Hyperbolic 4g－gons and Fuchsian representations

Takayuki Okai（岡井 孝行）

Abstract

This article is an expository summary（with Figures）of［O3］．

Abstract

For any marked closed Riemann surface S with genus $g \geq 2$ ，we can read a corresponding Fuchsian representation from its fundamental domain of hyperbolic $4 g$－gon， whose boundary consists of geodesic arcs representing generators of $\pi_{1}(S)$ with certain base point．Also，explicitly given is a conjugate transformation which moves such fundamental $4 g$－gon to a standard position．Consequently several applications to hyperbolic geometry on S are obtained．

§0．Primitive questions

As is well－known，the hyperbolic regular $4 g$－gon（ $g \geq 2$ ）in the Poincaré disk，with all the angles equal to $\pi / 2 g$ ，gives rise to a marked closed Riemann surface of genus g ，whose marking is determined by the geodesic arcs in the boundary of the original $4 g$－gon．This marked Riemann surface is also characterized as the quotient of the Poincaré disk by the image of a faithful，discrete and＂orientation preserving＂$P S U(1,1)$－representation（we call this＂Fuchsian＂representation）of the genus g surface group．

Questions．（1）How can we describe the Fuchsian representation（up to conjugacy）for the hyperbolic regular $4 g$－gon？
（2）How is the＂positioning in the Riemann surface＂of the base point which corresponds to the vertices of the above $4 g$－gon？
［Figure 1］

§1．Marked fundamental 4g－gon and its Fuchsian representations

Let Σ_{g} be a closed oriented surface of genus $g \geq 2$ ，and fix a point $p \in \Sigma_{g}$ ．Take any hy－ perbolic metric h on Σ_{g} ．Then for any $\gamma \in \pi_{1}\left(\Sigma_{g}, p\right)$ ，there is a unique（not always simple） geodesic arc from p to p ，representing γ ．Notice that this geodesic arc has a singularity at p in general．Choose a generator system $\alpha_{1}, \beta_{1}, \cdots, \alpha_{g}, \beta_{g}$ of $\pi_{1}\left(\Sigma_{g}, p\right)$ with the relation $\left[\alpha_{1}, \beta_{1}\right] \cdots\left[\alpha_{g}, \beta_{g}\right]=1$ ．Suppose that for these $\alpha_{1}, \cdots, \beta_{g}$ ，the corresponding geodesic arc representatives are all simple and have intersections only at p ．Then cutting（ Σ_{g}, h ）along
such simple geodesic arcs

$$
(*) \quad \alpha_{1}, \beta_{1}, \alpha_{1}^{-1}, \beta_{1}^{-1}, \cdots, \alpha_{g}, \beta_{g}, \alpha_{g}^{-1}, \beta_{g}^{-1}
$$

we obtain a hyperbolic $4 g$-gon with boundary corresponding to $(*)$. Hereafter we will assume that our generator systems of $\pi_{1}\left(\Sigma_{g}, p\right)$ are chosen so that the order of $(*)$ gives the clockwise orientation for the boundary.

Definition. Let $l=\left(l_{i}\right) \in\left(R_{+}\right)^{g}, \tilde{l}=\left(\tilde{l}_{i}\right) \in\left(R_{+}\right)^{g}$ and $\theta=\left(\theta_{j}\right) \in(0,2 \pi)^{4 g}$. A marked fundamental $4 g$-gon $X(l, \tilde{l} ; \theta)$ is a hyperbolic geodesic $4 g$-gon in the Poincaré disk with the clockwise namings ($*$) of its sides, having the following properties:
(i) length of $\alpha_{i}=$ length of $\alpha_{i}^{-1}=l_{i}$, length of $\beta_{i}=$ length of $\beta_{i}^{-1}=\tilde{l}_{i}(i=1, \cdots, g)$.
(ii) angle between α_{1} and $\beta_{1}=\theta_{1}$, angle between β_{1} and $\alpha_{1}^{-1}=\theta_{2}, \cdots$, angle between β_{g}^{-1} and $\alpha_{1}=\theta_{4 g}$ (clockwise order).
(iii) $\sum_{j=1}^{4 g} \theta_{j}=2 \pi$.

