations．

Now assume Γ is D－bounded．Let $P(\Gamma)$ denote the poset whose elements are the weak－geodetically closed subgraphs of Γ ，with partial order induced by reverse inclusion．Using $P(\Gamma)$ ，we obtain the following inequalities for the intersection numbers of Γ ：

$$
\frac{b_{D-i-1}-b_{D-i+1}}{b_{D-i-1}-b_{D-i}} \geq \frac{b_{D-i-2}-b_{D-i}}{b_{D-i-2}-b_{D-i-1}} \quad(1 \leq i \leq D-2) .
$$

We show equality is obtained in each of the above inequalities if and only if the intervals in $P(\Gamma)$ are modular．Moreover，we show this occurs if Γ has classical parameters and $D \geq 4$ ．This leads to our main result，which we now state．

Theorem A Let Γ denote a distance－regular graph with classical parameters (D, b, α, β) and $D \geq 4$ ．Suppose $b<-1$ ，and suppose the intersection numbers $a_{1} \neq 0, c_{2}>1$ ．Then

$$
\beta=\alpha \frac{1+b^{D}}{1-b}
$$

（See［1］for the definition of distance－regular graphs with classical parameters．）
We use Theorem A to obtain the following results，which we believe are of independent interest．

[^0]Theorem B Let Γ denote a distance-regular graph with diameter $D \geq 4$ and intersection number $c_{2}>1$. Then the following (i)-(ii) are equivalent.
(i) Γ has classical parameters (D, b, α, β) with $b=-a_{1}-1$.
(ii) Γ is the dual polar graph ${ }^{2} A_{2 D-1}(-b)$.

Theorem C Let Γ denote a Q-polynomial distance-regular graph with diameter $D \geq 4$. Assume the intersection numbers $c_{2}>1, a_{1} \neq 0$. Suppose Γ is a near polygon graph. Then Γ is a dual polar graph or a Hamming graph.

Theorem \mathbf{D} Let Γ denote a distance-regular graph with diameter $D \geq 4$, and the intersection numbers $c_{2}>1, a_{1} \neq 0$. Then the following (i)-(ii) are equivalent.
(i) Γ has classical parameters (D, b, α, β) with $b=-a_{1}-2$.
(ii) Γ is the Hermitian forms graph $\mathrm{Her}_{-b}(D)$.

Using Hiroshi Suzuki's classification of D-bounded distance-regular graphs with $c_{2}=1, a_{2}>a_{1}>1[2]$, we prove the following result.

Theorem \mathbf{E} There is no distance-regular graph with classical parameters $(D, b, \alpha, \beta), D \geq 4, c_{2}=1$, and $a_{2}>a_{1}>1$.

We would like to note that it is not necessary to assume the graph Γ is D-bounded in each of Theorem A-Theorem E.

REFERENCES

[1] A.E. Brouwer, A.M. Cohen, and A. Neumaier. Distance-Regular Graphs, Springer Verlag, New Tork, 1989.
[2] H. Suzuki. Strongly closed subgraphs of a distance-regular graph with geometric girth five. preprint.
[3] C. Weng. Weak-geodetically closed subgraphs in distance-regular graphs. preprint.

[^0]: ＊This work was done when the author was a Ph．D．student in Department of Mathematics，University of Wisconsin．Current address：Department of Applied Mathematics，National Chiao Tung University， 1001 Ta Hsueh Road，Taiwan R．O．C．

