鉛直スロットにおける 1:2 定常モード相互作用

原研藤村薫 (Kaoru Fujimura)

1. はじめに

昨年1月の研究会(数理研講究録 921 (1995) 18)で,鉛直スロットに水平磁場が作用す る場合を取り上げ,低磁気 Prandtl 数,低 Prandtl 数の極限では,定常準中立モードに 1:2 相互作用が可能であり,Hartmann 数 H の値によって2種類の縮退が起こることを 報告した.本報は,その続報であり,縮退パラメターを変化させた際の分岐特性の変化 についての数値計算結果のみを示す.問題の定式化,および5次の非線形項を持つ振幅 方程式の導出に関しては,上記講究録を参照いただきたい.

2. 振幅方程式と係数

相互作用を行っている2つの準中立撹乱の振幅を $A_1(t)$ と $A_2(t)$ とすると、5次の非 線形項を持つ振幅方程式は中心多様体低減を用いて

$$\dot{A}_1 = A_1[\sigma_1 + \mu_{11}u + \mu_{21}v + \beta_{31}w + \gamma_{11}u^2 + (\gamma_{21} - \gamma_{41})uv + \gamma_{31}v^2]$$

 $+\bar{A}_{1}A_{2}[\lambda_{1}+(\beta_{11}-\beta_{31})u+\beta_{21}v+\gamma_{41}w],$

$$\dot{A}_{2} = A_{2}[\sigma_{2} + \mu_{12}u + \mu_{22}v + \beta_{32}w + (\gamma_{12} - \gamma_{42})u^{2} + \gamma_{22}uv + \gamma_{32}v^{2}] + A_{1}^{2}[\lambda_{2} + \beta_{12}u + (\beta_{22} - \beta_{32})v + \gamma_{42}w].$$

のように求められる. H = 4.0432 と 8.7701 の場合, それぞれ μ_{22} 及び λ_2 が消失する. H がこれらの値をとるときの相互作用点と方程式 (1) に含まれる係数の値を Table I に 示す. これらの値は,中心多様体低減の出発点が 13 × 30 次元の振幅方程式の場合のも のである. ここで, 13 は, Galerkin 射影に用いた Fourier モードの個数(複素共役を含 む)を意味し, 30 は固有関数の個数である.

3. 簡単な平衡解

 $A_n(t) = a_n(t) e^{i\theta_n(t)}$ とおき、 $\Theta(t) = \theta_2 - 2\theta_1$ とすると、 $a_1, a_2, e \Theta$ に対する簡単な平 衡解として、次の4種類の解が存在可能であることがわかる。

(1)

1. trivial solution : $a_1 = a_2 = 0$.

2. pure mode (P): $a_1 = 0, a_2 \neq 0$.

- 3. mixed mode (M_±): $a_1a_2 \neq 0, \Theta = n\pi, n = 0, \pm 1, \pm 2, \cdots$.
- 4. traveling wave (TW): $a_1a_2 \neq 0, \Theta \neq n\pi$.

Table I. 縮退点における振幅方程式の係数値

 $\mu_{22} = 0$

 $\lambda_2 = 0$

H	8.7701	4.0432
α_1	1.0602877	1.58542165
$G_0(\alpha_1)$	185278.39	20317.0974
λ_1	-5.5926	-5.69925
λ_2	0.0	3.77689
μ_{11}	-5627.6	-6311.54
μ_{21}	33086	-12337.2
μ_{12}	10198	-17296.3
μ_{22}	28708	0.0
β_{11}	2.0150×10^8	1.7197×10^7
eta_{21}	7.4335×10^8	$3.3616 imes 10^7$
eta_{31}	1.3626×10^{8}	-8.5161×10^{6}
β_{12}	5.8107×10^7	2.9137×10^{6}
β_{22}	3.5310×10^8	-2.3148×10^{7}
β_{32}	9.3998×10^8	1.6491×10^7
γ_{11}	6.250×10^{11}	-8.276×10^9
γ_{21}	7.457×10^{12}	2.261×10^{10}
γ_{31}	-8.499×10^{11}	6.840×10^{10}
γ_{41}	-4.496×10^{11}	-2.369×10^{10}
γ_{12}	9.545×10^{12}	6.157×10^{10}
γ_{22}	1.656×10^{13}	3.237×10^{11}
γ_{32}	-6.598×10^{11}	2.256×10^9
γ_{42}	$7.768 imes 10^{11}$	-1.983×10^{9}

4. 分岐ダイアグラム

ここでは σ_1 , σ_2 , μ_{22} または λ_2 をパラメターとして変化させて分岐ダイアグラムを求めた. $\sigma_1 = r \cos \theta$, $\sigma_2 = r \sin \theta$ とし, $0 \le \theta \le 2\pi$ についてプロットした. 局所解を求め

るために (1) を適当にリスケールした. H = 4.0432 の場合には, pure mode (P) 以外 は4 次以上の非線形項の寄与が無視でき, H = 8.7701 の場合には5 次以上の項の寄与が 無視できることを条件に, $r = 10^{-5}$ を採用した. 図1 (a)-(f) は, それぞれ H = 8.7701の場合の $\mu_{22} = -0.01$, -0.0064, -0.0063, -0.003, 0, 0.01 についての結果である. μ_{22} を (a)→(f) に変化させたことは H が縮退点 4.0432 を下から上に通過することに対応 する. 同様に H = 8.7701 の結果を図2 (a)-(h) に示す. これは $\lambda_2 = 10^{-5}$, 0, -10^{-6} , -1.8×10^{-6} , -1.9×10^{-6} , -2.4×10^{-6} , -2.5×10^{-6} , -10^{-5} の結果である. (a)→(h) は, 縮退点 8.7701 を下から上へ通過することに対応する. 図1 (f) と図2 (a) の分岐特性は, mixed mode (M_) が pure mode から分岐するか trivial solution から分岐するかの違い を除くと同一である. また, 結果は示さないが, 図1 (a) の分岐特性は H = 0 の場合のそ れと同一, また, 図2 (h) の分岐特性は H = 15 の場合のそれと同一であることが分かっ た. Table I の μ_{22} の値や λ_2 の値から, 図1, 2の縮退パラメターの範囲が $0 \le H \le 15$ と比べて非常に狭いことが明らかである.

このように、縮退は、パラメター空間の限られた領域で本質的となるが、縮退点の近 傍における分岐像を求めることにより、広いパラメター空間内での分岐の全体像を求め ることが可能になる.

図1. μ₂₂ = 0 の近傍における分岐ダイアグラム. + は安定, – は不安定であることを 示し, 黒丸は分岐点, 白丸は Hopf 分岐の発生を意味する. また | は M₊ と M₋ の入れ 替わりを意味する.

図2. $\lambda_2 = 0$ 近傍における分岐ダイアグラム. + は安定, - は不安定であることを示し, 黒丸は分岐点, 白丸は Hopf 分岐の発生を意味する. また | は M_+ と M_- の入れ替わりを意味する.