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This article is an expository summary (with Figures) of [O3].

Abstract. For any marked closed Riemann surface $S$ with genus $g\geq 2$ , we can read a
corresponding Fuchsian representation from its fundamental domain of hyperbolic 4g-gon,
whose boundary consists of geodesic arcs representing generators of $\pi_{1}(S)$ with certain base
point. Also, explicitly given is a conj ugate transformation which moves such fundamental
$4g$-gon to a standard position. Consequently several applications to hyperbolic geometry
on $S$ are obtained.

\S 0. Primitive questions

As is well-known, the hyperbolic regular $4g$-gon $(g\geq 2)$ in the Poincare’ disk, with all
the angles equal to $\pi/2g$ , gives rise to a marked closed Riemann surface of genus $g$ , whose
marking is determined by the geodesic arcs in the boundary of the original 4g-gon. This
marked Riemann surface is also characterized as the quotient of the Poincare’ disk by the
image of afaithful, discrete and ‘Orientation preserving” $PSU(1,1)$-representation (we call
this $ltFuchsian$ ” representation) of the genus $g$ surface group.

Questions. (1) How can we describe the Fuchsian representation (up to conjugacy) for
the hyperbolic regular 4g-gon?
(2) How is the ‘bositioning in the Riemann surface” of the base point which corresponds
to the vertices of the above 4g-gon?

[Figure 1]

\S 1. Marked fundamental $4\mathrm{g}$-gon and its Fuchsian representations

Let $\Sigma_{g}$ be a closed oriented surface of genus $g\geq 2$ , and fix a point $p\in\Sigma_{g}$ . Take any hy-
perbolic metric $h$ on $\Sigma_{\mathit{9}}$ . Then for any $\gamma\in\pi_{1}(\Sigma_{g},p)$ , there is a unique (not always simple)
geodesic arc from $p$ to $p$ , representing $\gamma$ . Notice that this geodesic arc has a singularity
at $p$ in general. Choose a generator system $\alpha_{1},$ $\beta_{1,\mathit{9}}\ldots,$$\alpha,$ $\beta_{g}$ of $\pi_{1}(\Sigma_{g}, p)$ with the relation
$[\alpha_{1}, \beta_{1}]\cdots[\alpha_{g}, \beta_{g}]=1$. Suppose that for these $\alpha_{1},$ $*\alpha\cdot,$

$\beta_{g}$ , the corresponding geodesic arc
representatives are all simple and have intersections only at $p$ . Then cutting $(\Sigma_{g}, h)$ along
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such simple geodesic arcs

$(*)$ $\alpha_{1},\beta 1,$ $\alpha^{-1-}1’\beta_{1}1,$
$\cdots,$ $\alpha\beta g’ g’ g’\beta_{\mathit{9}}\alpha-1-1$ ,

we obtain a hyperbolic $4g$-gon with boundary corresponding to $(*)$ . Hereafter we will as-
sume that our generator systems of $\pi_{1}(\Sigma_{g},p)$ are chosen so that the order of $(*)$ gives the
clockwise orientation for the boundary.

Definition. Let $l=(l_{i})\in(R_{+})^{g},$ $\sim l=(l_{i})\sim\in(R_{+})^{g}$ and $\theta=(\theta_{j})\in(0,2\pi)4\mathit{9}.$ A marked
fundamental 4g-gon $X(l,l\sim\cdot,\theta)$ is a hyperbolic geodesic $4g$-gon in the Poincare’ disk with the
clockwise namings $(*)$ of its sides, having the following properties:
(i) length of $\alpha_{i}=\mathrm{l}\mathrm{e}\mathrm{n}\mathrm{g}\mathrm{t}\mathrm{h}$ of $\alpha^{-1}:=l.\cdot$ , length of $\beta_{i}=\mathrm{l}\mathrm{e}\mathrm{n}\mathrm{g}\mathrm{t}\mathrm{h}$ of $\beta_{:}^{-1}=\sim l_{i}(i=1, \cdots, g)$ .
(ii) angle between $\alpha_{1}$ and $\beta_{1}=\theta_{1},$ ange between $\beta_{1}$ and $\alpha_{1}^{-1}=\theta_{2},$ $\cdots$ , angle between

$\beta_{g}^{-1}$ and $\alpha_{1}=\theta_{4g}$ (clockwise order).

