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ABSTRACT. The Euler’s equation for an incompressible fluid filled in a Riemannian
manifold $D$ is regarded as a geodesic equation on the group of volume-preserving
diffeomorphisms of $D$ provided with a one-sided invariant metric. A negative sec-
tional curvature implies instability of the geodesic with respect to the corresponding
flow and perturbation. The exponential growth of the perturbation is estimated
from the values of the sectional curvatures.

The expression of the components of Riemannian curvature tensor of the group
of area-preserving diffeomorphisms on 2-sphere is given in explicit formulas through
$3-j$ coefficients.

The mean sectional curvature associated with the flow described by the flow func-
tion $Y_{2}^{0}$ is estimated for example and the result suggests that the initial perturbation
$\epsilon$ grows to $3\cross 10^{2}\epsilon$ after the period during which the particles on $u=cos \theta=\frac{1}{2}$

rotate around $z$ -axis.

1. INTRODUCTION

Let $T(t)$ be the map which maps the configuration of some fluid particles at the
time $t_{0}$ to the configuration at the time $t$ . Then the motion of the fluid is regarded
as this time dependent map $T(t)$ . Continuity of the fluid requires this map $T(t)$ to
be diffeomorphism. We will regard the diffeomorphism $T(t)$ as a point element in the
group of the diffeomorphisms. From now on, $T(i)$ will be denoted by $x_{t}$ .

The Euler’s equation for an ideal incompressible fluid filled in a Riemannian man-
ifold $D$ is regarded as a geodesic equation on the group of volume-preserving dif-
feomorphisms of $D$ provided with a one-sided invariant metric [2]. Let the group
be denoted by $\mathfrak{D}_{vol}(D)$ . The geodesic $x_{t}\in \mathfrak{D}_{vo}\iota(D),$ $t\in \mathrm{R}$ , satisfies the following
geodesic equation:

(1.1) $\nabla_{\dot{x}_{t}}\dot{x}_{t}=0$ ,

where $\dot{x}_{t}=\frac{d}{dl}x_{t}\in T_{x_{t}}\mathfrak{D}_{vol()}D$ , $x_{t}\in \mathfrak{D}_{vol}(D)$ .

The metric $g$ , the Riemannian connection $\nabla$ , the Riemannian curvature tensor $R$

and the sectional curvature $\kappa$ will be defined later in Section 2. A Jacobi field $Y$ is
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a vector field along the geodesic $x_{t}$ which satisfies the following Jacobi equation:

(1.2) $\nabla_{\dot{x}_{t}}^{2}Y+R(Y,\dot{x}_{t})\dot{x}_{t}=0$ .
A Jacobi field is an infinitesimal variation of the geodesic $x_{t}$ and is uniquely deter-
mined by the values of $Y$ and $\nabla_{\dot{x}_{a}}Y$ at one point $x_{a}$ (or an initial point $x_{0}$ ) on the
geodesic. We obtain from (1.2) the following equation:

(1.3) $\frac{d^{2}}{dt^{2}}||Y||^{2}=2(||\nabla_{\dot{x}_{t}}Y||2-g(R(Y,\dot{X}_{t})\dot{X}t,$ $Y))$ .

The length $||Y||$ of the Jacobi field $Y$ grows exponentially with respect to $t$ if the
value of the sectional curvature $\kappa(Y,\dot{x}_{t})$ is negative. For a geodesic $x_{t}$ parameterized
to satisfy the property $||\dot{x}_{t}||=1$ for all $t$ , the minimum exponent of the exponential
growth with respect to $t$ for the fixed value of $Y$ at one point $x_{a}$ is given by $\sqrt{-\kappa(Y,x_{a})}$

and this is the case when $\nabla_{\dot{x}_{a}}Y=0$ . If we regard the values of $Y$ and $\nabla_{\dot{x}_{t}}Y$ at $x_{0}$ as
initial perturbations, the negative sectional curvature implies the instability of the
geodesic. This instability suggests that it is $\mathrm{i}\mathrm{m}$

. possible to predict the passive scalar
advected by the motion of the ideal incompressible fluid over a certain period, and
the period is estimated from the value of the sectional curvature $\kappa$ .

