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Holonomic deformation of
linear differential equations of

the A4 type

LIU DEMING
Department of Mathematical Sciences University of Tokyo

0 Introduction.

In this paper, we consider linear differential equatibns of the form:

d2
d2

defined on the Riemann sphere Pl, with the coefficients:

d
Y +p2($,t)y = Ov

(0.1) =

+ pi(z,t) 5=

g . 9. 1
pi(z,t) = —22911 — thja:”'l - Z _

(0.2) =
p2(z,t) = —(2a + 1)2° — ZZH 29 4 Z #k

The Riemann scheme of this equation reads:

T = A T =00
(0.3) 0o 0 00 0 -~ 0 a+i
2 2500ty ten o —a+3

Here the symbol in (0.3) means that, at the irregular point x = oo, the
equation (0.1)-(0.2) admits a system of formal solutions of the form:

ﬁl — —a-—(1+zh1 —z
21
(0.4)

o = z°7% exp]
9

29Tt f gzt 4+ (L4 Y Rz,

i>1

+2

Note that the Poincaré rank at z = oo of the linear equation (0.1)-(0.2) is
g+2. The principal parts of these formal solutions are given by the primitive
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function of the polynomials representmg the versal deformation,of the simple
singularity of the A, type, so we call the hnear equatlon (0.1)- (0 2) as the
equation of the A;-type. '

When consndermg the holonomic deformation of equations of the A;-type,
we obtain the Hamiltonian structure: '

()\17#‘1,H1,i1), ‘

which determines the Hamiltonian system, equivalent to the second Painlevé
equation, see [6]. C. H. LIN and Y. SIBUYA studied on the holonomic
deformation of linear equations; having the irregular singularity at z = oo
with higher Poincaré rank and adnnttmg a non- logarlthrmc singular point
T = ), see [4]. l

When g = 2, it is known ([3]) that the holonomic deformation is governed
by the Hamjltonian system with respect to the canonical variables:

()\11)‘2aﬂla”27H17H27t17t2)- » .
On the other hand, in the case g > 3, the quantities H = (Hy,-- -, H,) and

t = (t4,,t,) do not compose the Hamiltonian structure. In fact, in the
case of g = 3, we have to determine the variables s = (s1, 52, 83) such that
(0.5) 81 = tl - ZtB’ SS9 = t2, 83 = t3,

and then obtain the Hamiltonian structure: (see [5])
(/\l 7’“)‘27 )‘.3’A/J"l ’ //'2[)“‘{3)»]{1'7 H?v H~37 'Sla 52, '53)-

As to general natural number g, in order to determine the Hamiltonian
structure, we have'tried to find the transformation of qualities ¢t = (¢4, -+, 1,)
such as (0.5), but we didn’t succeed. So we determine the following new
qualities instead. ' '

(06) —22@1_‘_1 < - 1+T* ) (j:17"°7g)7

=0
where

.1 .
((].7) Tj = Z(] 1)Tg+2 -tz IZTI g+2—j—1 (1 <y Sg),

T;=jt; (1<j<g) T;=0 (G<1) or (j>g),
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a;+1(t) is given by
. W .
08) @t)=3 @®=0, au)=3 Mmm) (9

m=1

M(™9) are defined as the coefficients of the expans‘i(')n of function,

: Vf(na) —q _ L 19T9—1"

g=n(1-g)

Such that
(/\laf"7/\ga/‘17"'7,u'g7H1v"':‘Hgvth"')tg)

is the Hamiltonian Structure of the equation of the A, type.

We suppose throughout this paper that 2o + 1 is not an integer. This
equation has an irregular singularity at z = 0o of the Poincaré rank g+ 2 and
g regular singular points z = Ax (k= 1,---,g). We also make the following
assumption: : : '

(A) none of x = Ay (k=1,---,9) is logarithmic singularity.

Since exponents at each regular singular point, z = )\, are 0 and 2, we
deduce from the assumption (A) that H; (i = 1,-- -, g) are rational functions
of t = (t1,-+,t5), A =(A1,--+,Xg) and g = (1, -, py). The explicit forms
of H; will be given in Section 2, they play important roles in our studies.

Now we state the Main Theorem:

Main Theorem.  The holonomic deformation of the linear ordinary dif-
ferential equation (0.1)-(0.2) is governed by the completely integrable Hamil-

tonian system:
O _Of, oy _ O,
8t,~ - a,uk’ 8tj - 6)\k

(k7] = ]-a' ° 79)7

with the Hamiltonian functions H; defined by (0.6).