(iii) $\sum_{j=1}^{4g}\theta_{j}=2\pi$ .

Remarks. (1) From any marked fundamental 4‘g-gon, we have natu.rally a genus $g$ Rie-
mann surface with marking $(\alpha_{1}, \beta_{1}, \cdots, \alpha_{\mathit{9}}, \beta g)$ ; topologic ally we will regard all these marked
surfaces as those with the same marking $(\alpha_{1}, \cdots, \beta_{g})$ . Moreover $\alpha_{1},$ $*\cdot\cdot,$

$\beta_{g}$ are specified as
elements of $\pi_{1}(\Sigma_{g},p)$ for the point $p$ corresponding to the vertices of the 4g-gon.
(2) For any marked Riemann surface of genus $g$ , due to L. Keen [K], there are choices of
base point $p_{0}$ and inner-automorphism of $\pi_{1}(\Sigma_{g},p_{0})$ , so that we can construct a strictly
convex marked fundamental $4g$-gon $\mathrm{w}\dot{\mathrm{h}}_{\mathrm{O}\mathrm{S}}\mathrm{e}$ boundary gives the fixed genegators $\alpha_{1},$ $\cdots,$

$\beta_{g}$

of $\pi_{1}(\Sigma_{g}, p_{0})$ . Actually Keen’s construction is as follows: For any closed curve $\gamma$ in a Rie-
mann surface, let $\hat{\gamma}$ be the unique closed geodesic free-homotopic to $\gamma$ . Take $p_{0}=\hat{\alpha}_{1}\cap\hat{\beta}_{1}$

and kill the ambiguity of inner-automorphisms of $\pi_{1}(\Sigma_{g},p_{0})$ in the marking $(\alpha_{1}, \cdots, \beta_{g})$ by
specifying the generators $\alpha_{1}=\hat{\alpha}_{1},$ $\beta_{1}=\hat{\beta}_{1}$ . Then geodesic arcs from $p\mathrm{o}$ to $p\mathrm{o}$ , corresponding
to $\alpha_{1},$ $\cdots,$

$\beta_{g}$ are shown to be all simple and having intersections only at $p_{0}$ ; thus we obtain
a marked fundamental $4g$-gon from this. . : . $\mathrm{t}$

Now we read a Fuchsian representation from the data of a marked fundamental $4g$-gon
$X(l,l,\theta)\sim\cdot$ .

Notation. Denote $\in PSU(1,1)$ (i.e. $|a|^{2}-|b|^{2}=1$) by $[a;b]$ . For $x\in R/2\pi Z$

and $y\in R$ , let $e(x)=[e^{ix/2} ; 0]$ (rotation of angle $x$ around $0$ in the Poincare’ disk) and
$eh(y)=[ch(y/2);sh(y/2)]$ (hyperbolic displacement of length $y$ along the real axis).
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Theorem 1. The following gives a corresponding Fuchsian representation $\rho$ for any
marked fundamental $4g- g_{onX}(l,l;\theta)\sim$ :

$\rho(\alpha.\cdot)=e(\theta_{1}+\cdots+\theta_{4}i-4)eh(l:)e(\pi-(\theta_{4}i-2+\theta 4i-1))e(-(\theta 1+\cdots+\theta 4i-4))$ ,
$\rho(\beta:)=e(\theta_{1}+\cdots+\theta_{4\cdot-}.1)eh(l\sim.\cdot)e(-\pi+(\theta_{4}i-3+\theta 4\cdot.-2))e(-(\theta_{1}+\cdots+\theta 4i-1))$ .
Proof. First fix a position of $X(l,l,\theta)\sim$. in the Poincare’ disk by lifting $p\in\Sigma_{g}$ (this is

the point corresponding to the vertices of $X(l,l,\theta))\sim$. to the origin and also lifting $\alpha_{1}\subset\Sigma_{g}$

(geodesic arc from $p$ to $p$ ) to the real axis. In this situation, we will read the corresponding
holonomy representation, say, $\rho$ .

