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1. INTRODUCTION

This note is a summary of my recent work [8] with Professor Hiroshi Matano

(University of Tokyo).

Many mathematical models in physics, biology or other fields possess some kind

of symmetry, such as symmetry with respect to reflection, rotation, translation,

dilation, gauge transformation, and so on. Given an equation with certain symmetry,

it is important, from the point of view of applications, to study whether or not its

solutions inherit the same type of symmetry as the equation. As is well-known, the

answer is generally negative unless we impose additional conditions on the equation

or on the solutions. We will henceforth restrict our attention to solutions that are

‘stable’ in a certain sense and discuss the relation between stability and symmetry,

or stability and some kind of monotonicity.

In the area of nonlinear diffusion equations or heat equations, one of the early

studies in this direction can be found in Casten-Holland [1], and Matano [6]. Among

many other things, they showed that if a bounded domain $\Omega$ is rotationally sym-

metric then any stable equilibrium solution of a semilinear diffusion equation

$u_{t}=\Delta u+f(u)$ , $x\in\Omega,$ $t>0$

inherits the same symmetry as that of $\Omega$ . Later, it was discovered that the same

result holds in a much more general framework, namely in the class of equations

in which the comparison principle holds in a certain strong sense. Such a class of
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equations form the $\mathrm{s}\infty \mathrm{C}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{e}\mathrm{d}$ ‘strongly order-preserving dynamical systems’. Mier-
czytski-Pol\’a\v{c}ik [9] (for the time-continuous case) and Tak\’a\v{c} [10] (for time-discrete
case) showed that, in a strongly order-preserving dynamical system having a sym-
metry property corresponding to the action of a compact connected group $G$ , any
stable equilibrium point or stable periodic point is G-invariant.

The aim of this note is to establish a theory analogous to [9] and [10] for a wider
class of systems. To be more precise, we will relax the requirement that the dynam-
ical system be strongly order-preserving. This will allows us to deal with degenerate
diffusion equations and equations on an unbounded domain. Secondly, we will relax

.
the requirement that the acting group be compact. This will allow us to discuss
the symmetry or monotonicity properties with respect to translation. The result
will then be applied to the stability analysis of travelling waves of reaction-diffusion
equations and that’ of $\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\dot{\mathrm{n}}\mathrm{a}\mathrm{r}\mathrm{y}$ solutions of an evolution equation of surfaces.

2. NOTATION AND MAIN RESULTS

Let $X$ be an ordered complete metric space, that is, a complete metric space
with a closed partial order relation denoted $\mathrm{b}\mathrm{y}\preceq$ . Here, we say that a partial order
relation in $X$ is closed if any converging sequences $\{u_{n}\},$ $\{v_{n}\}\subset X$ with $u_{n}\preceq v_{n}$

for each $n\in \mathrm{N}$ satisfy $\lim_{narrow\infty}u_{n}\preceq\lim_{narrow\infty}v_{n}$. We also assume that, for any $u$ ,
$v\in X$ , the greatest lower bound of $\{u, v\}$ –denoted by $u\wedge v-$ exists and that
$(u, v)rightarrow u$ A $v$ is a continuous mapping from $X\cross X$ into $X$ . We write $u\prec v$ if $u\preceq v$

and $u\neq v$ , and denote by $d$ the metric of $X$ .

Let $\{\Phi_{t}\}_{t\geq 0}$ be a semigroup of mappings $\Phi_{t}$ from $X$ to $X$ satisfying the following
conditions $(\Phi 1),$ $(\Phi 2),$ $(\Phi 3)$ :

$(\Phi 1)\Phi_{t}$ is order-preserving (that is, $u\preceq v$ implies $\Phi_{t}u\preceq\Phi_{t}v$ for all $u,$ $v\in X$ ) for
all $t\geq 0$ ,

$(\Phi 2)\Phi_{t}$ is upper semicontinuous (that is, if a sequence $\{u_{n}\}$ in $X$ converges to a
point $\tau\iota_{\infty}\in X$ and if the corresponding sequence $\{\Phi_{t}u_{n}\}$ also converges to some
point $w\in X$ , then $?\mathit{1}$ ) $\preceq\Phi_{t}(u\infty))$ for all $t\geq 0$ ,
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$(\Phi 3)$ any bounded monotone decreasing orbit (a bounded orbit $\{\Phi_{t}u\}t\geq 0$ satisfying

$\Phi_{t}u\succeq\Phi_{t’}u$ for $t\leq t’$) is relatively compact.

