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1. INTRODUCTION

We treat the following FitzHugh-Nagumo equations as an example.

{utzum+f(u)—w

Wy = E(U - ’Yw)a

(1.1)

where z,t € R and u(z,t), w(z,t) € R, and 1 3> € > 0,y > 0 are parameters. In the
system, the non-linear term f(u) is assumed to be a smooth cubic-like function of u
satisfying the conditions below.

(1) f(0) = f(a) = f(1) = 0, for some constant a with 0 < a < 1.

(2) f'(0) < 0and f'(1) <O. :

(3) f(u) >0ifu € (—00,0)U(a,1) and f(u) < 0if u € (0,a) U (1, +00).

(4) fy f(u)du > 0. : .

In this paper we shall restrict our attention to large v > 0 so that the system
(1.1) has three spatially homogeneous stationary solutions (u,w) = (u;, w;) := (0,0),
(uy, wy) and (ug,w;). Here u, and w, (% = 1,2 or t) are constants which satisfy ‘

flu,) —we =0
Uy — YW, = 0,
0=u; <u <uy <l

i=1,20r}

The system (1.1) has spatial solutions called travelling waves which are explained

in the sequel.
Let £ = z+ct be a moving frame for some constant ¢ > 0, then in (£, t) coordinate,

(1.1) is expressed as
Uy = Uge — CUg + J(u) —w
¢ = tge — cug + f(u) (1.2)
wy = —cwe + e(u — yw).
A travelling wave solution (u(z,t),w(z,t)) = (u(€),w(£)) of (1.1) at velocity c is a
steady state solution of (1.2) i.e. (u(§),w(§)) satisfies the equations

{u&—cu€+f(u)—w=0

—cwe + e(u — yw) = 0. (13)
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Often (1.3) is treated in form of first order equations,

vV=cv— flu)+w ('=diig) | (1.4)
w' = %(u-—’yw).

This system shall be simply written as
2= X(z 1)

where 2z = (u,v,w) and p = (v,¢;€). a1 := (u1,0,w;) = (0,0,0) and ay := (ug, 0, w>)
are equilibria of (1.4). _ '

It is well known that (1.4) has a heteroclinic solution zl(f) from a; to az (22(€)
from a, to a1) for certain parameter values. This solution corresponds to a travelhng
wave of (1.1) which satisfies

li = li =
Jm zi(§) = ay, lim z(8) = a

(Elh}_l 22(€) = ag,glir_n 29(€) = ay, respectively ) .

This wave is called travelling front, or simple front in the terminology in Deng [6]
(travelling back or simple back respectively). Deng [6] proved that for certain pa-
rameter value py = (70(€),co(€),€), the system (1.4) has heteroclinic solutions z;
and z, simultaneously forming what is called a heteroclinic loop I' = (UI;) U (Ua;),
[; = {2:(8)|¢ € R}. Furthermore, there is a sequence of N-heteroclinic solutions
{z(v)1(€)}F=1 from a; to az ({z(n)2(€)}%=; from az to a;) which correspond to trav-
elling waves called N-fronts (N-backs respectively) bifurcating from the heteroclinic
loop, together with homoclinic solutions to a; and a; which correspond to travelling
pulses (simple impulses, in Deng’s terminology). Here an N-heteroclinic solution
from a; to as (from ay to a;) is a heteroclinic solution from a; to ay (from a; to a;)
which rounds N-times and a half in some tubular neighborhood of the heteroclinic
loop. '

We are concerned with the stability of these travelling waves. Elgenvalue problem
for (1.2) along the travelling wave under study is often investigated to determine the
stability of the wave, because stability for the linear problem implies the same for
the full nonlinear problem. See Evans 7).

The linear stability is established as follows. Consider the linearization of (1.2)
along the travelling wave (u(€),v(€)) which is under consideration,



{Pt Py —cPe+Df (u(€))P—R

Ry = —cR;+¢(P - vR). (1.5)

The right hand side of (1.5) defines a densely defined closed operator

£ (R) = (B

on the space BU(R,R?) := {¢: R — R?| bounded uniformly continuous} with supre-
mum norm. Then, following fact is well known (Evans (7], Bates and Jones [4]).