Since the completely integrable Hamiltonian system (H) determines the
holonomic deformation of linear equations of the A4, type, we call (H) the
Ag-system.
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1 Holonomic deformation of linear equation
of the second order.

In this section, we recall the theory of the holonomic deformation of linear
differential equation of the form:
d*y

dy , .

We make in the following of this section a review of known results, which

are available for us to study the holonomic deformation of linear equation of
the Ag-type.
Proposition 1.1.  The equation (1.1) has a fundamental system of solu-
tions whose monodromy and Stokes multiplier are independent of t, if and
only if there exist rational functions of z, A;(2), B;(z), such that the follow-
ing system of partial differential equations is completely integrable:

H? 0
. 0z? oz -
(1.2) 3 3 G=1-".9)
L = Bie)y + Ai(x) 5.
at,- J ! oz’

Prqbosition 1.2.  The conditions of the complete integrability of (1.2) are
given by: v

(1.3) T Aj5— = o, +Aig (4,5 =1,-++,9),
o 0 0 0 )

where -

1.5 P(z,t) = — t)-+32( t+l—a— (z,t)

( . ) : T, )— pg(.’l?, 4p1 z, ) 263:1)1 z,i).

If we make the change of the unknown function:

(1.6) y = ®(z)z, O(z) = exp(—%/w pi(z,t) dz),
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then (1.1) is transformed into an equation of the form:

d*z
(L7) yrhe P(z,t)z,
where P(z,t) is the function given by (1.5). It follows that:
Proposition 1.3.  The holonomic deformation of (1.1) is reduced to that of
(1.7) Finally, the holonomic deformation of (1.1) is reduced to the existence
of rational functions A;(z) (j = 1,---,g), satisfying the system (1.3)-(1.4) of
partial differential equations. We W]H call (1.2) the extended system of (1.1)
and the functions A;(z) the deformation functions.

2 Deformation functions A4(z).

In the following of this paper, we consider the holonomic deformation of
linear equations of the form:

d2 d
pi(,1) = =221 =3 _jtjal T =3 : ;
r— Mg

(2.2) ' () (k)
pa(z,t) = —(2a+ 1)z —ZZH:I:"’J—i—E 'uk
O

For the limiting pages, here we only can give the results, omit their proofs.
Firstly we determine the deformation functions.

Proposition 2.1.  For j =1,---,g, the deformation functions A;(z) are

given as follows:

@J(l)

(2:3) Aj() = T

where A(z) = §=1(:1:_— A;), and Q;(z) is a polynomial of degree j — 1.
The explicit form of Q);(z) will be given by proposition 3.2. In order to prove
this proposition, we need following lemmata.

‘Lemma 2.1.  As function of x, Aj(x) is holomorphic on C\{A1,---,Ag}.



Lemma 2.2. Fork =1,---,9; « = M is a pole of the first order of
Lemma 2.3. Aj;(z) admits a zero of order g+ 1 —j at x = oo.
proposition 2.1 is an immediate consequence of lemmata 2.1, 2.2 and 2.3.

To give the explicit form of Qj(x), we prove following lemma:

Lemma 2.4. For ¢ > 3, a;(t) defined by (0.8) satisfies
1 ] iz2 5
(24) a(t)= 2 a2(t) =0, a(t)=—-2 Z Tg+m+2 —iam (123).
) m—l
Proposition 2.2.  If differential equation (0.1)-(0.2) admits the holonomic
deformation, then the deformation functions A;(z) = —i) (G=1,---,g) are
determined as ' -
J—1 .
(25) 7 Q](x) =2Zai+l(t)Qj—i(x)7 (.7 = 17"').‘])
1=0
where
=
- Z Unil‘]—l n
n—O
(26) Op = (_1)n+16n’ (nzovly"'ag)v
and e, denotes the n-th elementary polynomial of the g variables, Ay,- -+, A,
in particular we define eg = 1. :
Remark 2.1. From the proof of propo.wtwn 2.2, we know when Q ()

is of the form of (2.5), then the degree of Aj(x) is at most g — 1.
Proposition 2.3. Q;(z) and Q(x) have the following properties:

e QMW=INE G =1

3 Equation of the SL-type.

In this section, we will investigate the equation of the SL-type:
dzz
(3.1) 19

1
P(z,t) = —pa(2,t) + ;L'Pf(f’«‘,t) + igpl(wat)-
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By using (0.2), we see that P(z,t) can be written in the following form:

g . .
P(z,t) = 2% + )" Fa't +2) " K9~/

= 5)
(3.2) ] i

1
_Z )\k 4Z($—/\k)2’

(%)

where we denote by X () the sum for k =1,---,9. And we have:

1 & )
(3.3) Fi= Y TTyatj-i+ T +2ab  (0<j<g).