Let $G$ be a metrizable topological group acting on $X$ . We say $G$ acts on $X$ if

there exists a continuous mapping $\gamma:C\cross Xarrow X$ such that $g\vdasharrow\gamma(g, \cdot)$ is a group

homomorphism of $G$ into $Hom(X)$ , the group of homeomorphisms of $X$ onto itself.

For brevity, we write $\gamma(g, u)=gu$ and identify the element $g\in G$ with its action

$\gamma(g, \cdot)$ . We assume that

(G1) $\gamma$ is order-preserving (that is, $u\preceq v$ implies $gu\preceq gv$ for any $g\in G$),

(G2) $\gamma$ commutes with $\Phi_{t}$ (that is, $g\Phi_{t}(u)=\Phi_{t}(gu)$ for all $g\in G,$ $u\in X$ ) for all

$t\geq 0$ .

(G3) $G$ is connected.

In what follows, $e$ will denote the unit eliement’ of $G$ , and $\mathcal{B}_{\delta}(e)$ the $\grave{\delta}- \mathrm{n}\mathrm{e}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{b}\mathrm{o}\mathrm{r}\mathrm{h}\mathrm{o}\mathrm{o}\mathrm{d}\tau$

$\mathrm{o}\mathrm{f}e$ .

Definition 2.1. An equilibrium point $u\in X$ of $\{\Phi_{t}\}_{t\geq 0}$ is lower stable if, for any

$\epsilon>0$ , there exists some $\delta>0$ such that

$d(\Phi_{t}v, u)<\epsilon$

for any $t\geq 0,$ $v\in X$ satisfying $v\preceq u$ and $d(v, u)<\delta$ .

Remark 2.2. It is easily seen that if $u$ is stable in the sense of Ljapunov, then it is

lower stable,. $\cdot$

Main Theorem. Let $\overline{u}$ be an equilibrium point of $\{\Phi_{t}\}_{t\geq 0}$ satisfying the following

conditions: (1) $\overline{u}$ is lower stable; (2) for any equilibrium point $u\prec\overline{u}$, there exists

some $\delta>0$ such that $gu\prec\overline{u}$ for any $g\in B_{\delta}(e)$ . Then, for any $g\in G$ , the inequality

$g\overline{u}\succeq\overline{u}$ or $g\overline{u}\preceq\overline{u}$ holds.

If the group $G$ is compact, one can easily show that the inequality $g\overline{u}\succ\overline{u}$ or

$g\overline{u}\prec\overline{u}$ never holds (see Taka\v{c} [20]). Thus we have the following corollary.

Corollary 2.3. Under the hypotheses of Main Theorem, assume further that $G$ is

a compact group. Then $\overline{u}$ is $G$ -invariant, that is, $\overline{u}$ is symmetric.
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Now let us consider the case where $G$ is isomorphic to the additive group $\mathbb{R}$ :

$G=\{g_{a}|a\in \mathbb{R}\}$ , $g_{a}+g_{b}=g_{a+}b$ .

Then the following holds:

Corollary 2.4. Under the hypotheses of Main Theorem, assume further that $G$ is

isomorphic to R. Then one of the following holds:

(i) $\overline{u}$ is G-invariant,

(ii) $g_{a}\overline{u}$ is strictly monotone increasing in a ($a<b$ implies $g_{a}\overline{u}\prec g_{b}\overline{u}$);

(iii) $g_{a}\overline{u}$ is strictly monotone decreasing in a ($a<b$ implies $g_{a}\overline{u}\succ g_{b}\overline{u}$).

Remark 2.5. If the mapping $\Phi_{t}$ is strongly order-preserving for some $t>0$ (that

is, $u\prec v$ implies $\Phi_{t}B_{\delta}(u)\preceq\Phi_{t}B_{\delta}(v)$ for sufficiently small $\delta>0$), then clearly the

assumption (2) in Main Theorem is automatically fulfilled.

Remark 2.6. If $G$ is not connected, then the conclusion of Main Theorem does not

necessarily hold. See [15], [16] for detail.