Fact.
Let o(L) be the spectrum of L, then the tmvellzng wave (u(£),v(£)) is stable if the
conditions below are satisfied.

(1) There exist B <0 so that o(L) \ {0} C {A\|Re) < 3}.
(2) 0 is a simple eigenvalue.

Remark 1.1.

(1) L has as an eigenvalue 0 corresponding to spatial translation of the wave.

(2) Concerning a wave which connect stable steady states, there exists § < 0 so
that O'(L) N {/\lRe/\ > B} consists of only eigenvalues with finite multiplicity.
(See Jones [10] for FitzHugh-Nagumo equations, Henry [9] for general cases.)

Thus the stability problem ambunt to proving nonexistence of eigenvalue of L other
than zero real part of which is equal or grater than 0, and also the simplicity of the
zero eigenvalue.

- 2. Basic IDEAS

" This section is devoted to a brief sketch of basic ideas to investigate the eigenvalue
problem associated with N-fronts (/N-back).
The eigenvalue problem

{P&—ch—!—Df( u(§))P —R= AP 01
—cR¢ +e(P —yR) = AR. (21)
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can be regarded as a system of second order linear ordinary differential equations.
This system shall be also treated in the following form of first order system,

P =Q
Q=cQ-DfwWE)P+AP+R ( '=-) (2.2)
R = E(P — 'yR) - AR,

C C

or simply
where p = (P,Q, R) and

: : .. 0 1 0
A(u<s>;A)=(A—D{<u(§»g 1 )

For ReA > [ the matrices

0
A:I:()‘) = A(a,—i; )\) A — Df(ali) C
< sfy + A)
in both ends (¢ — :i:oo) of (2.2) have one unstable eigenvalue v ( > 0 and two
stable ones —u;] < —vf, < 0, where we assume that hm (u(€),w(€)) = a;,. This

means (2.2) has one solutlon p'(&A) up to multlphcatlon of non-zero constant which
is bounded as £ — —oco and two independent solutions p?(&; \), p 3(¢; A) up to non-
trivial linear combmatlon of them which are bounded as & — +oo.

As the eigenvalue problem (2.1) is examined on the function : space BU(R,R?), A
is an eigenvalue if and only if (2.2) has a non-trivial bounded solution. When above
observation is taken into account, this is equlvalent to linear dependence of p!(¢ : \)
and p*(€: A) and p3(€ : \) i.e. the solution p'(£ : A) which converges to 0 as £ — —o0
along the unstable eigenspace of A_()) also converges to 0 as ¢ — +oo along the
stable eigenspace of A;(A). Thus the problem becomes the problem of search for
such solutions.

- We shall deal with this eigenvalue problem as a full bifurcation problem.

Consider the coupled system of (1.4) and (2.2)

{5=X@M
P = A(z; A, p)p.



This system on R® x C? induces a system on R? x CP?

{Z’=X(2;u)

] A 2.4
P =Y(z,p; M ) 24)

as it is linear in p component.

Let e}(A) (i = 1,2) be an eigenvector associated with the unstable eigenvalue
of A(a;;)) and e?()\) and e}()\) be eigenvectors associated the stable eigenvalues.
Further more, we assume that e?(\) belongs to the eigenspace corresponding to the
principal stable eigenvalue which is the stable eigenvalue with its real part larger
than the other. The points in CP? representing eigenspaces spanned by e]()) shall
be denoted as &/()\). Then for each ¢ = 1,2, {a;} x CP? is an invariant set of (2.4),
which consists of equilibria (ai,é{ ()\)) (j = 1,2,3) and heteroclinic orbits between
them. For the parameter value p at which (1.4) has a heteroclinic solution from
ai_ to a;,, the system (2.4) should have a heteroclinic solution from (ai_, ér ()\)) to