1=2+7

(34) K= HAT 455 N4y ZZme_JAk (1<j<g).
(k) (k) m=1

(3'5) Ve = [k — —(% )\k /\l

T M) (1<k<y).
(?)

Here we denote by Zéf)) the sum for I = 1,---,g¢ except for | = k. Let
egk) be the j-th elementary symmetric polynomial of § — 1 variables, (1 =

(k)

1,:--,9, # k), in particular, we put ¢5’ = 1. Moreover, we define a(k) =

(=1)*e; %) For the simplicity of presentation, we put:

(3 6) Ny A’(/\k)’ 0,215 »J ’ » 95
where A(z) = [T{,(z — i), and A'(z) = £A(z).

We have following two propositions. .Since the proofs are almost same,
we omit them (see [5]).

Proposition 3.1.  In the linear equation (0.1)-(0.2) H; (j =1, ---, g) are
given by:

1 e )
(3.7) Hj = 5 3 NN i — Usuie — NeN7¥(20+ 1)M],
(*)



where

: | ®) NNk 4+ NN
Uy = NN MM 4 Y Taly - S Sk T
() (1) AL = A

Proposition 3.2.  In the linear equation (3.1)-(3.2), K; (j =1,--+,9)
are written as follows:

(3.8) K;= =S (NN ul =3 vi — NeN*FV),
2'® o M~ A

where Vi = A9 4 MY FAL+ 3283) (A—FIW

For the M (™9 given by (0.9), we have following lemma.

Lemma 3.1.  For arbitrary natural numbers m and n; ,nonnegative integer
q satisfying 1 — g < —q <0, we have:

0
(3-9) M(m+n1Q) _ Z M(m,v') M(n,q—r).

r=gq

4 the canonical transformation.

Using H; and K; given by (2.7) and (2.8) respectively, we define H; and K
j=1,---,g as follows:

j-1
(4.1) Hi=2% am®t)(Hi-:+TL) (G=1,---,9),
1=0
(42) I{j =2 Z ai+1(t)1{j—’i (.] = ]-7 e ’9)7
=0

Note that (4.1) is nothing but (0.6). Combining (2.7) with (4.1) and (2.8)
with (4.2), we obtain '

(43)  Hy=5 2 INFu} = Ui = NN (20 + 1M + T},
(k)
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— 1 —ik NN ik
(4.4) R, =33 (NN eSS /\lﬁuk — NNV,
. (k) - W R .
where
— ik i1 .
(4.5) N"" =23 a1 ()N 75F,
. 1=0
. j-1 o j-1
U]',k = 22“i+1(t)Uj—i,ka Tj = QZai+l(t)T7f_i-
=0 1=0
We have
Lemma 4.1. K; and H; have the following relation:
e : :
(46) ) Xj:Hj-{--z-Z)\i.
(k)

Proposition 4.1.  The transformation defined by (2.5) and (4.6)
A, Hyt) — (N, v, K, t)

is canonical, where X\ = (Mg, ,Xg), p = (g1, pig), H = (H1,--+,H,),
v=_(v1, 1), K= (K1, ,K,) and t = (t1, -+, 1,). ’

5 the A,-system.

In this section, we will prove Main Theorem. By means of propositions 1.2,
1.3 and 2.3, it suffices to establish the following theorem:

Theorem 5.1.  The conditions (1.3), (1.4) of the complete integrability are
equivalent to the following completely integrable Hamiltonian system:

— OK; 0o\ 0K, vy ,

J? L = L=_-= Jk=1,---,9).

Lemma 5.1.  The equation (1.4) induces the system (K).

Lemma 5.2.  The equations (1.4) is derived from the system (K).
Lemma 5.3.  The equation (1.3) is derived from the system (K).
Lemma 5.4. system (K) is complete integrable.
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