[Figure 2]

The lift $\tilde{\alpha}_{i}$ of $\alpha_{i}$ , starting from the origin, is described as follows:

[Figure 3]

From the direction of the real axis, rotate by the angle $\theta_{1}+\cdots+\theta_{4\cdot-4}$. and go straight by
the length $l.\cdot$ (the reaching point will be denoted as $\rho(\alpha:)\cdot 0$). At the point $p$ ) the angle from
the incoming direction of $\alpha.\cdot$ (here $p$ is the end point) to the outgoing direction of $\alpha$. (here
$p$ is the starting point) is equal to $\pi-(\theta_{4i-2}+\theta_{4i-1})$ . Thus by $\rho(\alpha_{i})$ , the direction of $\tilde{\alpha}_{i}$

at $0$ is mapped to the direction of angle $\pi-(\theta_{4:-2}+\theta_{4\cdot-1}.)$ , measured from the direction of
$\tilde{\alpha}_{i}$ at $\rho(\alpha_{i})\cdot 0$ . Notice that the above data determine the element $\rho(\alpha_{i})$ of $PSU(1,1)$ . Now
from Figure 4, we can see that the right-hand side of the formula for $\alpha.\cdot$ in the statement
of Theorem 1 actually coincides with the element $\rho(\alpha.)$ .

[Figure 4]

The case for $p(\beta_{1})$ is as well. $\square$

Remark. Suppose that there is a hyperbolic $4g$-gon $X(l,l\sim\cdot,\theta)$ with the conditions (i),

(ii) and $( \mathrm{i}\mathrm{i}\mathrm{i})/\sum_{1\mathrm{j}=}^{4}g\theta_{j}=\omega$ , instead of (iii). Then by a direct calculation, we have, for the $\rho$

in Theorem 1,

$\lceil p(\alpha_{1}),$ $\rho(\beta_{1})]\cdots \mathfrak{u}(\alpha g),$ $p(\beta g)]e(\omega)=$

$\prod_{i=1}^{g}.eh(li)e(-\pi+\theta 4\cdot.-s)eh(\iota_{i}\sim)e(-\pi+\theta 4*\cdot-2)eh(l:)e(-\pi+\theta_{4i1}-)eh(l:)e\sim(-\pi+\theta_{4i})$ ,
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where $\prod_{i=1}^{g}A$: means $A_{1}\cdots A_{g}$ . We can see that the right-hand side is equal to $I\in PSU(1,1)$

(cf. [O2, Lemma]), which is equivalent to the condition that $X(l,l,\theta)\sim$. is a hyperbolic 4g-
$\mathrm{g}\mathrm{o}\mathrm{n}$ . Thus the above $X(l,l,\theta)\sim$. and $\rho$ give rise to a developing map of a genus $g$ hyperbolic
cone manifold with one cone point $p$ of cone angle $\omega$ .

\S 2. Moving a marked fundamental $4\mathrm{g}$-gon to the standard position

Suppose that we are given two marked fundamental $4g$-gons $X=X(l,l,\theta)\sim$. and $X’=$
$X$ $(l’,l’\sim ; \theta’)$ ; by Theorem 1, we have the corresponding Fuchsian representations $p$ and $\rho’$ . $X$

and $X’$ give the same marked Riemann surface $[(\Sigma_{g}, h), (\alpha_{1}, \cdots , \beta_{g})](i.e$ . the same element
of the genus $g$ Teichmiiller space $\mathcal{T}_{g}$ ) if and only if $\rho$ and $p’$ are conj ugate to each other
by an element of $PSU(1,1)$ . In this section, we will give a criterion for these. Of course,
it is possible to choose more than (6g-6) elements in $\pi_{1}(\Sigma_{g})$ , so that the geodesic lengths
of these elements give a global coordinate system for $\mathcal{T}_{g}$ . In comparison, our method
is more geometrical and direct one. We will construct conjugate transformations which
move $X$ and $X’$ to standard positions (see below). Then applying such transformations
to $p(\alpha_{1}),$