Remarks. (1) From any marked fundamental $4 g$-gon, we have naturally a genus g Riemann surface with marking ($\alpha_{1}, \beta_{1}, \cdots, \alpha_{g}, \beta_{g}$); topologically we will regard all these marked surfaces as those with the same marking $\left(\alpha_{1}, \cdots, \beta_{g}\right)$. Moreover $\alpha_{1}, \cdots, \beta_{g}$ are specified as elements of $\pi_{1}\left(\Sigma_{g}, p\right)$ for the point p corresponding to the vertices of the $4 g$-gon.
(2) For any marked Riemann surface of genus g, due to L. Keen [K], there are choices of base point p_{0} and inner-automorphism of $\pi_{1}\left(\Sigma_{g}, p_{0}\right)$, so that we can construct a strictly convex marked fundamental $4 g$-gon whose boundary gives the fixed genegators $\alpha_{1}, \cdots, \beta_{g}$ of $\pi_{1}\left(\Sigma_{g}, p_{0}\right)$. Actually Keen's construction is as follows: For any closed curve γ in a Riemann surface, let $\widehat{\gamma}$ be the unique closed geodesic free-homotopic to γ. Take $p_{0}=\widehat{\alpha}_{1} \cap \widehat{\beta}_{1}$ and kill the ambiguity of inner-automorphisms of $\pi_{1}\left(\Sigma_{g}, p_{0}\right)$ in the marking ($\alpha_{1}, \cdots, \beta_{g}$) by specifying the generators $\alpha_{1}=\widehat{\alpha}_{1}, \beta_{1}=\widehat{\beta}_{1}$. Then geodesic arcs from p_{0} to p_{0}, corresponding to $\alpha_{1}, \cdots, \beta_{g}$ are shown to be all simple and having intersections only at p_{0}; thus we obtain a marked fundamental $4 g$-gon from this.

Now we read a Fuchsian representation from the data of a marked fundamental $4 g$-gon $X(l, \tilde{l} ; \theta)$.

Notation. Denote $\left[\begin{array}{cc}a & b \\ \bar{b} & \bar{a}\end{array}\right] \in \operatorname{PSU}(1,1)\left(i . e .|a|^{2}-|b|^{2}=1\right)$ by $[a ; b]$. For $x \in R / 2 \pi Z$ and $y \in R$, let $e(x)=\left[e^{i x / 2} ; 0\right]$ (rotation of angle x around 0 in the Poincaré disk) and $e h(y)=[\operatorname{ch}(y / 2) ; \operatorname{sh}(y / 2)]$ (hyperbolic displacement of length y along the real axis).

Theorem 1. The following gives a corresponding Fuchsian representation ρ for any marked fundamental 4g-gon $X(l, \tilde{l} ; \theta)$:

$$
\begin{aligned}
& \rho\left(\alpha_{i}\right)=e\left(\theta_{1}+\cdots+\theta_{4 i-4}\right) e h\left(l_{i}\right) e\left(\pi-\left(\theta_{4 i-2}+\theta_{4 i-1}\right)\right) e\left(-\left(\theta_{1}+\cdots+\theta_{4 i-4}\right)\right) \\
& \rho\left(\beta_{i}\right)=e\left(\theta_{1}+\cdots+\theta_{4 i-1}\right) e h\left(\tilde{l}_{i}\right) e\left(-\pi+\left(\theta_{4 i-3}+\theta_{4 i-2}\right)\right) e\left(-\left(\theta_{1}+\cdots+\theta_{4 i-1}\right)\right) .
\end{aligned}
$$

Proof. First fix a position of $X(l, \tilde{l} ; \theta)$ in the Poincaré disk by lifting $p \in \Sigma_{g}$ (this is the point corresponding to the vertices of $X(l, \tilde{l} ; \theta))$ to the origin and also lifting $\alpha_{1} \subset \Sigma_{g}$ (geodesic arc from p to p) to the real axis. In this situation, we will read the corresponding holonomy representation, say, ρ.
[Figure 2]

The lift $\tilde{\alpha}_{i}$ of α_{i}, starting from the origin, is described as follows:
[Figure 3]