The flow over $2- \mathrm{s}_{\mathrm{P}^{\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}}}(s^{2})$ may be regarded as a simplified model of the motion
of atmosphere over the earth.

2. BASIC NOTATIONS

Let $S^{2}$ be defined in $\mathrm{R}^{3}$ by the equation $x^{2}+y^{2}+z^{2}=r^{2}$ and its Riemannian
metric $(, )$ be defined as the restriction of the standard Euclidean metric of $\mathrm{R}^{3}$ . Let
$(\theta,\varphi)$ and $(u, \varphi)$ be coordinates defined by:

$x=r\sin\theta\cos\varphi$

(2.1) $y=r\sin\theta\sin\varphi$

$z=r\cos\theta=ru$ .

and the Riemannian metric in $S^{2}$ $( , )$ has components

$( \frac{\partial}{\partial u}, \frac{\partial}{\partial u})=\frac{r^{2}}{1-u^{2}}$

(2.2) $( \frac{\partial}{\partial\varphi}, \frac{\partial}{\partial\varphi})=r^{2}(1-u^{2})$

$( \frac{\partial}{\partial u}, \frac{\partial}{\partial\varphi})=0$.

The Riemannian volume (area) element $\mu$ is given by:

(2.3) $\mu=\frac{S}{4\pi}d\varphi$ A $du$ ,
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where $S=4\pi r^{2}$ is the area of the sphere.
Let the group of volume-preserving diffeomorphisms $\mathfrak{D}_{vol}(S^{2})$ of $S^{2}$ acts on $S^{2}$ from

right. The elements of $T\mathfrak{D}_{vol()}s^{2}$ induce vector fields on $S^{2}$ with divergence-free. The
set of vector fields on $S^{2}$ with divergence-free will be denoted by $X_{vol}(s2)$ , and the
vector field induced by $A\in T\mathfrak{D}_{vol}(s2)$ will be denoted by $A^{*}$ . The Riemannian
metric $g$ on $\mathfrak{D}_{vol}(s^{2})$ is induced from the metric $(, )$ on $S^{2}$ as follows:

(2.4) $g_{a}(A, B)= \int_{S^{2}}(A^{*}, B^{*})\mu$ , $a\in \mathfrak{D}_{vol}(s^{2}),$ $A,$ $B\in T_{a}\mathfrak{D}_{vol}(S^{2})$ .

This m.e.tric is left-invariant.
Remark. In [2] , $[3],$ $\mathfrak{D}_{vol}(D)$ is (implicitly) determined to act on $D$ from left, so that
the corresponding metric is right-invariant.

For $X\in X_{vol}(s^{2})$ , we have:

(2.5) $0=,$ $divX=L_{X}\mu=d\iota_{X}\mu$ ,

where $L_{x}$ is the Lie derivative with respect to the vector field $X$ and $\iota_{X}$ is the
contraction with $X$ defined as follows:

(2.6) $\iota x\mu(Y)=\mu(X, Y)$ .

(2.5) is obtained from the identity $L_{X}=d\mathrm{o}\iota_{X}+\iota_{X}\mathrm{o}d$ . Since de Rham cohomology
group $H^{1}(S^{2})$ is $0$ , there exists a unique function $\psi x$ on $S^{2}$ for each $X\in X_{vol}(S2)$

satisfying:

(2.7) $d\psi_{\mathrm{x}=\iota_{X}}\mu$ .

$\psi_{X}$ is said to be a fiow function of the vector field $X$ on $S^{2}$ . Let $X_{\psi}$ denote the vector
field whose flow function is $\psi$ . $X_{\psi}$ is expressed in the coordinate $(u, \varphi)$ by

(2.8) $X_{\psi}= \frac{4\pi}{S}(\frac{\partial\psi}{\partial u}\frac{\partial}{\partial\varphi}-\frac{\partial\psi}{\partial\varphi}\frac{\partial}{\partial u})$ .

