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Hyperbolic 4g-gons and Fuchsian representations

Takayuki OkA1 (R 247)

This article is an expository summary (with Figures) of [03].

Abstract. For any marked closed Riemann surface S with genus g > 2, we can read a
corresponding Fuchsian representation from its fundamental domain of hyperbolic 4¢-gon,
whose boundary consists of geodesic arcs representing generators of m, (S) with certain base
point. Also, explicitly given is a conjugate transformation which moves such fundamental
4g-gon to a standard position. Consequently several applications to hyperbolic geometry
on S are obtained. ‘

§0. Primitive questions

As is well-known, the hyperbolic regular 4g-gon (¢ > 2) in the Poincar€ disk, with all
the angles equal to 7/2g, gives rise to a marked closed Riemann surface of genus g, whose
marking is determined by the geodesic arcs in the boundary of the original 4g-gon. This
marked Riemann surface is also characterized as the quotient of the Poincare disk by the
image of a faithful, discrete and ‘orientation preserving” PSU (1, 1}-representation (we call
this “Fuchsian” representation) of the genus g surface group. ‘

Questions. (1) How can we describe the Fuchsian representation (up to conjugacy) for
the hyperbolic regular 4g-gon?
(2) How is the “positioning in the Riemann surface” of the base point which corresponds
to the vertices of the above 4g-gon?

[Figure 1]

§1. Marked fundamental 4g-gon and its Fuchsian representations

Let L, be a closed oriented surface of genus g > 2, and fix a point p € X,. Take any hy-
perbolic metric k on X,. Then for any v € 7, (3, p), there is a unique (not always simple)
geodesic arc from p to p, representing 7. Notice that this geodesic arc has a singularity
at p in general. Choose a generator system oy, f,- -, oy, B, of m (X, p) with the relation
[a1, 3]« - [@g, Bg] = 1. Suppose that for these ay,---, By, the corresponding geodesic arc
representatives are all simple and have intersections only at p. Then cutting (X, k) along
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such simple geodesic arcs

- -1 - _
(*) alyﬂlaalljﬂl 1""a9)ﬂg:agl; gl’

we obtain a hyperbolic 4g-gon with boundary corresponding to (). Hereafter we will as-
sume that our generator systems of m (3, p) are chosen so that the order of () gives the
clockwise orientation for the boundary.

Definition. Let I = (;) € (B+)?, I = () € (R4)? and 8 = (§;) € (0,27)%9. A marked
fundamental 4g-gon X (I, 7;0) is a hyperbolic geodesic 4g-gon in the Poincar€ disk with the
clockwise namings (*) of its sides, having the following properties:

(i) length of a; = length of o;' = I;,lengthof ; =lengthof 87> =1, i=1,---, g)-

(ii) angle between a; and B, = 6y, angle between 3, and a;! = 6,,---, angle between
B;' and oy = By, (clockwise order).

4g

i=1

Remarks. (1) From any marked fundamental 4g-gon, we have naturally a genus g Rie-

mann surface with marking (o, 81, - -, ay, B3,); tolﬁologically we will regard all these marked
surfaces as those with the same marking (aq,-- -, 8,). Moreover ay, - - - , By are specified as
elements of m; (¥, p) for the point p corresponding to the vertices of the 4¢-gon.
(2) For any marked Riemann surface of genus g, due to L. Keen [K], there are choices of
base point po and inner-automorphism of ; (X,, po), so that we can construct a strictly
convex marked fundamental 4g-gon whose boundary gives the fixed genegators o), - - -, By
of m (Xy, po). Actually Keen’s construction is as follows: For any closed curve « in a Rie-
mann surface, let % be the unique closed geodesic free-homotopic to 7. Take py = @& NJ;
and kill the ambiguity of inner-automorphisms of x; (£, po) in the marking (o, - - -, 8,) by
specifying the generators oy = @, 8, = 8,. Then geodesic arcs from py to po, corresponding
to a;,- -+, B, are shown to be all simple and having intersections only at py; thus we obtain
a marked fundamental 4¢-gon from this.