From the direction of the real axis, rotate by the angle $\theta_{1}+\cdots+\theta_{4 i-4}$ and go straight by the length l_{i} (the reaching point will be denoted as $\rho\left(\alpha_{i}\right) \cdot 0$). At the point p, the angle from the incoming direction of α_{i} (here p is the end point) to the outgoing direction of α_{i} (here p is the starting point) is equal to $\pi-\left(\theta_{4 i-2}+\theta_{4 i-1}\right)$. Thus by $\rho\left(\alpha_{i}\right)$, the direction of $\tilde{\alpha}_{i}$ at 0 is mapped to the direction of angle $\pi-\left(\theta_{4 i-2}+\theta_{4 i-1}\right)$, measured from the direction of $\tilde{\alpha}_{i}$ at $\rho\left(\alpha_{i}\right) \cdot 0$. Notice that the above data determine the element $\rho\left(\alpha_{i}\right)$ of $\operatorname{PSU}(1,1)$. Now from Figure 4, we can see that the right-hand side of the formula for α_{i} in the statement of Theorem 1 actually coincides with the element $\rho\left(\alpha_{i}\right)$.

[Figure 4]

The case for $\rho\left(\beta_{i}\right)$ is as well.
Remark. Suppose that there is a hyperbolic $4 g$-gon $X(l, \tilde{l} ; \theta)$ with the conditions (i), (ii) and (iii) $\sum_{j=1}^{4 g} \theta_{j}=\omega$, instead of (iii). Then by a direct calculation, we have, for the ρ in Theorem 1,

$$
\begin{gathered}
{\left[\rho\left(\alpha_{1}\right), \rho\left(\beta_{1}\right)\right] \cdots\left[\rho\left(\alpha_{g}\right), \rho\left(\beta_{g}\right)\right] e(\omega)=} \\
\prod_{i=1}^{g} e h\left(l_{i}\right) e\left(-\pi+\theta_{4 i-3}\right) e h\left(\tilde{l_{i}}\right) e\left(-\pi+\theta_{4 i-2}\right) e h\left(l_{i}\right) e\left(-\pi+\theta_{4 i-1}\right) \operatorname{eh}\left(\tilde{l}_{i}\right) e\left(-\pi+\theta_{4 i}\right)
\end{gathered}
$$

where $\prod_{i=1}^{g} A_{i}$ means $A_{1} \cdots A_{g}$. We can see that the right-hand side is equal to $I \in \operatorname{PSU}(1,1)$ (cf. [O2, Lemma]), which is equivalent to the condition that $X(l, \tilde{l} ; \theta)$ is a hyperbolic $4 g$ gon. Thus the above $X(l, \tilde{l} ; \theta)$ and ρ give rise to a developing map of a genus g hyperbolic cone manifold with one cone point p of cone angle ω.

§2. Moving a marked fundamental 4g-gon to the standard position

Suppose that we are given two marked fundamental $4 g$-gons $X=X(l, \tilde{l} ; \theta)$ and $X^{\prime}=$ $X\left(l^{\prime}, \tilde{l}^{\prime} ; \theta^{\prime}\right)$; by Theorem 1 , we have the corresponding Fuchsian representations ρ and $\rho^{\prime} . X$ and X^{\prime} give the same marked Riemann surface $\left[\left(\Sigma_{g}, h\right),\left(\alpha_{1}, \cdots, \beta_{g}\right)\right]$ (i.e. the same element of the genus g Teichmüller space \mathcal{T}_{g}) if and only if ρ and ρ^{\prime} are conjugate to each other by an element of $\operatorname{PSU}(1,1)$. In this section, we will give a criterion for these. Of course, it is possible to choose more than $(6 g-6)$ elements in $\pi_{1}\left(\Sigma_{g}\right)$, so that the geodesic lengths of these elements give a global coordinate system for \mathcal{T}_{g}. In comparison, our method is more geometrical and direct one. We will construct conjugate transformations which move X and X^{\prime} to standard positions (see below). Then applying such transformations to $\rho\left(\alpha_{1}\right), \cdots, \rho\left(\beta_{g}\right)$ and $\rho^{\prime}\left(\alpha_{1}\right), \cdots, \rho^{\prime}\left(\beta_{g}\right)$, we can answer whether ρ is conjugate to ρ^{\prime} or not.