$\cdots,$ $\rho(\beta g)$ and $\rho’(\alpha_{1}),$ $\cdots$ , $p’(\beta_{\mathit{9}})$ , we can answer whether $\rho$ is conj ugate to $\rho’$ or not.

Definition. A marked fundamental $4g$-gon in the Poincare’ disk (or, its associated Fuch-
sian representation $p$ constructed in Theorem 1) is said to be in the standard position if
the axes of $\rho(\alpha_{1})$ and $p(\beta_{1})$ , denoted by $ax(p(\alpha_{1}))$ and $ax(\rho(\beta 1))$ , satisfy that $ax(\rho(\alpha_{1}))=$

the real axis and $ax(p(\alpha_{1}))\cap ax(p(\beta 1))=\{0\}$ .

Remark. $ax(\rho(\alpha_{1})),$ $ax(\rho(\beta_{1}))$ are lifts of the closed geodesics $\hat{\alpha}_{1},\hat{\beta}_{1}\subset\Sigma_{g}$ , respec-
tively. These axes have a transverse intersection because there exists (see \S 1, Remarks
(1), (2) $)$ a path $\epsilon\subset\Sigma_{g}$ , from $p$ (the point corresponding to vertices of the 4g-gon) to

$p_{0}=\hat{\alpha}_{1}\cap\hat{\beta}_{1}$ , such that $\epsilon\hat{\alpha}_{1}\epsilon^{-1}\simeq\alpha_{1}$ and $\epsilon\hat{\beta}_{1}\epsilon^{-1}\simeq\beta_{1}$ in $\Sigma_{g}$ (lifts of $p$ and $\epsilon$ determine the
point $ax(p(\alpha_{1}))\cap ax(\rho(\beta 1)))$ .

Theorem 2.1. For any marked fundamental 4g-gon $X(l,l\sim\cdot,\theta)$ , we can explicitly give the
conjugate transformation which moves its associated Fuchsian representation $p$ to the stan-
dard position.

Proof. The ideais to use the Iwasawa decomposition of $PSU(1,1)$ : Let $K=\{[e^{:};0]\varphi;\varphi\in$
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$R/2\pi Z\},$ $N=\{[1+ir;ir];r\in R\}$ and $A=\{[ch(\lambda);sh(\lambda)];\lambda\in R\}$ . Then we have
$PSU(1,1)=ANK$ and we will determine the desired transformation, first for the $\mathrm{c}\mathrm{o}\mathrm{m}_{\mathrm{P}^{\mathrm{c}\succ}}$

nents of $N$ and $K$ , and second for the component of $A$ .

Step 1. We will determine the element $P(\rho(\alpha 1))=nk$ ($n\in N$ and $k\in K$ ) such that
$P(\rho(\alpha_{1}))0\beta(\alpha_{1})\mathrm{o}P(p(\alpha 1))^{-1}=[ch(L);Sh(L)]$ for some $L>0$ .

[Figure 5]

Actually we can treat with this problem in a more general setting: Given $\beta_{1}’+ip2;q_{1}+iq_{2}$ ] $\in$

$PSU(1,1)$ with $p_{1}>1$ , we will solve the folowing equation for $n=[1+ir;ir]\in N$ and
$k=[e^{\varphi}.\cdot ; 0]\in K$ ;

(2.1) $nk\beta_{1}’+ip_{2}$ ; $q_{1}+iq_{2}$] $(nk)^{-1}=[ch(L);Sh(L)]$ .