Now we read a Fuchsian representation from the data of a marked fundamental 4g-gon
X(,1;6).

Notation. Denote [ g ; ] € PSU(1,1) (i.e. |a|> — |b> = 1) by [a;b]. For z € R/27Z
and y € R,let e(z) = [e*/?;0] (rotation of angle z around 0 in the Poincaré disk) and
eh(y) = [ch(y/2);sh(y/2)] (hyperbolic displacement of length y along the real axis).



Theorem 1. The following gives a corresponding Fuchsian representation p for any
marked fundamental 4g-gon X (I,1;0):

ploa) =e(@r +--- +94i—4)€h'(£€)€(7" ~ (Bai-z +0si—1))e(— (01 + -+ - +04is)),

p(B)=e(@r +---+ 94i—1)6h(1£)€(—11’~+ (Bgi—s + 04i—2))e(—= (1 + - +04-1)).

Proof. First fix a/position of X (I,[;6) in the Poincare’ disk by lifting p € L, (this is
the point corresponding to the vertices of X (I, 1;6)) to the origin and also lifting oy C X,
(geodesic arc from p to p) to the real axis. In this situation, we will read the corresponding
holonomy representation, say, p.

[Figure 2]
The lift &; of «;, starting from the origin, is described as follows:
[Figure 3]

From the direction of the real axis, rotate by the angle 6; + - - - + 644 and go straight by
the length I; (the reaching point will be denoted as p(a;)- 0). At the point p, the angle from
the incoming direction of o; (here p is the end point) to the outgoing direction of «; (here
p is the starting point) is equal to m — (84i—2 + 04—1). Thus by p(oy), the direction of &;
at 0 is mapped to the direction of angle m — (04— +04i_; ), measured from the direction of
&; at p(a;)- 0. Notice that the above data determine the element p(c;) of PSU(1, 1). Now
from Figure 4, we can see that the right-hand side of the formula for o; in the statement
of Theorem 1 actually coincides with the element p(a;).

[Figure 4]

The case for p(f;) is as well. O

Remark. Suppose that there is a hyperbolic 4g-gon X (I, 1;0) with the conditions (i),
4g
(i) and (iii)’ }_6; = w,instead of (iii). Then by a direct calculation, we have, for the p

i=t
in Theorem 1,

[p(e1), p(B1)]- -~ [p(ag), p(Bplle(w) =

g ~

[I eh()e(—m + 043 Yeh(I;)e (=7 + 0si—3)eh(l:)e (= + O4i—1 Jeh (I Je (= + 64:),

1=1
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g

where [] Ai means A; --- A,. We can see that the right-hand side is equal to I € PSU (1, 1)
=1

(cf. [02, Lemma]), which is equivalent to the condition that X (1,1;6) is a hyperbolic 44-

gon. Thus the above X (I,1 ,0) and p give rise to a developlng map of a genus g hyperbolic

cone manifold with one cone point p of cone angle w.

§2. Moving a marked fundamental 4g-gon to the standard position

Suppose that we are given two marked fundamental 4g-gons X = X (I, 1 1;6) and X' =
X, .9 ); by Theorem 1, we have the corresponding Fuchsian representations p and p'. X
and X' give the same marked Riemann surface [(Zg, k), (a1, -+, 3,)] (i.e. the same element
of the genus g Teichmiiller space 7,) if and only if p and p' are conjugate to each other
by an element of PSU(1, 1). In this section, we will give a criterion for these. Of course,
it is possible to choose more than (6g-6) elements in m (X,), so that the geodesic lengths
of these elements give a global coordinate system for 7,. In comparison, our method
is more geometrical and direct one. We will construct conjugate transformations which
move X and X' to standard positions (see below). Then applying such transformations
to p(a1), -+, p(B,) and p'(a1), - -+, p'(B,), we can answer whether p is conj ugate to p' or not.