3. APPLICATIONS $-\mathrm{R}\mathrm{o}\mathrm{T}\mathrm{A}\mathrm{T}\mathrm{I}\mathrm{O}\mathrm{N}\mathrm{A}\mathrm{L}$ SYMMETRY OF STABLE EQUILIBRIA

First we consider an initial boundary value problem for a nonlinear diffusion

equation of the form

$\{$

$u_{t}=\Delta(u^{m})+f(u)$ , $x\in\Omega,$ $t>0$ ,

$u=0$ , $x\in\partial\Omega,$ $t>0$ ,

$u(\cdot, 0)=u_{0}$ , $x\in\Omega$ ,

(3.1)

where $m\geq 1$ is a constant, and the domain $\Omega\subset \mathbb{R}^{n}$ is a bounded domain with

smooth boundary $\partial\Omega$ . We assume that $f:[0, \infty)arrow \mathbb{R}$ is a $C^{1}$ function satisfying
$f(\mathrm{O})=0,$ $f’(0)\neq 0$ . In the case of $m>1$ , we consider only bounded nonnegative

solutions.

Given an equilibrium solution $\overline{u}$ of (3.1), we set

$X=\{$
$G_{0}\text{ノ}(\overline{\Omega})=$ { $w\in C(\overline{\Omega})|w=0$ on $\partial\Omega$ } if $m–1$ ,

{ $u\in L^{1}(\Omega)|$ for some $g\in G,$ $0\leq u(x)\leq\overline{u}(gx)\mathrm{a}.\mathrm{e}$ . $x\in\Omega$} if $m>1$ .

The following theorem holds:
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Theorem 3.1. If a bounded domain $\Omega$ is rotationally symmetric then any stable

equilibrium solution of (3.1) is rotationally $symmet_{\dot{\mathcal{H}}}C$ .

Outline of the proof. Define an order relation in $X$ by

$u_{1}\preceq u_{2}$ if $u_{1}(x)\leq u_{2}(x)\mathrm{a}.\mathrm{e}$ . $x\in\Omega$ .

Then, letting $G$ be the rotation group and applying Corollary 2.3, we obtain this

theorem. $\square$

The result in Theorem 3.1 has been already known for the case where $m=1$ ,

namely, for the problem

$\{$

$u_{t}=\Delta u+f(u)$ , $x\in\Omega,$ $t>0$ ,

$u=0$, $x\in\partial\Omega,$ $t>0$ ,

$u(\cdot, 0)=u_{0}$ , $x\in\Omega$ ,

(3.2)

([2], [15]). Our theory in Section 2 is also applicable to the case where $m>1$ .

Furthermore, our theory allows us to treat the case where $\Omega$ is not bounded. To be

more precise, under the additional condition that $f’(\mathrm{O})<0$ , we obtain the following:

Theorem 3.2. If an unbounded domain $\Omega$ is rotationally $symmet_{\dot{\mathcal{H}}}C$ , then any sta-
$ble$ equilibrium $soluti_{on\overline{u}}$ of (3.2) satisfying

$\overline{u}(x)arrow 0$ as $|x|arrow\infty$ .

is rotationally symmetric.

By the same argument as in the proof of Theorem 3.1, we obtain the above

theorem. Here we set $X=C_{0}(\overline{\Omega})$ .

4. APPLICATIONS –INSTABILITY OF SOLITARY $\mathrm{w}\mathrm{A}\mathrm{v}\mathrm{E}\mathrm{s}$

We apply our theory to the so-called travelling waves for systems of equations of

the form

$\{$

$u_{t}=$ $u_{xx}+f(u, v)$ , $x\in \mathbb{R},$ $t>0$ ,

$v_{t}=$ $dv_{xx}+g(u, v)$ , $x\in \mathbb{R},$ $t>0$ ,
(4.1)
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where $d>0$ is a constant. Here $f:\mathbb{R}\cross \mathbb{R}arrow \mathbb{R}$ is a $C^{1}$ function such that there

exists some $M_{0}>0_{\mathrm{S}}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\mathrm{f}\mathrm{y}$‘ing

$|f_{u}(u,p)|..<M_{0}.\cdot$ ’
$|f_{p}(u,p)|<M_{0}$

for all $u,p\in \mathbb{R}$ , and $g:\mathbb{R}\cross \mathrm{R}arrow \mathbb{R}$ is also a $C^{1}$ function satisfying precisely the

same condition.

