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While the one-dimensional surrogate of energy dissipation rate has
often been used in place of the true one in many researches in context to the
refined similarity hypothsis of Kolmogorov and the multifractal nature of
isotropic turbulence, it is reported here, as a result of direct numerical
simulation, that there is a fundamental difference between the two results
which the surrogate and the true one bring forth. The conditional and
unconditional probability density of the Kolmogorov variable in terms of the
true one are never bimodal but always nearly Gaussian. The multifractal
nature of dissipation and possible fractional Brownian motion of velocity in
turbulence often discussed are substantially affected by this fact.
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Many people who investigate isotropic turbulence experimentally have

been using the so-called pseudo-dissipation rate $\epsilon’=15\mathrm{v}(\partial \mathrm{u}/\partial \mathrm{x})^{2}(\mathrm{v}$: kinematic

viscosity, $\mathrm{a}\mathrm{u}/\partial \mathrm{x}$ : longitudinal velocity gradient), that is the one-dimensional
(1D) surrogate of energy dissipation rate $\epsilon$ in isotropic turbulence in place of

$\epsilon$ itself, simply because it is hard to measure all the simultaneous components

of strain tensor. In most cases, discussions of intermittency exponents have

been based on observations of the surrogate $\epsilon$

’ (with invoking the Taylor

hypothesis). In particular, it is to be remarked that several current

important ideas on the fine structure of turbulence, such as the multifractal

distribution of dissipation in space [1], the bimodality of conditional

probability density functions (PDF) for a small scale range [2] of the

Kolmogorov variable in the refined similarity hypothesis (RSH) [3], and the

fractional Brownian motion (FBM) of velocity increment [4], have been

established on the basis of the knowledge obtained from observation of the

surrogate $\epsilon’$ .
However, the true $\epsilon$ may give a different knowledge leading to different

ideas. Such a possibility was already pointed out by some people [5-8]. Here

we present the comparison of the results obtained by using $\epsilon$ and that by $\epsilon$

’

from the data sets of direct numerical simulation (DNS) of two decaying
isotropic turbulences at the fully-developed state with $\mathrm{R}_{\lambda}\sim 100[9]$ and-160
[10] ( $\mathrm{R}_{\lambda}$ : Taylor-scale Reynolds number) on a 12 $8^{3}$ and a 5123 grid,

respectively. (The method of calculation on the former grid was described in

[11]; it is characteristic in using the decomposed solenoidal field of velocity

and simply employing the Runge-Kutta-Gill scheme for time-integration,

and it is the same on the latter grid, too, but the calculation was performed by

the NAL numerical wind tunnel, a distributed memory-parallel computer

with 128 vector-type processor elements, which achieved 113.8 GFLOPS for
FFT and 90.3 GFLOPS for this turbulence scheme, gifting the operation team

the 1994 Gordon Bell Prize of IEEE Computer Society.)

First we show in Fig. 1(a) the unconditional PDF’s of the Kolmogorov

variable $\mathrm{v}$ defined by RSH for various fixed scales $\mathrm{r}$:
$\Delta \mathrm{u}_{\mathrm{r}}=\mathrm{v}(\mathrm{r}\epsilon \mathrm{r})1/3$ , (1)

where $\Delta \mathrm{u}_{\mathrm{r}}$ is longitudinal velocity increment across distance $\mathrm{r}$ , and $\epsilon_{\mathrm{r}}$ is $\epsilon$

averaged over a domain of scale $\mathrm{r}$ ; we take the domain as the cube with side
length $\mathrm{r}$ between the centers of opposite faces of which the $\Delta \mathrm{u}_{\Gamma}$ is measured.
$\mathrm{v}$ is normalized by its root mean square. They are skewed somewhat (at most,

$- 0.3)$ but very similar to Gaussian, even though slightly depending on $\mathrm{r}$. In

contrast, we can see in Fig. 1(b) those for the surrogate dissipation using $\epsilon_{\Gamma}$

’

in place of $\epsilon_{\Gamma}$ ; in this case $\epsilon_{\mathrm{r}}$

’ is defined as the average of $\epsilon$

’ over a line of
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length $\mathrm{r}$ across which $\Delta \mathrm{u}_{\mathrm{r}}$ is measured. Apparently, they are bimodal for
small $\mathrm{r}$ and gradually approach to Gaussian as $\mathrm{r}$ increases. These data in Fig.
1 come from the computation for $\mathrm{R}_{\lambda}$ - 160, and 9 cases of $\mathrm{r}/_{\eta}$ are plotted
ranging from 0.580 to 149 ($\eta$ : Kolmogorov length), so that the inertial range
covers $\mathrm{r}/_{\eta}=4.64,9.28$ and 18.6. The bimodality seen here seems to reflect
that of the conditinal PDF’s of $\mathrm{v}$ for the surrogate dissipation, which were
depicted in detail by Stolovitzky et al. [2] based on the experimental
observation of real turbulence in an atmospheric surface layer with $\mathrm{R}_{\lambda}\sim$