Definition. A marked fundamental $4 g$-gon in the Poincaré disk (or, its associated Fuchsian representation ρ constructed in Theorem 1) is said to be in the standard position if the axes of $\rho\left(\alpha_{1}\right)$ and $\rho\left(\beta_{1}\right)$, denoted by $a x\left(\rho\left(\alpha_{1}\right)\right)$ and $a x\left(\rho\left(\beta_{1}\right)\right)$, satisfy that $a x\left(\rho\left(\alpha_{1}\right)\right)=$ the real axis and $a x\left(\rho\left(\alpha_{1}\right)\right) \cap a x\left(\rho\left(\beta_{1}\right)\right)=\{0\}$.

Remark. $a x\left(\rho\left(\alpha_{1}\right)\right), a x\left(\rho\left(\beta_{1}\right)\right)$ are lifts of the closed geodesics $\widehat{\alpha}_{1}, \widehat{\beta}_{1} \subset \Sigma_{g}$, respectively. These axes have a transverse intersection because there exists (see $\S 1$, Remarks (1), (2)) a path $\epsilon \subset \Sigma_{g}$, from p (the point corresponding to vertices of the $4 g$-gon) to $p_{0}=\widehat{\alpha}_{1} \cap \widehat{\beta}_{1}$, such that $\epsilon \widehat{\alpha}_{1} \epsilon^{-1} \simeq \alpha_{1}$ and $\epsilon \widehat{\beta}_{1} \epsilon^{-1} \simeq \beta_{1}$ in Σ_{g} (lifts of p and ϵ determine the point $\left.a x\left(\rho\left(\alpha_{1}\right)\right) \cap a x\left(\rho\left(\beta_{1}\right)\right)\right)$.

Theorem 2.1. For any marked fundamental $4 g-g o n X(l, \tilde{l} ; \theta)$, we can explicitly give the conjugate transformation which moves its associated Fuchsian representation ρ to the standard position.

Proof. The idea is to use the Iwasawa decomposition of $\operatorname{PSU}(1,1)$: Let $K=\left\{\left[e^{i \varphi} ; 0\right] ; \varphi \in\right.$
$R / 2 \pi Z\}, N=\{[1+i r ; i r] ; r \in R\}$ and $A=\{[\operatorname{ch}(\lambda) ; \operatorname{sh}(\lambda)] ; \lambda \in R\}$. Then we have $\operatorname{PSU}(1,1)=A N K$ and we will determine the desired transformation, first for the components of N and K, and second for the component of A.

Step 1. We will determine the element $P\left(\rho\left(\alpha_{1}\right)\right)=n k(n \in N$ and $k \in K$) such that $P\left(\rho\left(\alpha_{1}\right)\right) \circ \rho\left(\alpha_{1}\right) \circ P\left(\rho\left(\alpha_{1}\right)\right)^{-1}=[c h(L) ; s h(L)]$ for some $L>0$.

[Figure 5]

Actually we can treat with this problemin a more general setting: Given $\left[p_{1}+i p_{2} ; q_{1}+i q_{2}\right] \in$ $\operatorname{PSU}(1,1)$ with $p_{1}>1$, we will solve the following equation for $n=[1+i r ; i r] \in N$ and $k=\left[e^{i \varphi} ; 0\right] \in K$;

$$
\begin{equation*}
n k\left[p_{1}+i p_{2} ; q_{1}+i q_{2}\right](n k)^{-1}=[\operatorname{ch}(L) ; \operatorname{sh}(L)] . \tag{2.1}
\end{equation*}
$$