Here we assume $f_{v}\leq 0,$ $g_{u}\leq 0$ so that the system (4.1) be of competition type.

A solution $(u, v)$ of (4.1) is called a travelling wave with the speed $c\in \mathbb{R}$ if it can

be written in the form

$(u(x, t),$ $v(X, t))=(\phi(x-ct), \psi(x-Ct))$ ,

where $\phi(y),$ $\psi(y)$ are some $\mathrm{f}\mathrm{u}\acute{\mathrm{n}}$ctions. Here we $\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}_{\mathrm{C}}\dot{\mathrm{t}}$ our attention to the travelling

waves that satisfy the condition

$\lim_{xarrow\pm\infty}(u(x, 0),$ $v(X, \mathrm{o}))=(u_{\pm}, v_{\pm})$ ,

where $u_{+},$ $u_{-},$ $v_{+}$ and $v_{-}$ are constants. A travelling wave is called a solitary

wave (a travelling pulse) if $(u_{+}, v_{+})=(u_{-}, v_{-})$ , and a travelling front if $(u_{+}, v_{+})\neq$

$(u_{-}, v-)$ . We assume that $(u_{\pm}, v_{\pm})$ are both stable equilibrium solutions of the

ordinary differential equation corresponding to (4.1), namely,

$\{$

$u_{t}=$ $f(u, v)$ , $t>0$ ,

$v_{t}=$ $g(u, v)$ , $t>0$ .

Given a travelling wave $(\overline{u}, \overline{v})$ with the speed $c$ , let us define a metric space $X$ by

$X=\{(\overline{u}(\cdot, 0)+w_{1},\overline{v}(\cdot, 0)+w_{2})|w_{1}, w_{2}\in H^{1}(\mathbb{R})\}$ .

Then, define a semigroup of mappings $\{\Phi_{t}\}_{t\geq 0}$ on $X$ by

$\Phi_{t}(u(X), v(x))=\Psi_{t}(u(x+ct), v(x+ct))$

with $\{\Psi_{t}\}_{t\geq 0}$ being the semiflow that equation (4.1) defines in $X$ . It is easily seen

that $\{\Phi_{t}\}_{t\geq 0}$ is the semiflow defined by the equation

$\{$

$u_{t}=$ $u_{xx}+cu_{x}+f(u, v)$ , $x\in \mathbb{R},$ $t>0$ ,

$v_{t}=$ $dv_{xx}+cv_{x}+g(u, v)$ , $x\in \mathbb{R},$ $t>0$ .
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Clearly $(\overline{u.}(\cdot, 0),$ $\overline{v}(\cdot, 0))$ is an equilibrium point of the system $\{\Phi_{\iota}\}_{\iota\geq}0$ . A travelling

wave $(\overline{n},\overline{\tau’})$ is called stable if $(\overline{\tau/,}(\cdot, 0),$ $\overline{\mathrm{t}}(\cdot, 0))$ is a stable equilibrium point of $\{\Phi_{t}\}_{t}\geq 0$ .

We say that a travelling wave $(\tau/,, v)$ is monotone if $\tau\iota(x, \mathrm{o})$ and $-v(x, 0)$ are both

nonincreasing functions or both nondecreasing functions.

Theorem 4.1. Any stable travelling wave of (4.1) is monotone.

Corollary 4.2. Solitary waves of (4.1) are unstable.

Outline of the proof of $7^{\tau}heorem4.1$ . Define an order relation in $X$ by

$(\tau/_{1},, v_{1})\preceq(\tau_{2}., v_{2})$ if $\tau\prime_{1},(aj)\leq\prime n_{2}(aj),$ $v_{1}(x)\geq r/_{2}(x)\mathrm{a}.\mathrm{e}$ . $x\in$ R.

Letting $G$ be the group of translations $(\cong \mathbb{R})$ and applying Corollary 2.4, we obtain

this theorem. $\square$

$n$ .