1500 and 2000. Since we are interested in the existence or non-existence of
bimodality, we show the conditinal PDF’s of $\mathrm{v}$ for $\epsilon_{\mathrm{r}}$ and $\epsilon_{\mathrm{r}}$

’ only for a small $\mathrm{r}$

$(\mathrm{r}/_{\eta=}1.16)$ in Fig. 1 (c) and (d). It is evident that there is no bimodality found
in the conditional PDF’s of $\mathrm{v}$ for $\epsilon_{\mathrm{r}}$ even for such a small $\mathrm{r}$ for any $(\mathrm{r}\epsilon_{\mathrm{r}})^{1/}3$

and the PDF hardly depends on $(\Gamma\epsilon_{\mathrm{r}})^{1/3}$ , while that for $\epsilon_{\mathrm{r}}$

’ is clearly bimodal
and strongly depends on $(\mathrm{r}\epsilon_{\mathrm{r}}’)^{1/3}$ ; the more bimodal for the larger $(\mathrm{r}\epsilon_{\Gamma}’)1/3$ .
Every lines are drawn for a value zone of $(\mathrm{r}\epsilon_{\mathrm{r}})^{1/3}$ or $(\mathrm{r}\epsilon’ \mathrm{r})^{1/3}$ which is one of
the octad made by dividing the whole zone between the maximum and
minimum of $(\mathrm{r}\epsilon_{\mathrm{r}})^{1/3}$ or $(\mathrm{r}\epsilon_{\Gamma}’)1/3$ into 8, only when each zone has a sufficient
number of data points to draw a line. Ruggedness of lines means that the
data number is relatively small, and it happens usually when $(\mathrm{r}\epsilon_{\mathrm{r}})^{1/3}$ or
$(\mathrm{r}\epsilon_{\mathrm{r}}’)^{1/3}$ is large but also when it is very small for large $\mathrm{r}$ . In Fig. 1(d),
however, we notice that the transition pattern of the conditional PDF with
$(\mathrm{r}\epsilon_{\mathrm{r}}^{\mathrm{I}})^{1/3}$ is reverse to what was presented in [2] but resembles a $p$ersistent
$\mathrm{c}\mathrm{a}$se of the process treated in [4]; as $(\mathrm{r}\epsilon_{\mathrm{r}}’)^{1/3}$ increases, the line moves from
outside to inside. We show the same comparison for $\mathrm{r}/_{\eta=4.64}$ and 9.28 in Fig.
2. Fig. $2(\mathrm{a})$ and (c) identifies the tendency which appeared in Fig. 1 (c) and
the more Gaussianization of PDF holding a skewness. In Fig. 2(b) we can see
that the conditional PDF for $\epsilon_{\mathrm{r}}$

’ still keeps bimodality for smaller $(\mathrm{r}\epsilon_{\mathrm{r}}’)^{1/3}$ but
the transition pattern is now similar to that in [2], resembling an anti-
PersisTenr case [4]. Fig. $2(\mathrm{d})$ has the same trend, but the conditional PDF’s for
larger $(\mathrm{r}\epsilon_{\Gamma}’)1/3$ approach to Gaussian. For larger $\mathrm{r}$ we have made sure that
the conditional PDF for the true dissipation approaches to Gaussian in a
simple way, while that for the surrogate does so considerably depending on
$(\mathrm{r}\epsilon_{\Gamma}’)^{1}/3$ even in the inertial range (faster for larger $(\mathrm{r}\epsilon_{\mathrm{r}}’)^{1/3}$ ) just as is
presented in [2]. (We here note that no Taylor hypothesis was invoked in our
calculation and this may cause such a small difference in the conditional PDF
for the surrogate between our result and [2] as we have just seen; but also
other reasons such as a difference of resolution may come in to cause it.)

Thus, it is natural to conclude that the bimodality is peculiar to the PDF
of $\mathrm{v}$ for the surrogate dissipation, and that the PDF of $\mathrm{v}$ for the true

99



dissipation may be assumed as nearly Gaussian for a wide range of $\mathrm{r}$ and is

hardly conditioned by $(\mathrm{r}\epsilon_{\mathrm{r}})^{1/3}$ , but slightly dependent on $\mathrm{r}$ [12]. For

reference, we show the skewness and kurtosis of the unconditinal PDF of the

true dissipation against $\mathrm{r}/_{\eta}$ in Fig. 3, whence we see an appreciable

dependence of the kurtosis on $\mathrm{r}$ in the inertial range (inserted by arrows).