it

(ai o & ()\)) for some j depending on X. For generic A this solution should be from
(a,-_ L6 ()\)) to (a, & +()\)), because (ai 65 +()\)) is an attracting equilibrium in the

invariant set {a;, } X CP? and the complementary repeller consists of (aZ 6, ()\))
(a,+, l+()\)) and the heteroclinic orbits from (al+, é; (/\)) to (a,+, Z+(/\)) In fact,

the existence of the solution from (ai_, e}_()\)) to (al o e§+()\)) or (a, o z+()‘)) means
that A is an eigenvalue of L and vice versa.
Let py be a parameter value at which (1.4) has a heteroclinic loop consisting

of heteroclinic solutions z;(£) from a; to as; and 2,(£) from a; to a;. Then, for

(A, ) (0, 110), (2.4) has heteroclinic solutions from (a;, €}(0)) to (az, €5(0)) and from

(a2, €3(0)) to (ay,€2(0)) simultaneously. We interpret the eigenvalue problem associ-
ated with N-front wave which corresponds to N-heteroclinic solution from a;_ to a;,

as a bifurcation problem of finding N-heteroclinic solution of (2.4) from (a,-_ €5 (/\))

to (ai,, €2, (V) or (a:,, €}, ().
‘We employ a topological approach to detect existence of such solutions.
Let us consider a scalar equation instead of (1.1): ‘

Up = Ugz + f(0) | (2.5)

and assume that this equation has a travelling wave u(§) (¢ = = + c¢t). Then the
linearized eigenvalue problem associated with u(¢) becomes

(o2

Q' = cQ - Df (u(€)) P+ AP (26)

22



23

or

p=Aul);Np
where p = (P, Q) and

4w = (3 py wer | )

If w(¢) approaches to stable steady state solutions uy as § — Zoo i.e.

5hrin u(€) = u4, then each of

Ai(/\) = A(ug, A) = (,\ — Dof (ux) ;13 )

has one stable eigenvalue and one unstable one if ReA > 8 for some 8 < 0. From
now on, let us restrict our attention to real eigenvalues, that is, 8 < X is real and
(2.6) is regarded as a system on R?. Then (2.6) induces an equation on RP! 2 S!:

P=Y (u§),p; ). (2.7)

For each of — or +, let e} be an unstable eigenvector associated with the unstable

eigenvalue of A4()) and e be a stable one. Then (2.7) has a solution p(£; A) which

satisfies 61'11;1 P(&; A) = é4 if A is not an eigenvalue, where é% or &5, are the points on
—00

RP! corresponding to €% or €.

Now an index which detects real eigenvalues of the eigenvalue problem (2.6) shall
be defined. (¢f. N. [12])

Let us define a map g: 9 ([\y, /\2] x [—1 1]) = S' - RP! as

&L () A€ [, A, T=+1
g(A’T)z{ﬁ(log(iJr:),Ai) =X (i=1,2), 7€(-11) ,(2'8)

for < A; < Ay which are not eigenvalues. Then g is continuous and induces an
homomorphism g,: Hy (9 ([A1, A2] X [~1,1])) — H; (RP?).

If there is no eigenvalue in the interval [A;, As], then the isomorphism g, is triv-
ial. This is because in such case g can be naturally extended to a map defined on
whole [A;, A2] x [—1,1] and thus g is homotopic to a map into one point. More
over if g,(1) = n then there are at least n eigenvalues in the interval [A;, A;]. Here
Hy (0 ([A1, 2] x [-1,1])) and H; (RP!) are identified with Z. :

Unfortunately, this index is not effective for FitzHugh-Nagumo equations (1.1) as
H,(RP?) 2 Z, and thus we can only detect the parity of eigenvalues in the interval
[A1, Aa)-

In the sequel we shall construct an index for N-front solution of FltzHugh Nagumo
equations which is a modification of this index.