By a direct calculation, we can see that (2.1) holds if and only if $p_{1}=\operatorname{ch}(L), q_{2} \cos (2 \varphi)+$ $q_{1} \sin (2 \varphi)=p_{2}, q_{1} \cos (2 \varphi)-q_{2} \sin (2 \varphi)=\operatorname{sh}(L)$ and $r=-p_{2} / 2 s h(L)$. We look for the solution with $L>0$, so $\operatorname{sh}(L)=\left(p_{1}^{2}-1\right)^{1 / 2}$. Now let $\Psi \in R / 2 \pi Z$ be the angle with $\cos \Psi=q_{1} /\left(q_{1}^{2}+q_{2}^{2}\right)^{1 / 2}$ and $\sin \Psi=q_{2} /\left(q_{1}^{2}+q_{2}^{2}\right)^{1 / 2}$. (Notice that if $q_{1}=q_{2}=0$, then we have $p_{2}=0$ and thus $p_{1}=1$.) Then we have $\sin (2 \varphi+\Psi)=p_{2} /\left(q_{1}^{2}+q_{2}^{2}\right)^{1 / 2}$ and $\cos (2 \varphi+\Psi)=\left(p_{1}^{2}-1\right)^{1 / 2} /\left(q_{1}^{2}+q_{2}^{2}\right)^{1 / 2}$. (Notice that $\left|p_{2} /\left(q_{1}^{2}+q_{2}^{2}\right)^{1 / 2}\right| \leq 1$ if and only if $p_{1}^{2} \geq 1$.) These formulas determine $2 \varphi+\Psi \in R / 2 \pi Z$, and thus determine $\varphi \in R / \pi Z$. In this way we can determine $r \in R$ and $\varphi \in R / \pi Z$ from (2.1). (In particular for $\rho(\gamma)=e\left(\psi_{1}\right) e h(s) e\left(\psi_{2}\right)$, let $\Phi=\left(\psi_{1}+\psi_{2}\right) / 2 \in R / 2 \pi Z$ with $\cos \Phi>0$ and $\Psi=\left(\psi_{1}-\psi_{2}\right) / 2 \in R / 2 \pi Z$, so that $\Phi+\Psi=\psi_{1}$. Then $P(\rho(\gamma))=[1+i r ; i r]\left[e^{i \varphi} ; 0\right]$ is determined by $e^{i(2 \varphi+\Psi)}=\left((\cos \Phi)^{2} \operatorname{ch}(s / 2)^{2}-1\right)^{1 / 2}+i \sin \Phi / \operatorname{th}(s / 2)$ and $r=-\tan (2 \varphi+\Psi) / 2$.)

Step 2. Because the group A consists of hyperbolic displacements along the real axis and $a x\left(\rho\left(\alpha_{1}\right)\right)$ and $a x\left(\rho\left(\beta_{1}\right)\right)$ intersect transversely, there exist unique elements $\operatorname{eh}(2 \lambda), \operatorname{eh}(2 \tilde{\lambda}) \in$ A such that

$$
\begin{equation*}
\operatorname{eh}(2 \tilde{\lambda}) P\left(\rho\left(\beta_{1}\right)\right)\left(e h(2 \lambda) P\left(\rho\left(\alpha_{1}\right)\right)\right)^{-1} \cdot 0=0 \tag{2.2}
\end{equation*}
$$

(here \cdot means a fractional linear transformation; $[a ; b] \cdot z=(a z+b) /(\bar{b} z+\bar{a})$).
[Figure 6]

This $e h(2 \lambda) \in A$ is exactly the one what we want; $\operatorname{eh}(2 \lambda) P\left(\rho\left(\alpha_{1}\right)\right)$ moves ρ to the standard position. To get the formula for λ, we have to solve the equation (2.2) for $\lambda=\lambda(\rho)$ and
$\tilde{\lambda}=\tilde{\lambda}(\rho)$. Write $P\left(\rho\left(\beta_{1}\right)\right) \circ P\left(\rho\left(\alpha_{1}\right)\right)^{-1}=\left[a_{1}+i a_{2} ; b_{1}+i b_{2}\right]$. Then (2.2) is equivalent to $-\operatorname{sh}(\lambda-\tilde{\lambda}) a_{1}+\operatorname{ch}(\lambda-\tilde{\lambda}) b_{1}=0$ and $-s h(\lambda+\tilde{\lambda}) a_{2}+\operatorname{ch}(\lambda+\tilde{\lambda}) b_{2}=0$. Notice that we have $a_{1} \neq 0$ and $a_{2} \neq 0$; otherwise the axes $\operatorname{ax}\left(\rho\left(\alpha_{1}\right)\right)$ and $a x\left(\rho\left(\beta_{1}\right)\right)$ would coincide (orientation preservingly or reversingly) with each other. Thus from $\operatorname{th}(\lambda-\tilde{\lambda})=b_{1} / a_{1}$ and $\operatorname{th}(\lambda+\tilde{\lambda})=b_{2} / a_{2}$, we can get the formula for $\lambda: \operatorname{sh}(\lambda)=\left\{\mid\left(\left(a_{1}+b_{1}\right)\left(a_{2}+b_{2}\right)\right) /\left(\left(a_{1}-\right.\right.\right.$ $\left.\left.\left.b_{1}\right)\left(a_{2}-b_{2}\right)\right)\left.\right|^{1 / 4}-\left|\left(\left(a_{1}-b_{1}\right)\left(a_{2}-b_{2}\right)\right) /\left(\left(a_{1}+b_{1}\right)\left(a_{2}+b_{2}\right)\right)\right|^{1 / 4}\right\} / 2$.