$X\psi$ is a Hamiltonian vector field of the function $\psi$’ with respect to the symplectic
2-form $\mu$ . The $\acute{b}$ racket product $\{$ , $\}$ of two functions $f$ and $g$ on $S^{2}$ is defined by:

(2.9) $\{f,g\}=-\mu(xf,\mathit{9}X)$ .

Note that our definition of the bracket differs in sign from the conventional definition
of the Poisson bracket. Let $A$ and $B$ be the elements of the Lie algebra $0_{vol}(S^{2})$ (.i.e.
a set of left invariant vector fields) of the group $\mathfrak{D}_{vol}(s2)$ and $e$ denote the identity
element of the group $\mathfrak{D}_{vol}(S^{2})$ . In our definitions, the mapping $A\in \mathrm{U}_{vol}(S^{2})arrow A_{e}^{*}\in$
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$X_{vol}(S^{2})$ and the mapping $X\in X_{vol}(s^{2})arrow\psi_{X}\in C^{\infty}(S^{2})$ are both isomorphisms
with respect to each corresponding bracket, namely:

(2.10) $[A_{e}^{*}, B_{e}^{*}]=[A, B]_{e}*$ , $A,$ $B\in v_{vol}(s^{2})$ ,

(2.11) $\{\psi_{x}, \psi_{Y}\}=\psi_{[}X,Y]$ , $X,$ $Y\in X_{vo}\iota(S2)$ .

Consequently, we obtain:

(2.12) $\{\psi_{A_{\mathrm{e}}}*, \psi B^{*}\mathrm{e}\}=\psi_{[A,B]_{e}}*$ ,

and from now on, we identify the function $\psi_{A_{\mathrm{e}}*}$ on $S^{2}$ with the element $A$ of the Lie
algebra $0_{vol}(S^{2})$ . The bracket product $\{$ , $\}$ of two functions on $S^{2}$ is also identified
with the Lie bracket of the Lie algebra $0_{vol}(S^{2})$ . We formally complexify the Lie
algebra $0_{vol}(s2)$ and the above identification enable to express the elements of the
algebra $\emptyset_{vol}(S^{2})$ by the linear combinations of the spherical harmonics $Y_{l}^{m}$ . The
orthonormal basis with respect to the metric $g$ will be denoted by $\tilde{Y}_{l}^{m}$ :

(2.13)

(2.14) : $g_{e}(Y_{l^{\prime ib}}, \mathrm{Y}_{l^{-}\mathrm{I}=}\prime\prime\prime u(-\perp)’\prime v_{\delta\prime}ll\delta mm’\cdot$

Let $C$ denote the structure constants, namely:

(2.15) $\{\tilde{Y}_{l_{1}}^{m_{2}},\tilde{Y}_{l_{2}}^{m}2\}=\sum_{lm}C\tilde{Y}_{l}^{m}$ .

We now consider the Riemannian connection $\nabla$ associated with the Riemannian
metric $g$ . Let $X(M)$ denote the set of vector fields on M. $\nabla xY\in X(\mathfrak{D}_{vo}l(S^{2}))$ ,
the covariant derivative of $Y$ in the direction of $X$ , is a bilinear function of $x_{\iota},Y\in$

$X(\mathfrak{D}_{vol}(s2))$ . $\nabla$ is uniquely defined to satisfy the following conditions:

(2.16) $\nabla_{X}Y-\nabla_{Y}x-[X, Y]=0$ ,
(2.17) $X(g(Y, Z))=g(\nabla_{X}Y, z)+g(Y, \nabla_{X}z)$ .

for any $X,$ $Y,$ $Z\in X(\mathfrak{D}_{vol(}s2))$ . For $X,$ $Y,$ $Z\in\eta_{vol}(s2)$ , we obtain the following
formula from (2.16) and (2.17).