3. CONSTRUCTION OF THE INDEX

In this section we construct an index for small |A| for the N-front wave bifurcating
from coexisting simple front and simple back which is analogous to the one explained
in the previous section. The strategy is to construct a subset Q C RP? with H,(Q) =
Z on which the eigenvalue problem (2.4) can be restricted.

Let B; be a small neighborhood of the equilibrium a; ( = 1,2) in which the system
(1.4) is linear and NNV; be a neighborhood of the orbit I'; = {z;(£)|¢ € R} for pu = po.
Then NV := (UB;)U(UN;) is a tubular neighborhood of the heteroclinic loop I consists
of I'; and a; (i = 1,2).

‘From now on we construct a suitable coordinate for the vector bundle /' x R3 C

R® x R3. , ‘ «
Let us define the directions of ef(0) (i = 1,2 and k = 1,2, 3) so that

im Zz(g) —a; — €:~l ‘ |
e —af O e
tim SO G gy (i) (3.2)

¢=Foo 25(€) — ail
and the triple (e} (0),6?(0),é?(0)) forms a right-handed system. This choice can be

made because A(a;; A) has only one unstable eigenvalue and the heteroclinic loop I’
is non-degenerate. (See Deng [6].) Then the following holds.

Lemma 3.1.

There exist solutions f'(€), f2(§) and f*(€) of the system p' = A (2,(€);0, o) which

satisfy
. _V‘u . Vs ’ 1
Jm f (@ O=e(0)  lim QeI = - 2d0)  (33)
: . | . 1
Jm et =) lim e =— eh0)  (34)
——00 ——+00 0
- Vss’ E . Vss ]-
Jm fHQeTOf =e}(0)  Tim f(§)es O =~ 760 (35)

for some positive constants ¢y ¢ and ¢} and there exist solutions g*(€), ¢*(€) and
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*(&) of the system p' = A (25(€);0, o) which satisfy

for some positive constants 1§, V2 and ¥3.

lim ¢*(¢)e™"#(%¢=¢}(0)

lim_g?(€)e"s®¢ =e(0)
g——o0

lim g*(€)e’s % =e3(0)

A0

1
lim gt -
(m g (6) e

L g* (€)= = el

lim g(€)

§—+oo

i - _ L s

25

Let ¢*(¢) and ¢ (€) (i = 1,2, 3) be smooth positive functions satisfying the following

condition.

¢ (&) ={

vo-|

(£ < -&)
€E>&)
(€ < =&)

ROt (6> ¢)

(€ < =&)
(€>&)

for some constants &,& > 0. And put

then

and

FL(&) = ¢'(O)f1(9)
F2(&) = 0% (©)17(9)
F3(&) = 0*(€)£7(6)

. 1 _
Jm F(8) =
. 2 _
(Jm FRE) =

lim F3(¢) =

{—+oo0

lim G'(¢) =

§—+o0

( e—vz(0)
7/)1(6) = {wéeyﬂo)é‘ |
ev2(0)¢
¢.2(€).= {¢§ej"f(°>€ |
evs’(0)¢
ws(f) = {V,bg’e"{s(o)f

GY(€) = 9" (€)g" (&)
GO = 9RO
G3(&) =v*(&)g*(©)

= Jim_G*(¢)
— Jim_G(¢)

- lim G(¢)

= Jim_F*(¢)

lim G*(¢) = — lim F(¢)

£=>+oo

£——00

lim G3(¢) = — lim F3(¢).