By the way, we note that the ensemble average of unnomralized $\mathrm{v}^{3}$ , say $<\mathrm{v}^{3}>$ ,

in the inertial range is just around $- 1$ , which roughly approximates $- 4/5$ in

the Kolmogorov theory [13]:
$<\Delta \mathrm{u}_{\mathrm{r}^{3}}>=- 4/5\mathrm{r}<\epsilon \mathrm{r}>$ . (2)

(Note that $\mathrm{v}$ is almost independent of $(\mathrm{r}\epsilon_{\mathrm{r}})^{1/}3$ for the true dissipation.) This

may indicate a limit of simulation of the ideal state $(\mathrm{R}_{\lambda}arrow\infty)$ which can be

achieved by our DNS turbulence with a rather low $\mathrm{R}_{\lambda}$. On the other hand, we

have got about 2.7 as $<\mathrm{v}^{2}>$ in the inertial range, which consistently gives

nearly the Kolmogorov constant $\mathrm{c}_{\mathrm{K}}$ for our turbulence, 2.1, again the same as

in [11], by dividing by $55/27\Gamma(1/3)[14]$ ; intermittency effect for $<\epsilon_{\mathrm{r}^{2/3}}>$ is

negligible here. (This rather high value of $\mathrm{C}_{\mathrm{K}}$ is common to other current

DNS’s of rurbulence. We verified that, as both $<\mathrm{v}^{3}>\mathrm{a}\mathrm{n}\mathrm{d}<\mathrm{v}^{2}>$ depend on $\mathrm{r}$ in

such a way that the magnitudes of them decrease outside the inertial range,

the averages of them over a wider range of $\mathrm{r}$ get closer to the ideal values.)

Next, we may be tempted to imagine the FBM of velocity with Hurst

number 1/3 from the form of (1). Indeed, Stolovitzky and Sreenivasan [15]

succeeded in deriving theoretically the conditional PDF of $\mathrm{v}$ from such a
general point of view by utilizing a special analytical relationship of $\Delta \mathrm{u}_{\mathrm{r}}$ and

$\mathrm{r}\epsilon_{\Gamma}$

’ through the quantity $\partial \mathrm{u}/\partial \mathrm{x}$ with some assumptions. That is bimodal for

small $\mathrm{r}$ and approaches to Gaussian for large $\mathrm{r}$ in rather excellent agreement

with their experimental observation, but without any skewness. However,

since the PDF of $\mathrm{v}$ is not really bimodal as we have seen above, their theory is

not fit to reality. Nevertheless, there remains a question whether turbulent

velocity makes actually an FBM. Then we have investigated this point by

observing the correlation function which was presented by Feder [16] to

judge the existence of FBM:
$\mathrm{C}(\mathrm{r})=<\Delta \mathrm{u}\mathrm{r}\Delta \mathrm{u}_{-}\mathrm{r}>/<\Delta \mathrm{u}\mathrm{r}^{2_{>}}$. (3)

Only if it is a constant equal to 1 $-2^{2\mathrm{H}- 1}$ , the motion can be judged as the FBM

with Hurst number H. Our results of $\mathrm{C}(\mathrm{r})$ for $\mathrm{R}_{\lambda}\sim 100$ and 160 are shown in

Fig. 4. They never reveal any constancy even in the inertial range (inserted

by arrows) but gradually increase with $\mathrm{r}/\mathrm{L}$ ( $\mathrm{L}$: largest scale in DNS) far over
the constant line corresponding to $\mathrm{H}=1/3$ . Therefore, it is hard to think that

the form of RSH leads to FBM naturally. lt may be too naive to expect an FBM

of velocity only by the form of (1), since we have another stochastic variable
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$\epsilon_{\mathrm{r}}$ than the nealy Gaussain random variable $\mathrm{v}$ . We note that $\mathrm{C}(\mathrm{r}\rangle$ $=- 1$ at $\mathrm{r}=0$

as it should if $\mathrm{u}_{\mathrm{r}}$ is analytic, and that $\mathrm{C}(\mathrm{r})=1$ at $\mathrm{r}=\mathrm{L}/2$ is due to the periodic
boundary condition so that the behavior beyond $\mathrm{r}=$ U4 would be unrealistic.
Zhu and Antonia traced the behavior of $\mathrm{C}(\mathrm{r})$ for the turbulence in an
atmospheric surface layer with $\mathrm{R}_{\lambda}\sim 7200$ , but a clear constancy to indicate $\mathrm{H}$