$i^{:}$

.

(2.18) $g( \nabla x^{Y}, z)=\frac{1}{2}(g([X, Y], z)+g([z, x], Y)+g([Z, Y],X))$ .
. $\backslash \cdot$. .:

The Christoffel’s symbols $\Gamma$ is defined by: $.\mathrm{t}$ .. $l\backslash$.

(2.19) $\nabla_{\tilde{Y}_{l_{1}}^{m_{1}}}\tilde{Y}^{m}l_{2}2=\sum_{lm}\Gamma\tilde{Y}_{l}^{m}$ .
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From $(2.18),(2.14)$ and (2.19), we obtain the following formula:

(2.20) $\mathrm{F}$

$= \frac{1}{2}(C+(-1)^{m_{1}}C+(-1)^{m_{2}}C)$ .

The Riemannian curvature transformation $R$ associates to each pair of vector fields
$X$ and $Y$ the linear transformation:

(2.21) $R(X, Y)=\nabla x\nabla_{Y}-\nabla Y\nabla_{X}-\nabla_{[Y}X,]$ .

The Riemannian curvature tensor, also denoted by $R$ , is defined by:

(2.22) $R(X_{1,2,\mathrm{s}}XX, X_{4})=g(R(x_{3}, X4)X_{2},$ $X_{1})$ ,

where $X_{1},$
$\ldots,$

$X_{4}$ are vector fields. The Riemannian curvature tensor $R$ satisfies the
following properties:

$R(X_{1}, X_{2}, x3, X_{4})=-R(X_{2}, X_{1,3}X, x_{4})$ ,
(2.23) $R(X_{1}, X_{2}, x3, X_{4})=-R(X_{1}, x_{2}, x4, x_{3})$ ,

$R(X_{1}, X_{2,\mathrm{s},X_{4}}X)+R(x_{1}, x_{3}, X_{4}, X_{2})+R(X_{1}, X_{4}, x2, X_{3})=0$ .

If $X_{1}$ and $X_{2}$ are orthonormal, the value:

(2.24) $\kappa(X_{1}, X_{2})=R(X_{1}, X_{2}, x1, X_{2})$

is called the sectional curvature of the 2-dimensional plane containing the directions
of $X_{1}$ and $X_{2}$ . If $X_{1}$ and $X_{2}$ are not orthonormal, then the corresponding sectional
curvature is given by:

(2.25) $\kappa(X_{1},X_{2})=\frac{R(X_{1},X_{2},x1X_{2})}{g(X_{1},X_{1})g(x_{2},X_{2})-(g(X_{1},x2))2},$ .

We employ the following abbreviations:

(2.26) $R=R(\tilde{Y}_{l_{1}’\iota_{2}’ l}^{m_{1}}\tilde{Y}m2\tilde{Y}m_{3},\tilde{Y}_{l}m_{4})34$
’

(2.27) $\kappa=\kappa(\tilde{Y}^{m}1,\tilde{Y}_{l}m2)l_{12}$ .
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3. DISCUSSIONS

The explicit formulas of the Riemannian curvature tensor $R$ and the sectional
curvature $\kappa$ are obtained in [14]. They are expressed through $3-j$ coefficients. The
$3-j$ coefficients

can be computed from the following formula [13].

Here is the theorem for the explicit formulas of the Riemannian curvature tensor
$R$ and the sectional curvature $\kappa$ .

Theorem 3.1 (Yoshida [14]). If $l_{1}+l_{2}+t$ is $odd_{f}$ the structure constants are ex-
pressed by:

otherwise

(3.3) $C=0$.

49



Corollary 3.1. With the structure $conStant_{\mathit{8}}C$ , the Christoffel’s symbols $\Gamma$ and the
Riemannian curvature tensor $R$ are given by the formulas:
(3.4)

$\Gamma=\frac{1}{2\lambda}(\lambda-\lambda_{1}+\lambda_{2})c$ ,

(3.5)

$R=(-1)^{m_{1}} \sum_{lm}(\Gamma\Gamma$

$-\Gamma\Gamma$

$-C\Gamma)$ .