Definition. A marked fundamental 4g-gon in the Poincare disk (or, its associated Fuch-
sian representation p constructed in Theorem 1) is said to be in the standard position if
the axes of p(e) and p(8;), denoted by az (p()) and az (p(8,)), satisfy that az(p(ay)) =
the real axis and az (p(o;)) Naz(p(8,)) = {0}. |

Remark. az(p(e;)),az(p(B;)) are lifts of the closed geodesics &;,8 C ¥,, respec-
tively. These axes have a transverse intersection because there exists (see §1, Remarks
(1), (2)) a path € C X, from p (the point correspondlng to vertices of the 4g-gon) to
Po =a&; N ﬂl, such that ed;e™! ~ a; and 6,816 ~ B, in X, (lifts of p and ¢ determine the
point az (p(1)) N az (p(1))).

Theorem 2.1. For any marked fundamental 4g-gon X (I, I~;9), we can explicitly give the
conjugate transformation which moves its associated Fuchsian representation p to the stan-
dard position.

Proof. The ideais to use the Iwasawa decomposition of PSU (1, 1): Let K = {[¢*;0];¢ €



R/2xZ}, N = {[1 +ir;irl;r € R} and A = {[ch(A);sh(A\)];A € R}. Then we have
PSU(1,1) = ANK and we will determine the desired transformation, first for the compo-
nents of N and K, and second for the component of A.

Step 1. We will determine the element P(p(a;)) = nk (n € N and k € K) such that
P(p(a1)) o pler) o P(p(en))™ = [ch(L);sh(L)] for some L > 0.

[Figure 5]

Actually we can treat with this problem in a more general setting: Given [p; +ips;q1 +1g2] €
PSU(1, 1) with p; > 1, we will solve the following equation for n = [1+ir;ir] € N and
k =[e*;0] € K;

(2.1)  nklpy +ipaar +iga) (nk)™ = [ch(L);sh(L)].

By a direct calculation, we can see that (2.1) holds if and only if p; = ch(L), g2 cos(2¢) +
g1 sin(2p) = pa, ¢1c0s(2p) — gasin(2p) = sh(L) and r = —py/2sh(L). We look for
the solution with L > 0, so sh(L) = (p? — 1)'/2. Now let ¥ € R/2rZ be the angle
with cos ¥ = q;/(¢> + ¢2)'/? and sin¥ = ¢5/(¢? + ¢3)*/%. (Notice that if ¢ = g2 = 0,
then we have p, = 0 and thus p; = 1.) Then we have sin(2p + ¥) = po/(¢} + g3 )2
and cos(2p + ¥) = (p? — DY2/(¢? + ¢3)"/?. (Notice that |ps/(g? + ¢3)"/?| < 1if and
only if p2 > 1) These formulas determine 20 + ¥ € R/2rZ, and thus determine
¢ € R/xZ. In this way we can determine r € R and ¢ € R/7Z from (2.1). (In par-
ticular for p(y) = e(¥1)eh(s)e(¥), let & = (¥, +9)/2 € R/2rZ with cos® > 0 and
U = (Y, — ¥2)/2 € R/21Z, s0 that ® + ¥ = ¢;. Then P(p(y)) = [1+ ir;ir][e'*; 0] is de-
termined by e{2¢+¥) = ((cos ®)?ch(s/2)*— 1)!/2+isin ®/th(s/2) and r = — tan(2p+¥)/2.)

Step 2. Because the group A consists of hyperbolic displacements along the real axis and
az (p(ay)) and az (p(B; )) intersect transversely, there exist unique elements eh(2)), eh(2)) €
A such that

(22)  eh(2X)P(p(81))(eh(2A)P (p(e1)))™ - 0=0

(here - means a fractional linear transformation; [a;b] - z = (az +b)/ (bz +7)).
[Figure 6]

This eh(2)) € A is exactly the one what we want; eh(2))P (p(c1)) moves p to the st andard
position. To get the formula for A, we have to solve the equation (2.2) for A = A(p) and
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X = A(p). Wriite P(p(8,)) o P(p(ey))™ = [a1 +daz;b + iby]. Then (2.2) is equivalent
to —sh(A — X)a; + ch(A — A)b, = 0 and —sh(A + X)ag + ch(A + X)b, = 0. Notice that
we have a; # 0 and ay # 0; otherwise the axes az(p(e;)) and az(p(8,)) would coincide
(orientation preservingly or reversingly) with each other. Thus from th(A—X) = b, /a, and
th(A +X) = by/az, we can get the formula for \: sh(A) = {|((a1 + b1)(az + b2))/((ay —
bi)(az — b2))* — [((a1 = b1)(az — 85))/ (a1 + 1) (a2 +b2))[/4} /2. O