$=1/3$ was not obtained [17]. We may expect experimentalists to re-examine
$\mathrm{C}(\mathrm{r})$ for other cases with a sufficient amount of data to avoid a scattered
result. This is a fundamentally interesting problem. By the way, we may
point out that the persistent character of the pattern in Fig. 1(d) reasonably
corresponds to the fact that $\mathrm{C}(\mathrm{r})$ in Fig. 4 is negative for $\mathrm{r}/_{\eta=}1.16$ so that $\mathrm{H}>$

$1/2$ if the process treated in [15] would be supposed to exist in a local sense,
while the anti-persistent character in Fig. 2 (b) and (d) corresponds to the
fact that $\mathrm{C}(\mathrm{r})$ is positive for $\mathrm{r}/_{\eta}=4.64$ and 9.28 so that $\mathrm{H}<1/2$ . These facts
appear to reconfirm well the trend of the theoretical PDF with an arbitrary $\mathrm{H}$

deduced in [15].

In Fig. 5, we compare the generalized dimensions $\mathrm{D}(\mathrm{q})$ obtained for the
surrogate measure with those for the true dissipation measure. Here we
understand that the former gives a multifractal in the 1D space (or a 1D cut
of the $3\mathrm{D}$ space). So let us distinguish it as $\mathrm{D}(\mathrm{q})\mathrm{t}\mathrm{l})$ from $\mathrm{D}(\mathrm{q})$ in the $3\mathrm{D}$ space.
Since we have many lines of length $\mathrm{L}$ in the DNS box of turbulence, we can
get many $\mathrm{D}(\mathrm{q})\mathrm{t}1)_{\mathrm{S}}\mathrm{I}$ calculated in every line by the box counting method [18].

Just as in the experiment by Meneveau and Sreenivasan [19], these $\mathrm{D}(\mathrm{q})^{\langle}1)’ \mathrm{s}$

scatter in a wide range. Then we plot the averaged $\mathrm{D}(\mathrm{q})\mathrm{t}\mathrm{l})$ over all of them
(1282 $\mathrm{D}(\mathrm{q})^{(1)_{\mathrm{S}}}$’ for $\mathrm{R}_{\lambda}\sim 100$ ) by closed diamonds in the Figure and compare it
with the $\mathrm{P}$ model [19] indicated by a dashed line. Note that we set $\mathrm{D}(\mathrm{q})=$

$\mathrm{D}(\mathrm{q})11)+2$ as the $3\mathrm{D}$ version of the multifractal [20]. Hence we may judge
that our DNS supports the $\mathrm{p}$ model very well, only if the surrogate is treated
in the 1D space. On the other hand, the $\mathrm{D}(\mathrm{q})’ \mathrm{s}$ for the true dissipation (by the
$3\mathrm{D}$ box counting method) are plotted by closed circles and crosses for $\mathrm{R}_{\lambda}\sim 160$

and 100, respectively. These are close to each other, suggesting the
robustness of $\mathrm{D}(\mathrm{q})$ of the multifractal of dissipation measure in the $3\mathrm{D}$ space.
Thus, there is a non-trivial difference between $\mathrm{D}(\mathrm{q})$ for the surrogate and
that for the true dissipation. Only for lql $<3$ both are coincident. The
trinomial generalized Cantor set model [21] (contrived to improve the $3\mathrm{D}$

binomial Cantor set model [22] and indicated by open triangles here) with
intermittency exponents:

$\mu(\mathrm{q})=\log_{\mathrm{A}}(\mathrm{v}1^{\mathrm{B}+\mathrm{v}}\mathrm{q}2^{\mathrm{M}}\mathrm{q}_{+\mathrm{c}\mathrm{q}}\mathrm{v}3)$ , (3)

where $\mathrm{A}=$ 1.45214, $\mathrm{B}=$ 1.32284, $\mathrm{M}=$ 1.04693, $\mathrm{c}=0.62732,$ $\mathrm{V}1^{=0.32}6569,$ $\mathrm{V}2^{=}$

0.346863 and v3 $=$ 0.326569, is in excellent agreement with the DNS in the
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entire region. (Note that $\mathrm{D}(\mathrm{q})=-\mu(\mathrm{q})/(\mathrm{q}-1)+3.$ ) We add in the Figure the

She-Leveque model [23] which is not simply phenomenological but based on
some concepts on the dynamics and has intermittency exponents:

$\mu(\mathrm{q})=2\mathrm{q}/3- 2[1-(2/3)^{\mathrm{q}}]$. (4)