By virtue of this theorem, it is possible to compute the sectional curvature of any
particular 2-dimensional plane in $T_{\mathrm{e}}\mathfrak{D}_{v\circ l(}S^{2}$ ). We are going to study the stability of
the azimuthal flow with the flow function $\hat{Y}_{l}^{0}$ . We restrict the perturbations to the
flows described by the flow function $R_{a}^{*}\hat{Y}_{l}^{0},$

$,$
$a\in SU(2)$ , where $R_{a}^{*}$ is a pull back of

the function associated with the right action of $a$ on $S^{2}[14]$ We define the mean
sectional curvature $\kappa_{m}(l, l’)$ associated with $l,$ $l’$ by:

$\kappa_{m}(l, l’)=\frac{1}{\Omega}\int_{SU(2})\kappa(\hat{Y}_{l}0, R_{a}*\hat{Y}_{l}^{0}, )da$

(3.6)
$= \frac{1}{2l’+1}\sum_{m}\hat{\kappa}$ ,

where $da$ is the Haal measure of $SU(2)$ and $\Omega$ is the measure of the whole group
defined to be $\int_{SU(2)}da$ .

Fixing $r$ to be 1, actual computations of the mean sectional curvatures $\kappa_{m}(l, l’)$

are performed for some $l$ and $l’$ , and the results are shown in Figure 1. Lukatskii
[9] showed that $\lim_{larrow\infty^{\hat{\kappa}}(\begin{array}{l}l20\pm l\end{array})}=-(15/8\pi)\approx-0.60$ . Since $\hat{\kappa}\approx-0.54\approx$

$0.90 \lim_{larrow\infty^{\hat{\kappa}}(\begin{array}{l}2l0l\end{array})}$ , we may consider $l=20$ is a sufficiently large value and reflects
some behavior when $l$ tends to be infinity.

Now we look at the flow $\hat{Y}_{2}^{0}$ . The corresponding vector field $X_{\hat{Y}_{2}^{0}}$ is given by:

(3.7) $X_{\hat{Y}_{2}^{0}}= \frac{1}{S}\sqrt{30\pi}u\frac{\partial}{\partial\varphi}$ .

The particles near the poles $u=\pm 1$ rotates around $z$ -axis faster and the infe-
rior limit of the period $T$ during which the particle rotates around $z$-axis is equal
to $\sqrt{2\pi/15}S$ . We estimate the mean curvature $\kappa_{m}(2)$ associated with $\hat{Y}_{2}^{0}$ to be
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FIGURE 1. $l’vS\kappa_{m}(l, l’)$

$\kappa_{m}(2,20)\approx-0.12(4\pi/S)^{2}$ . Then the initial perturbation of the small order $\epsilon$ grows
exponentially and becomes $e^{\sqrt{-\kappa_{m}(2)}T}\epsilon\approx 17\epsilon$ after the period of the rotation of the
fastest particles. The particles on $u \xi=\frac{1}{2}$ rotate around $z$,-axis with the period $2T$ and
the initial perturbation $\epsilon$ grows to $e^{2\sqrt{-\kappa_{m}(3)}T}\epsilon\approx 3\cross 10^{2}\epsilon$ after this period. This
suggests that it is practically impossible to predict the passive scalar advected by the
flow $\hat{\mathrm{Y}}_{2}^{0}$ over the period $2T$ .

4. STABILITYgOF THE FLOW As VECTOR $\mathrm{F}\mathrm{I}\mathrm{E}\mathrm{L}’ \mathrm{D}$

$*\cdot$ \dagger . $l$
.

$.\cdot$ $\}$

.
. $t$ .