By a direct calculation, we can see that (2.1) holds if and only if $p_{1}=ch(L),$ $q_{2}\cos(2\varphi)+$

$q_{1}\sin(2\varphi)=p_{2},$ $q_{1}\cos(2\varphi)-q_{2}\sin(2\varphi)=sh(L)$ and $r=-p_{2}/2sh(L)$ . We look for

the solution with $L>0$ , so $sh(L)=(p_{1}^{2}-1)^{1/2}$ . Now let $\Psi\in R/2\pi Z$ be the angle
with $\cos\Psi=q_{1}/(q_{1}^{2}+q_{2}^{2})^{1/2}$ and $\sin\Psi=q_{2}/(q_{1}^{2}+q_{2}^{2})^{1/2}$ . (Notice that if $q_{1}=q_{2}=0$ ,

then we have $p_{2}=0$ and thus $p_{1}=1.$ ) Then we have $\sin(2\varphi+\Psi)=p_{2}/(q_{1}^{2}+q_{2}^{2})^{1/2}$

and $\cos(2\varphi+\Psi)=(p_{1}^{2}-1)^{1/2}/(q_{1}^{2}+q_{2}^{2})^{1/2}$ . (Notice that $|p_{2}/(q_{1}^{2}+q_{2}^{2})^{1/2}|\leq 1$ if and
only if $p_{1}^{2}\underline{>}$ $1.$ ) These formulas determine $2\varphi+\Psi\in R/2\pi Z$ , and thus determine
$\varphi\in R/\pi Z$ . In this way we can determine $r\in R$ and $\varphi\in R/\pi Z$ from (2.1). (In par-
ticular for $\rho(\gamma)=e(\psi_{1})eh(S)e(\psi_{2})$ , let $\Phi=(\psi_{1}+\psi_{2})/2\in R/2\pi Z$ with $\cos\Phi>0$ and
$\Psi--(\psi_{1}-\psi_{2})/2\in R/2\pi Z$ , so that $\Phi+\Psi=\psi_{1}$ . Then $P(p(\gamma))=[1+ir;ir][e;i\varphi 0]$ is de-

termined by $e^{i(2\varphi\Psi)}+=((\cos\Phi)2Ch(s/2)^{2}-1)^{1/2}+i\sin\Phi/th(s/\circ)\sim$ and $r=-\mathrm{t}\mathrm{a}\mathrm{n}(2\varphi+\Psi)/2.)$

Step 2. Because the group $A$ consists of hyperbolic displacements along the real axis and
$ax(p(\alpha_{1}))$ and $ax(\rho(\beta 1))$ intersect transversely, there exist unique elements $eh(2\lambda),$ $eh(2\tilde{\lambda})\in$

$A$ such that

(2.2) $eh(2\tilde{\lambda})P(\rho(\beta_{1}))(eh(2\lambda)P(p(\alpha 1)))-10=0$

(here . means a fractional linear transformation; $[a;b]\cdot Z=(az+b)/(\overline{b}z+\overline{a})$ ).

[Figure 6]

This $eh(2\lambda)\in A$ is exactly the one what we want; $eh(2\lambda)P(p(\alpha 1))$ moves $\rho$ to the standard
position. To get the formula for $\lambda$ , we have to solve the equation (2.2) for $\lambda=\lambda(\rho)$ and
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$\tilde{\lambda}=\tilde{\lambda}(p)$ . Write $P(\rho(\beta_{1}))\mathrm{o}P(\rho(\alpha_{1}))^{-1}=[a_{1}+ia_{2;b_{1}}+ib_{2}]$ . Then (2.2) is equivalent
to $-sh(\lambda-\tilde{\lambda})a1+ch(\lambda-\tilde{\lambda})b_{1}=0$ and $-sh(\lambda+\tilde{\lambda})a_{2}+ch(\lambda+\tilde{\lambda})b_{2}=0$. Notice that
we have $a_{1}\neq 0$ and $a_{2}\neq 0$ ; otherwise the axes $ax(p(\alpha_{1}))$ and $ax(\rho(\beta 1))$ would coincide
(orientation preservingly or reversingly) with each other. Thus from th $(\lambda-\tilde{\lambda})=b_{1}/a_{1}$ and
th $(\lambda+\tilde{\lambda})=b_{2}/a_{2}$ , we can get the formula for $\lambda:sh(\lambda)=\{|((a_{1}+b_{1})(a_{2}+b_{2}))/((a_{1}$ -