$x$

(solitary wave) (anorner rype 01 rravelllng wave]
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5. APPLICATIONS –INSTABILITY OF STATIONARY $\mathrm{S}\mathrm{u}\mathrm{R}\mathrm{F}\mathrm{A}\mathrm{C}\mathrm{E}\mathrm{s}$

Let $\{\gamma(t)\}_{t}\geq 0$ be a family of time-dependent hypersurfaces embedded in $\mathbb{R}^{n}$ . We

assume that the motion of $\gamma(t)$ is subject to

$V=f$ ( $\mathrm{n}$ , Vn), (5.1)

where $\mathrm{n}=\mathrm{n}(\mathrm{x}, \mathrm{t})$ is the outward unit normal vector at each point of $\gamma(t)$ and $V$

denotes the normal velocity of $\gamma(t)$ in the outward direction. A typical example of

(5.1) is

$V=\alpha(\mathrm{n})\kappa+\mathrm{g}(\mathrm{n})$

where $\kappa=(1/(n-1))\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}\nabla \mathrm{n}$ is the mean curvature at each point of $\gamma(t)$ . In the

case where $\alpha(\mathrm{n})\equiv 1$ and $g(\mathrm{n})\equiv 0$ , this equation is known as the mean curvature

flow equation.

We consider (5.1) in the framework of generalized solutions. The notion of such

solutions was introduced by Evans and Spruck [4] and independently by Chen, Giga
and Goto [2].

We assume that $f$ is a smooth function and that the equation (5.1) is strictly

parabolic.

Let us define a metric space $X$ by

$X=\{(\Gamma, D)$

$D$ is a bounded open set in $\mathbb{R}^{n}$ and

$\Gamma(\subset \mathbb{R}^{n}\backslash D)$ is a compact set containing
$\partial D\}$

equipped with the metric $d$ defined by

$d((\Gamma, D),$ $(\Gamma’, D/))=h(\Gamma, \Gamma’)+h(D\cup\Gamma, D’\cup\Gamma’)$ .

Here, for compact sets $K_{1}$ and $K_{2},$ $h(K_{1}, K_{2})$ means the Hausdorff metric between
$K_{1}$ and $K_{2}$ if $K_{1},$ $K_{2}\neq\emptyset,$ $h(K_{1}, K_{2})=\infty$ if $K_{1}\neq\emptyset$ and $K_{2}=\emptyset$ , and $h(K_{1}, K_{2})=0$

if $K_{1},$ $K_{2}=\emptyset$ . Then, define a mapping $\Phi_{t}$ on $X$ by

$\Phi_{t}(\Gamma, D)=(\Gamma t, Dt)$ ,

where $(\Gamma_{t}, D_{t})t\geq 0$ is a solution of (5.1) with the initial data $(\mathrm{r}_{0}, D_{0})=(\Gamma, D)$ .

In this note, we will call a family of surfaces $\{\gamma(t)\}_{t}\geq 0$ compact if $\gamma(i)$ is a compact

for each $t\geq 0$ , and smooth if $\gamma(t)$ is a smooth hypersurface for each $t\geq 0$ .
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Theorem 5.1. Any smooth compact stationary surface $\dot{u}$ unstable.

Outline of the proof. Define an order relation in $X$ by

$(\Gamma_{1}, /)_{1})\preceq(\Gamma_{2,2}TJ)$ if $/)_{1}\subset l)_{2}$ and $lJ_{1}\cup\Gamma_{1}\subset TJ_{2}\cup\Gamma_{2}$ .

Letting $C_{l}$
’ be the group of translations and applying Main Theorem, we obtain

$\mathrm{t}\mathrm{h}\mathrm{i}_{\mathrm{S}^{\backslash }}$ theorem. $\square$

Remark 5.2. Giga and Yama-uchi [5], Ei and Yanagida [3] have shown the above re-

sult by using methods different from ours. However, our arguments are much simpler

and give deeper perspective than their methods. Furthermore, unlike the methods

in theirs, which depend $0\dot{\mathrm{n}}$ linearization arguments or distant function arguments

(thus smoothness assumptions are essential), our method may be extendable to gen-

eralized solutions of (5.1) if one can check the condition (2) of Main $\mathrm{T}\mathrm{l}\mathrm{l}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}$ holds

for generalized solutions (which remains to be checked).

Remark 5.3. With minor modifications, most of the results in Section 2 carry over
.

to time-discrete systems. Thus the results in Theorems 3.1-5.1 can be extended

to nonautonomous equations (equations that are periodic in $l$ ). $\Gamma^{\mathrm{t}}\mathrm{o}\mathrm{r}$ example, an

analogy of Theorem 5.1 holds for periodic solutions of

$V= \int(n, \nabla n, l)$ ( $\int \mathrm{i}\mathrm{s}$ periodic in $l$ ).
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