One should remark that the instability of the motion of the fiuid discussed above
(i.e. instability as the geodesic equation on the group $\mathfrak{D}_{vol}(S2)$ ) is different from the
$/\mathrm{i}\mathrm{t}$ instability of the flow in usual sense (i.e. the instability of the velocity field). The
distance between two flow with flow functions $\psi$ and $\psi’$ is given by

(4.1)

Then the Liapunov stability of the flow can be discussed with respect to this distance.
It is possible that a flow is Liapunov stable where its corresponding motion of the
fluid is unstable. For example, we have seen the instability of the motion of the fluid
for the flow $Y_{0}^{2}$ , and now we will see that the flow $Y_{2}^{0}$ is almost Liapunov stable.

Let $\triangle$ be the Laplace-de Rham operator (see [1]), which differs in sign from the
Laplacian $\nabla^{2}$ . The function $\triangle\psi$ is said to be it vorticity of the flow function $\psi$ .
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Lemma 4.1. $\mathrm{Y}_{l}^{0}$ is a stationary flow. Let $\phi_{0}$ be the initial perturbation and $Y_{l}^{0}+\psi_{t}$

satisfy the Euler’s equation. Then the following value conserves (is independent of
time $t$).

(4.2) $\frac{1}{l(l+1)}\int_{S^{2}}(\Delta\phi_{t})^{2}\mu-||\phi t||2$

Proof. This is proved from the fact that the energy $( \frac{1}{2}||\psi_{t}||^{2})$ and the enstrophy
$( \frac{1}{2}\int_{S^{2}}(\triangle\psi t)^{2})$ conserves for the solution of the Euler’s equation $\psi_{t}$ and that $\triangle Y_{l}^{0}=$

$l(l+1)Y_{l}^{0}$ (see [3]). $\square$

It is easy to see from Lemma 4.1 that flow $Y_{2}^{0}$ is almost Liapunov stable in the
following sense.

Theorem 4.1. Fix some arbitrary $\epsilon>0$ . For $\phi_{t}$ defined $ab_{ov}e$, the following equa-
tion:

(4.3) $|| \phi_{t}||^{2}\leq\frac{1}{\epsilon}(\int_{S}2)\frac{1}{6}(\triangle\phi 0)2\mu-||\phi t||^{2}$

holds if

(4.4) $I_{S^{2}} \frac{1}{6}(\triangle\phi_{t})2\mu\geq(1+\epsilon)||\phi_{t}||^{2}$ .

Remark. Since any flow not containing $Y_{1}^{m}$ (the rigid body motion mode) satisfies
the equation:

(4.5) $\int_{S^{2}}\frac{1}{6}(\triangle\phi_{t})^{2}\mu\geq||\phi_{t}||^{2}$ ,

the condition in Theorem 4.1 may almost be satisfied, choosing $\epsilon$ to be sufficiently
small.

5. SUMMARY

(1) The structure constants $C$ of the Lie algebra $\Phi_{vol}(s^{2})$ of the group of area-
preserving diffeomorphism (motions of fluid) $\mathfrak{D}_{vol}(S^{2})$ of $S^{2}$ are obtained in
Theorem 3.1. They are expressed through $3-j$ coefficients. The components
of the curvature tensor of the group $\mathfrak{D}_{vol}(S^{2})$ are expressed with the structure
constants. [14]

(2) The mean sectional curvature associated with $Y_{2}^{0}$ is computed and it is esti-
mated that the initial perturbation $\epsilon$ grows to $3\cross 10^{2}\epsilon$ after the period during
which the particles on $u= \frac{1}{2}$ rotate around $z-\mathrm{a}\mathrm{x}\mathrm{i}_{\mathrm{S}},\mathrm{i}.\mathrm{e}.,\mathrm{t}\mathrm{h}\mathrm{e}$ corresponding mo-
tion of the fluid is unstable in this sense.
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(3) In spite of the instability of the motion of the fluid noted above for the flow
$\hat{Y}_{2}^{0}$ , the flow $\hat{Y}_{2}^{0}$ is almost Liapunov stable as a vector field.
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