£—+oo

£5—c0

N AN AN N N N
MM M iy I Iy

IV IA IV IA IV OIA

(3.12)
(3.13)
(3.14)

(3.15)
(3.16)
(3.17)

(3.18)
(3.19)
(3.20)



By choosing small By, we can assume that F2(¢) is arbitrary near e?(0) and F3(¢)
is near €3(0) when z(¢) is in B; and G'(€) and G%(£) are near —e}(0) and —ej(0)
when 25(€) is in B;. Moreover, as the system (1.4) is linear in By, F'(£) = e1(0) for
z1(€) € By and G3(€) = ~€3(0) for z,(¢) € By. Then, we modify F*(£) and G*(£) so
that F*(€) = ¥(0) if 21(¢) € By and G*((§) = —€5(0) if 2,(§) € By (k=1,2,3) and
are still smooth. Same goes for B,. |

With these F*(¢) and G¥(¢) we define a trivialization of the vector bundle
®: TR, - I'x R® by

®(z,v) := (z;01, 0%, %) . (3.21)
for
vlel +v?e? + v} ifz=a
—vlel — v?el — vied ifz=a
V=9 1 N - _2 (3.22)
vVIFYE) + vPF2(€) + v° FP(€) if z = 2(€)
VGIE) — fGHE) — PG if 2 = (6).

The modification of F*(£) and G*(£) above makes it possible to extend ® to a trivi-
alization over ' U B; U By: ®: TR3IFuBluB2 — {T'U B, U By} x R3? by putting

B(z,v) := (2,04, 0%, %) : (3.23)
for |
1,1 4 2,2 4 03,3 f2cB
v=nla pa s sa tech (3:21)
—vie; — vie; — UU€ if z € By

After that we extend ® arbitrarily to a smooth trivialization ®: TR?|,, — N xR3,
Then, though D®: T (TR3|,,) — T (N x R?), (2.3) is transformed into a system
on N x R%:

2 =X(zp) 3
on N xR’ 3.25
{q’ = B(z; A\, n)q (3:25)
Again this system is projectivized:
Z =X(zp) ‘ 2
A . on N x RP“ 3.26
{q’ = Z(2,G A\ ) (326)

~ Consider a subspace N x @ C N x RP? where Q is a tubular neighborhood of
RP! = {[v! : v? : 0]} C RP? with H;(Q) = Z.

If B; and B, are small, the modification of F*(¢) and G*(£) is small and thus

& (2:(), 2i¢(€)) is in N x Q (i = 1,2). Here, &: ngP(TzR?)) — N x RP? is a map

induced by D®. Moreover, {a;} x RP! is an attracting invariant set in an invariant

26



27

subspace {a;} x RP? for u = po and A = 0. Thus B; x € is forward invariant in
B; x RP? for p1 near p and A near 0.
Let z(n)1(&; 1) be the N-heteroclinic solution of (1.4) from a; to a; for u ~ p,.

Then in the limit of 4 — pg the orbit I'(yy := {z(N),l(g, p)é € ]R} converges to [' and
z(ny1(&; ) stays in B; long time whereas the length of time when z(y)1(&; i) stays
out of B; is bounded. This means the solution (Z(N)’l(f; 1), 2nyae(&; ,u)) of (3.26) for
A = 0 stays in N x Q if p is near py. Moreover we the following holds.

Lemma 3.2.
A solution (Z(N),l(ﬁ; 1), 4(&; A, /1»)) of (3.26) which satisfies [ (2(6 1), 4(& A 1)) =

® (aq,EL(N)) stays in N x Q for p =~ po and A = 0.
Then we define a map
8: 9 ([, o] x [~1,1]) = @ (3.27)
analogous to the map in the previous section by

(er(V) A€ [Ar, A, T=-1
¢ (&3(N) X € [Ar, A, =41 (3.28)
q(log (H2):n)  A=X (1=12), re(-1,1)

g(’\’ T) =

when A; < ), are not eigenvalues with |A;|, |Az| small and p & po where & = ( <i>
This map induces a homomorphism g.: Hy (9 ([A\1,A2] X [-1,1])) — H,(Q) &
Then g.(1) counts the number of eigenvalues in A, Ag].

4. THE RESULT

We can prove the following based on the strategy explained above.

Theorem (N. [14]).
Assume that the system (1.4) is linear in some small neighborhoods of equilibria
a; (i = 1,2), then the N-front ( N-back) bifurcating from the heteroclinic loop at

K= Lo (’YO(E) co(€),€) is stable for p = py.
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