Remarks. (1) In the above, $\left|a_{1}\right|>\left|b_{1}\right|$ and $\left|a_{2}\right|>\left|b_{2}\right|$ must be satisfied because (2.2) has unique solutions λ and $\tilde{\lambda}$.
(2) Step 1 and Step 2 can be automatically applied to two hyperbolic transformations H_{1}, H_{2} with their axes having transverse intersections; we can give the explicit formula for the transformation which moves $a x\left(H_{1}\right)$ to the real axis and $a x\left(H_{1}\right) \cap a x\left(H_{2}\right)$ to 0 .

As a summary of this section, we shall record the following

Theorem 2.2. For two marked fundamental $4 g$-gons X and X^{\prime}, let ρ and ρ^{\prime} be their associated Fuchsian representations constructed in Theorem 1. Then ρ and ρ^{\prime} are conjugate in $\operatorname{PSU}(1,1)$ (i.e. give the same element of $\left.\mathcal{T}_{g}\right)$ if and only if eh $(2 \lambda) P\left(\rho\left(\alpha_{1}\right)\right) \circ \rho(\gamma) \circ(e h(2 \lambda)$ $\left.P\left(\rho\left(\alpha_{1}\right)\right)\right)^{-1}=\operatorname{eh}\left(2 \lambda^{\prime}\right) P\left(\rho^{\prime}\left(\alpha_{1}\right)\right) \circ \rho^{\prime}(\gamma) \circ\left(e h\left(2 \lambda^{\prime}\right) P\left(\rho^{\prime}\left(\alpha_{1}\right)\right)\right)^{-1}$ for $\gamma=\alpha_{1}, \beta_{1}, \cdots, \alpha_{g}, \beta_{g}$, where $P()$ is given in Theorem 2.1, Step 1, and $\lambda=\lambda(\rho)$ and $\lambda^{\prime}=\lambda\left(\rho^{\prime}\right)$ are given in Theorem 2.1, Step 2.

§3. Applications

Once we know a Fuchsian representation (Theorem 1) and the standard position (Theorem 2.1) of a marked fundamental 4 g -gon, we can investigate hyperbolic geometry of closed Riemann surfaces, in detail and in a direct way.

Proposition 3.1. For any marked fundamental $4 g$-gon $X(l, \tilde{l} ; \theta)$, let $\rho: \pi_{1}\left(\Sigma_{g}, p\right) \rightarrow$ $\operatorname{PSU}(1,1)$ be its Fuchsian representation given in Theorem 1 (recall that, here p is corresponding to the vertices, 0 is a lift of p and the real axis is a lift of α_{1}). Let $\delta \subset \Sigma_{g}$ be the geodesic arc from $p_{0}=\widehat{\alpha}_{1} \cap \widehat{\beta}_{1}$, to p such that $\delta^{-1} \widehat{\alpha}_{1} \delta \simeq \alpha_{1}$ and $\delta^{-1} \widehat{\beta}_{1} \delta \simeq \beta_{1}$. Then in the standard position of $X(l, \tilde{l} ; \theta)$, we can write down the positioning of the lift $\tilde{\delta}$ of δ, starting from 0 .