Remarks. (1) In the above, |a;| > |b;| and |as| > |bs| must be satisfied because (2.2)
has unique solutions A and X
(2) Step 1 and Step 2 can be automatically applied to two hyperbolic transformations H,,
H; with their axes having transverse intersections; we can give the explicit formula for the
transformation which moves az (H,) to the real axis and az(H,) Naz(H,) to 0.

As a summary of this section, we shall record the following

Theorem 2.2. For two marked fundamental 4g-gons X and X', let p and p' be their as-
sociated Fuchsian representations constructed in Theorem 1. Then p and p' are conjugate in
PSU(L 1) (i.e. give the same element of T,) if and only if eh(2X)P (p(e1)) 0 p(7) 0 (eh(2))
Plp(en)))™ = eh(2X)P(s'(01)) 0 /(1) 0 (h(2N)P(p'(01))™ for 7 = ay, By, -+, cip
where P( ) is given in Theorem 2.1, Step 1, and X = X(p) and X' = X(p') are given in
Theorem 2.1, Step 2. O

§3. Applications

Once we know a Fuchsian representation (Theorem 1) and the standard position (Theo-
rem 2.1) of a marked fundamental 4g-gon, we can investigate hyperbolic geometry of closed
Riemann surfaces, in detail and in a direct way.

Proposition 3.1. For any marked fundamental 4g-gon X (I,1;0), let p : m (Zq,p) —
PSU (1, 1) be its Fuchsian representation given in Theorem 1 (recall that, here p is corre-
sponding to the vertices, 0 is a lift of p and the real axis is a lift of ;). Let § C 5, be the
geodesic arc from py = @, N Bl, to p such that 6~'a,6 ~ o, and 67 '5,6 ~ B,. Then in the
standard position of X (1, 7;0), we can write down the positioning of the lift § of 6, starting
from 0.
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" Proof. We use the notation of Theorem 2.1. The end-point,w of § is given by w =
eh(2X)P(p(1)) - 0. Explicitly we have the following formula:

w = (ch(A)rsing + sh(X)(cosp — rsing) +i(ch(A)r cosp — sh(A)(r cos ¢ +sing))/
(ch(A\)(cosp — rsing) + sh(A)rsing — i(ch(A)(r cosp +sinp) — sh(A)rcosp)). O

Proposition 3.2. For any marked fundamental 4g-gon X(I,T;H) and its associated Fuch-
stan representation p constructed in Theorem 1, let X(IO,TO;OO) and py : m (X,,po0) —
PSU (1, 1) be the unique marked fundamental 4g-gon and its associated Fuchsian represen-
tation such that a; = &, 81 = B @ N B, = {po} and py is conjugate to p in PSU (1, 1).
Then we can write down these “canonical” parameters 1% I° and 6° as functions of I,l and 6.

Proof. By the construction of p in Theorem 1, pg is by itself in the standard position.

Thus we have po(7) = ek (2X(p))P(p(e1))op (7)o (eh (2A(p)) P (p(01))) ™ (here v € 71 (g, po)
and v € 7 (X,,p) are identified by the path § in Proposition 3.1). Let po(y) - 0 = z(7).
Then I9 and 10 are given by I? = dp(0,z(e;)) and I = dp(0,2(3;)), where dp(0,z) =
log{(1+|z|)/(1— |z|)}, the Poincare metric.

[Figure 7]

Let us deduce the formula for 6?9, for example for 49, the angle between the sides oy
and B, of X (1% 1°;6°). In our orientation convention, 63 is nothing but the angle from the

vector z(az") to 2 (8;); thus we have ¢ = (z(8;)/|z (3))/ (2 o)/ (e5")). O
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Figure 2
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