$b_{1})(a_{2}-b_{2}))|1/4-|$ ( $(a1-b_{1})$ (a$2-b_{2})$ )$/((a_{1}+b_{1})(a_{2}+^{\iota_{2}))}|^{1}/4\}/2$ . $\square$

Remarks. (1) In the above, $|a_{1}|>|b_{1}|$ and $|a_{2}|>|b_{2}|$ must be satisfied because (2.2)
has unique solutions $\lambda$ and $\tilde{\lambda}$ .
(2) Step 1 and Step 2 can be automatically applied to two hyperbolic transformations $H_{1}$ ,
$H_{2}$ with their axes having transverse intersections; we can give the explicit formula for the
transformation which moves $ax(H_{1})$ to the real axis and $ax(H_{1})\cap ax(H2)$ to $0$ .

As a summary of this section, we shall record the following

Theorem 2.2. For two marked fundamental $4g$ -gons $X$ and $X_{f}’$ let $\rho$ and $\rho’$ be their as-
sociated Fuchsian representations constructed in Theorem 1. Then $\rho$ and $\rho’$ are conjugate in
$PSU(1,1)$ ($i.e$ . give the same element of $\mathcal{T}_{g}$ ) if and only if $eh(2\lambda)P(\rho(\alpha_{1}))0\rho(\gamma)\mathrm{o}(eh(2\lambda)$

$P(p(\alpha_{1})))-1=eh(2\lambda’)P(p’(\alpha_{1}))\mathrm{o}p(/\gamma)\circ(eh(2\lambda’)P(\rho(’)\alpha_{1}))-1$ for $\gamma=\alpha_{1},$ $\beta_{1},$
$\cdots,$ $\alpha_{g},$

$\beta_{g\prime}$

where $P()$ is given in Theorem 2.1, Step 1, and $\lambda=\lambda(\rho)$ and $\lambda’=\lambda(\rho’)$ are given in
Theorem $\mathit{2}.\mathit{1}_{f}$ Step 2. $\square$

\S 3. Applications

Once we know a Fuchsian representation (Theorem 1) and the standard position (Theo-
rem 2.1) of a marked fundamental 4g-gon, we can investigate hyperbolic geometry of closed
Riemann surfaces, in detail and in a direct way.

Proposition 3.1. For any marked fundamental $4g- g_{\mathit{0}}nX(l,l\sim\cdot,\theta)$, let $p$ : $\pi_{1}(\Sigma_{g},p)arrow$

$PSU(1,1)$ be its Fuchsian representation given in Theorem 1 (recall that, here $p$ is corre-
sponding to the vertices; $0$ is a lift of $p$ and the real axis is a lift of $\alpha_{1}$ ). Let $\delta\subset\Sigma_{g}$ be the
geodesic arc from $p_{0}=\hat{\alpha}_{1}\cap\hat{\beta}_{1}$ , to $p$ such that $\delta^{-1}\hat{\alpha}_{1}\delta\simeq\alpha_{1}$ and $\delta^{-1}\hat{\beta}_{1}\delta\simeq\beta_{1}$ . Then in the
standard position of $X(l,l,\theta)\sim\cdot$ , we can write down the positioning of the lift $\delta\sim of$ $\delta$ , starting
from $0$ .
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Proof. We use the notation of Theorem 2.1. The end-point $w$ of $\delta\sim$ is given by $w=$

$eh(2\lambda)P(\rho(\alpha_{1}))\cdot 0$ . Explicitly we have the following formula:

$w=(ch(\lambda)r\sin\varphi+\mathit{8}h(\lambda)(\cos\varphi-r\sin\varphi)+i(ch(\lambda)r\cos\varphi-sh(\lambda)(r\cos\varphi+\sin\varphi))/$

$(ch(\lambda)(\cos\varphi-r\sin\varphi)+sh(\lambda)r\sin\varphi-i(ch(\lambda)(r\cos\varphi+\sin\varphi)-Sh(\lambda)r\cos\varphi))$ . $\square$

Proposition 3.2. For any marked fundamental 4g-gon $x(l,l\sim;\theta)$ and its associated Fuch-
sian representation $p$ constructed in Theorem 1, let $X(l^{0},l ; \theta^{0})\sim_{0}$ and $\rho 0$ : $\pi_{1}(\Sigma_{g},p_{0})arrow$

$PSU(1,1)$ be the unique marked fundamental $4g- g_{\mathit{0}}n$ and its associated Fuchsian represen-
tation such that $\alpha_{1}=\hat{\alpha}_{1},$ $\beta_{1}=\hat{\beta}_{1}\hat{\alpha}_{1}\cap\hat{\beta}_{1}=\{p_{0}\}$ and $\rho_{0}$ is conjugate to $p$ in $PSU(1,1)$ .
Then we can write down these $‘ {}^{t}canonical’$’ parameters $l^{0},l^{0}\sim$ and $\theta^{0}$ as functions of $l,l\sim$ and $\theta$ .

Proof. By the construction of $\rho$ in Theorem 1, $p_{0}$ is by itself in the standard position.
Thus we have $\rho_{0}(\gamma)=eh(2\lambda(\rho))P(\rho(\alpha 1))\mathrm{o}p(\gamma)\mathrm{o}(eh(2\lambda(p))P(\rho(\alpha 1)))-1$ (here $\gamma\in\pi_{1}(\Sigma_{g},p_{0})$

and $\gamma\in\pi_{1}(\Sigma_{g},p)$ are identified by the path $\delta$ in Proposition 3.1). Let $p_{0}(\gamma)\cdot 0=z(\gamma)$ .

Then $l_{:}^{0}$ and $\sim l_{:}^{0}$ are given by $l^{0}.\cdot=d_{P}(0, z(\alpha i))$ and $\sim l_{i}^{0}=d_{P}(0, z(\beta_{i}))$ , where $d_{P}(0, z)=$

$\log\{(1+|z|)/(1-|z|)\}$ , the Poincare’ metric.

[Figure 7]

Let us deduce the formula for $\theta_{i}^{0}$ , for example for $\theta_{5}^{0}$ , the angle between the sides $\alpha_{2}$

and $\beta_{2}$ of $X(l^{0},l^{0} ; \theta 0)\sim$ . In our orientation convention, $\theta_{5}^{0}$ is nothing but the angle from the
vector $z(\alpha_{2}^{-1})$ to $z(\beta_{2})$ ; thus we have $e^{i\theta_{5}^{0}}=(z(\beta_{2})/|z(\beta_{2})|)/(z(\alpha_{2}^{-1})/|z(\alpha_{2}^{-})1|)$ . $\square$
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$\sim$

$\mathrm{F}_{16^{\mathrm{u}\mathrm{r}\mathrm{e}}}.1$

$\mathrm{F}|@^{1k}$ re $l$
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$\alpha_{i}$ :

$\mathrm{F}_{1\delta^{1\lambda}}.\gamma \mathrm{e}3$

$\mathrm{F}_{8^{\mathrm{u}}}\mathrm{i}\Gamma \mathrm{e}4$
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$\mathrm{F}_{1@^{\iota 1\mathrm{r}}}.\mathrm{e}$
$5$

$\mathrm{J}$

Fi@re 6

$\mathrm{F}_{1@^{\mathrm{u}}}.\mathrm{r}\mathrm{e}7$
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