Proof. We use the notation of Theorem 2.1. The end-point w of $\tilde{\delta}$ is given by $w=$ $e h(2 \lambda) P\left(\rho\left(\alpha_{1}\right)\right) \cdot 0$. Explicitly we have the following formula:

$$
\begin{gathered}
w=(\operatorname{ch}(\lambda) r \sin \varphi+s h(\lambda)(\cos \varphi-r \sin \varphi)+i(\operatorname{ch}(\lambda) r \cos \varphi-s h(\lambda)(r \cos \varphi+\sin \varphi)) / \\
(\operatorname{ch}(\lambda)(\cos \varphi-r \sin \varphi)+s h(\lambda) r \sin \varphi-i(\operatorname{ch}(\lambda)(r \cos \varphi+\sin \varphi)-s h(\lambda) r \cos \varphi)) .
\end{gathered}
$$

Proposition 3.2. For any marked fundamental $4 g-g o n X(l, \tilde{l} ; \theta)$ and its associated Fuchsian representation ρ constructed in Theorem 1 , let $X\left(l^{0}, \tilde{l}^{0} ; \theta^{0}\right)$ and $\rho_{0}: \pi_{1}\left(\Sigma_{g}, p_{0}\right) \rightarrow$ $\operatorname{PSU}(1,1)$ be the unique marked fundamental $4 g$-gon and its associated Fuchsian representation such that $\alpha_{1}=\widehat{\alpha}_{1}, \beta_{1}=\widehat{\beta}_{1} \widehat{\alpha}_{1} \cap \widehat{\beta}_{1}=\left\{p_{0}\right\}$ and ρ_{0} is conjugate to ρ in $\operatorname{PSU}(1,1)$. Then we can write down these "canonical" parameters l^{0}, \tilde{l}^{0} and θ^{0} as functions of l, \tilde{l} and θ.

Proof. By the construction of ρ in Theorem 1, ρ_{0} is by itself in the standard position. Thus we have $\rho_{0}(\gamma)=\operatorname{eh}(2 \lambda(\rho)) P\left(\rho\left(\alpha_{1}\right)\right) \circ \rho(\gamma) \circ\left(e h(2 \lambda(\rho)) P\left(\rho\left(\alpha_{1}\right)\right)\right)^{-1}$ (here $\gamma \in \pi_{1}\left(\Sigma_{g}, p_{0}\right)$ and $\gamma \in \pi_{1}\left(\Sigma_{g}, p\right)$ are identified by the path δ in Proposition 3.1). Let $\rho_{0}(\gamma) \cdot 0=z(\gamma)$. Then l_{i}^{0} and \tilde{l}_{i}^{0} are given by $l_{i}^{0}=d_{P}\left(0, z\left(\alpha_{i}\right)\right)$ and $\tilde{l}_{i}^{0}=d_{P}\left(0, z\left(\beta_{i}\right)\right)$, where $d_{P}(0, z)=$ $\log \{(1+|z|) /(1-|z|)\}$, the Poincaré metric.
[Figure 7]

Let us deduce the formula for θ_{i}^{0}, for example for θ_{5}^{0}, the angle between the sides α_{2} and β_{2} of $X\left(l^{0}, \tilde{l}^{0} ; \theta^{0}\right)$. In our orientation convention, θ_{5}^{0} is nothing but the angle from the vector $z\left(\alpha_{2}^{-1}\right)$ to $z\left(\beta_{2}\right)$; thus we have $e^{i \theta_{5}^{0}}=\left(z\left(\beta_{2}\right) /\left|z\left(\beta_{2}\right)\right|\right) /\left(z\left(\alpha_{2}^{-1}\right) /\left|z\left(\alpha_{2}^{-1}\right)\right|\right)$.

References.

[K] L. Keen: Canonical polygons for finitely generated Fuchsian groups, Acta Math. 115 (1966), 1-16.
[O1] T. Okai: An explicit description of the Teichmüller space as holonomy representations and its applications, Hiroshima Math J. 22 (1992), 259-271.
[O2] T. Okai: Effects of a change of pants decompositions on their Fenchel-Nielsen coordinates, Kobe J. Math. 10 (1993), 215-223.
[O3] T. Okai: Reading the Fuchsian representations of a closed Riemann surface from its fundamental domains, preprint.

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