This model, indicated by a solid line, is very close to our DNS and the

trinomial generalized Cantor set model only for $\mathrm{q}\geq 0$ . Thus we may
understand that the $\mathrm{p}$ model extracted from $\mathrm{D}(\mathrm{q})\mathrm{t}\mathrm{l})$ plays a good role in
treating a nature of turbulence relevant to low-order moments of $\Delta \mathrm{u}_{\mathrm{r}}$ in the

inertial range, but otherwise it had better be replaced by a better model.
In conclusion, we disclosed a non-trivial difference in effect between

the true dissipation rate and its 1D surrogate in isorropic turbulence, by

treating the PDF of $\mathrm{v}$ , the possibility of FBM of longitudinal velocity, and the

multifractal nature of dissipation on the basis of our DNS data. Chen et al.
[24] addressed no qualitative difference in result between both in the
treatment of conditional average of $1\Delta \mathrm{u}_{\mathrm{r}}\mathrm{I}$ , but they did not analyze such

detailed features as treated here. On the other hand, Wang et al. [25] found a
large difference in some aspects related to RSH between both. Our result
makes the detail and effect of the difference clear. Even though the $\mathrm{R}_{\lambda}$

reached by the DNS is still low as compared with that by experiment, the

present result indicates a need to reconsider any induction only based on the
knowledge from the 1D surrogate dissipation.
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Figure captions

Fig. 1 The unconditional PDF’s of v for various r for (a) the true dissipation

and (b) its 1D surrogate; $\mathrm{r}/_{\eta=}0.586,1.16,2.32,4.64,9.28,18.6,37.2,74.3,149$ ; as
$\eta/_{\eta}$ increases, the line moves to the outside. The conditional $\mathrm{P}\mathrm{D}\mathrm{F}^{\mathrm{I}}\mathrm{S}$ of v for
$\mathrm{r}/_{\eta}=1.16$ for several values of (c) $(\mathrm{r}\epsilon_{\mathrm{r}})^{1/3}$ and (d) $(\mathrm{r}\epsilon_{\mathrm{r}}^{\mathrm{t}})1/3$; as $(\mathrm{r}\epsilon_{\mathrm{r}}’)^{1/}3$

increases, the line moves to the inside. The dotted lines denote the standard

normal PDF.

Fig. 2 The conditional PDF’s of v for $\mathrm{r}/_{\eta}=4.64$ for several values of (a)

$(\mathrm{r}\epsilon_{\mathrm{r}})1/3$ and (b) $(\mathrm{r}\epsilon_{\mathrm{r}}’)1/3$ . The conditional PDF’s of v for $\mathrm{r}/_{\eta}=9.28$ for several

values of (c) $(\mathrm{r}\epsilon_{\mathrm{r}})^{1/}3$ and (d) $(\mathrm{r}\epsilon_{\mathrm{r}}^{\mathrm{I}})^{1}/3$ . As $(\mathrm{r}\epsilon_{\mathrm{r}}^{\mathrm{I}})^{1/3}$ increases, the line moves

to the outside for both cases. The dotted lines denote the standard normal

PDF.

Fig. 3 (a) Skewness and (b) kurtosis of PDF of $\mathrm{v}$ for the true dissipation
against $\mathrm{r}/_{\eta}$ for $\mathrm{R}_{\lambda}$ - 160 (solid line) and $\mathrm{R}_{\lambda}$ - 100 (dotted line). The inertial

range of each case is indicated by the inserting arrows.

Fig. 4 Feder’s correlation function of $\Delta \mathrm{u}_{\mathrm{r}}$ for $\mathrm{R}_{\lambda}\sim 160$ (solid line) and $\mathrm{R}_{\lambda}\sim$

$100$ (dotted line), the inertial range of each case being indicated by the

inserting arrows. Horizontal lines show the fractional Brownian motions

with various Hurst numbers.

Fig. 5 Generalized dimensions $\mathrm{D}(\mathrm{q})’ \mathrm{s}$ for $\mathrm{R}_{\lambda}\sim 160$ (closed circles), for $\mathrm{R}_{\lambda}\sim 100$

(crosses), and for the trinomial generalized Cantor set model (open

triangles). $\mathrm{D}^{(1)}(\mathrm{q})+2$ for the $\mathrm{p}$ model is indicated by a dashed line and the
average $\mathrm{D}^{(1)}(\mathrm{q})+2$ for the 1D surrogate dissipation for $\mathrm{R}_{\lambda}$ - 100 by closed

diamonds. The She-Leveque model is added by a solid line, which overla-ps

with closed circles, crosses, and open triangles for $\mathrm{q}\geq 0$ .
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